Изменение числа хромосом. Изменения структурной организации хромосом

Несмотря на эволюционно отработанный механизм, позволяющий сохранять постоянной физико-химическую и морфологическую организацию хромосом в ряду клеточных поколений, под влиянием различных воздействий эта организация может изменяться. В основе изменения структуры хромосомы, как правило, лежит первоначальное нарушение ее целостности - разрывы, которые сопровождаются различными перестройками, называемыми хромосомными мутациями или аберрациями.

Разрывы хромосом происходят закономерно в ходе кроссинговера, когда они сопровождаются обменом соответствующими участками между гомологами (см. разд. 3.6.2.3). Нарушение кроссинговера, при котором хромосомы обмениваются неравноценным генетическим материалом, приводит к появлению новых групп сцепления, где отдельные участки выпадают - делении - или удваиваются - дупликации (рис. 3.57). При таких перестройках изменяется число генов в группе сцепления.

Разрывы хромосом могут возникать также под влиянием различных мутагенных факторов, главным образом физических (ионизирующего и других видов излучения), некоторых химических соединений, вирусов.

Рис. 3.57. Виды хромосомных перестроек

Нарушение целостности хромосомы может сопровождаться поворотом ее участка, находящегося между двумя разрывами, на 180° - инверсия. В зависимости от того, включает ли данный участок область центромеры или нет, различают перицентрические и парацентрические инверсии (рис. 3.57).

Фрагмент хромосомы, отделившийся от нее при разрыве, может быть утрачен клеткой при очередном митозе, если он не имеет центромеры. Чаще такой фрагмент прикрепляется к одной из хромосом - транслокация. Нередко две поврежденные негомологичные хромосомы взаимно обмениваются оторвавшимися участками -ре-ципрокная транслокация (рис. 3.57). Возможно присоединение фрагмента к своей же хромосоме, но в новом месте - транспозиция (рис. 3.57). Таким образом, различные виды инверсий и транслокаций характеризуются изменением локализации генов.

Хромосомные перестройки, как правило, проявляются в изменении морфологии хромосом, что можно наблюдать в световой микроскоп. Метацентрические хромосомы превращаются в субметацентрические и акроцентрические и наоборот (рис. 3.58), появляются кольцевые и полицентрические хромосомы (рис. 3.59). Особую категорию хромосомных мутаций представляют аберрации, связанные с центрическим слиянием или разделением хромосом, когда две негомологичные структуры объединяются в одну - робертсоновская транслокация, или одна хромосома образует две самостоятельные хромосомы (рис. 3.60). При таких мутациях не только появляются хромосомы с новой морфологией, но и изменяется их количество в кариотипе.

Рис. 3.58. Изменение формы хромосом

в результате перицентрических инверсий

Рис. 3.59. Образование кольцевых (I ) и полицентрических (II ) хромосом

Рис. 3.60. Хромосомные перестройки, связанные с центрическим слиянием

или разделением хромосом являются причиной изменения числа хромосом

в кариотипе

Рис. 3.61. Петля, образующаяся при конъюгации гомологичных хромосом, которые несут неравноценный наследственный материал в соответствующих участках в результате хромосомной перестройки

Описанные структурные изменения хромосом, как правило, сопровождаются изменением генетической программы, получаемой клетками нового поколения после деления материнской клетки, так как изменяется количественное соотношение генов (при делениях и дупликациях), меняется характер их функционирования в связи с изменением взаимного расположения в хромосоме (при инверсии и транспозиции) или с переходом в другую группу сцепления (при транслокации). Чаще всего такие структурные изменения хромосом отрицательно сказываются на жизнеспособности отдельных соматических клеток организма, но особенно серьезные последствия имеют хромосомные перестройки, происходящие в предшественниках гамет.

Изменения структуры хромосом в предшественниках гамет сопровождаются нарушением процесса конъюгации гомологов в мейозе и их последующего расхождения. Так, делении или дупликации участка одной из хромосом сопровождаются при конъюгации образованием петли гомологом, имеющим избыточный материал (рис. 3.61). Реципрокная транслокация между двумя негомологичными хромосомами приводит к образованию при конъюгации не бивалента, а квадривалента, в котором хромосомы образуют фигуру креста благодаря притягиванию гомологичных участков, расположенных в разных хромосомах (рис. 3.62). Участие в реципрокных транслокациях большего числа хромосом с образованием поливалента сопровождается формированием еще более сложных структур при конъюгации (рис. 3.63).

В случае инверсии бивалент, возникающий в профазе I мейоза, образует петлю, включающую взаимно инвертированный участок (рис. 3.64).

Конъюгация и последующее расхождение структур, образованных измененными хромосомами, приводит к появлению новых хромосомных перестроек. В результате гаметы, получая неполноценный наследственный материал, не способны обеспечить формирование нормального организма нового поколения. Причиной этой является нарушение соотношения генов, входящих в состав отдельных хромосом, и их взаимного расположения.

Однако, несмотря на неблагоприятные, как правило, последствия хромосомных мутаций, иногда они оказываются совместимыми с жизнью клетки и организма и обеспечивают возможность эволюции структуры хромосом, лежащей в основе биологической эволюции. Так, небольшие по размеру делении могут сохраняться в гетерозиготном состоянии в ряду поколений. Менее вредными, чем делении, являются дупликации, хотя большой объем материала в увеличенной дозе (более 10% генома) приводит к гибели организма.

Рис. 3.64. Конъюгация хромосом при инверсиях:

I - парацентрическая инверсия в одном из гомологов, II - перидентрическая инверсия в одном из гомологов

Нередко жизнеспособными оказываются робертсоновские транслокации, часто не связанные с изменением объема наследственного материала. Этим можно объяснить варьирование числа хромосом в клетках организмов близкородственных видов. Например, у разных видов дрозофилы количество хромосом в гаплоидном наборе колеблется от 3 до 6, что объясняется процессами слияния и разделения хромосом. Возможно, существенным моментом в появлении вида Homo sapiens были структурные изменения хромосом у его обезьяноподобного предка. Установлено, что два плеча крупной второй хромосомы человека соответствуют двум разным хромосомам современных человекообразных обезьян (12-й и 13-й -шимпанзе, 13-й и-14-й -гориллы и орангутана). Вероятно, эта человеческая хромосома образовалась в результате центрического слияния по типу робертсоновской транслокации двух обезьяньих хромосом.

К существенному варьированию морфологии хромосом, лежащему в основе их эволюции, приводят транслокации, транспозиции и инверсии. Анализ хромосом человека показал, что его 4, 5, 12 и 17-я хромосомы отличаются от соответствующих хромосом шимпанзе перицентрическими инверсиями.

Таким образом, изменения хромосомной организации, чаще всего оказывающие неблагоприятное воздействие на жизнеспособность клетки и организма, с определенной вероятностью могут быть перспективными, наследоваться в ряду поколений клеток и организмов и создавать предпосылки для эволюции хромосомной организации наследственного материала.

  • 2.2. ТИПЫ КЛЕТОЧНОЙ ОРГАНИЗАЦИИ
  • 2.3.2. Строение типичной клетки многоклеточного организма
  • 2.3.3. Поток информации
  • 2.3.4. Внутриклеточный поток энергии
  • 2.3.5. Внутриклеточный поток веществ
  • 2.3.6. Другие внутриклеточные механизмы общего значения
  • 2.3.7. Клетка как целостная структура. Коллоидная система протоплазмы
  • 2.4. ЗАКОНОМЕРНОСТИ СУЩЕСТВОВАНИЯ КЛЕТКИ ВО ВРЕМЕНИ
  • 2.4.1. Жизненный цикл клетки
  • 2.4.2. Изменения клетки в митотическом цикле
  • ГЛАВА 3
  • 3.1. НАСЛЕДСТВЕННОСТЬ И ИЗМЕНЧИВОСТЬ - ФУНДАМЕНТАЛЬНЫЕ СВОЙСТВА ЖИВОГО
  • 3.2. ИСТОРИЯ ФОРМИРОВАНИЯ ПРЕДСТАВЛЕНИЙ ОБ ОРГАНИЗАЦИИ МАТЕРИАЛЬНОГО СУБСТРАТА НАСЛЕДСТВЕННОСТИ И ИЗМЕНЧИВОСТИ
  • 3.3. ОБЩИЕ СВОЙСТВА ГЕНЕТИЧЕСКОГО МАТЕРИАЛА И УРОВНИ ОРГАНИЗАЦИИ ГЕНЕТИЧЕСКОГО АППАРАТА
  • 3.4. ГЕННЫЙ УРОВЕНЬ ОРГАНИЗАЦИИ ГЕНЕТИЧЕСКОГО АППАРАТА
  • 3.4.1. Химическая организация гена
  • 3.4.1.1. Структура ДНК. Модель Дж. Уотсона и Ф. Крика
  • 3.4.1.2. Способ записи генетической информации в молекуле ДНК. Биологический код и его свойства
  • 3.4.2 Свойства ДНК как вещества наследственности
  • 3.4.2.1. Самовоспроизведение наследственного материала. Репликация ДНК
  • 3.4.2.2. Механизмы сохранения нуклеогидной последовательности ДНК. Химическая стабильность. Репликация. Репарация
  • 3.4.2.5. Функциональная классификация генных мутаций
  • 3.4.3. Использование генетической информации
  • 3.4.3.1. Роль РНК в реализации наследственной информации
  • 3.4.3.3. Ген - функциональная единица наследственного материала. Взаимосвязь между геном и признаком
  • 3.4.4. Функциональная характеристика гена
  • 3.4.5. Биологическое значение генного уровня организации наследственного материала
  • 3.5. ХРОМОСОМНЫЙ УРОВЕНЬ ОРГАНИЗАЦИИ ГЕНЕТИЧЕСКОГО МАТЕРИАЛА
  • 3.5.1. Некоторые положения хромосомной теории наследственности
  • 3.5.2.1. Химический состав хромосом
  • 3.5.2.2. Структурная организация хроматина
  • 3.5.2.3. Морфология хромосом
  • 3.5.3. Проявление основных свойств материала наследственности и изменчивости на хромосомном уровне его организации
  • 3.5.3.3. Изменения структурной организации хромосом. Хромосомные мутации
  • 3.5.4. Значение хромосомной организации в функционировании
  • 3.5.5. Биологическое значение хромосомного уровня организации наследственного материала
  • 3.6. ГЕНОМНЫЙ УРОВЕНЬ ОРГАНИЗАЦИИ НАСЛЕДСТВЕННОГО МАТЕРИАЛА
  • 3.6.1. Геном. Генотип. Кариотип
  • 3.6.2.1. Самовоспроизведение и поддержание постоянства кариотипа в ряду поколений клеток
  • 3.6.2.2. Механизмы поддержания постоянства кариотипа
  • 3.6.2.3. Рекомбинация наследственного материала в генотипе. Комбинативная изменчивость
  • 3.6.3. Особенности организации наследственного материала
  • 3.6.4. Эволюция генома
  • 3.6.4.1. Геном предполагаемого общего предка про- и эукариот
  • 3.6.4.2. Эволюция прокариотического генома
  • 3.6.4.3. Эволюция эукариотического генома
  • 3.6.4.4. Подвижные генетические элементы
  • 3.6.4.5. Роль горизонтального переноса генетического материала
  • 3.6.5. Характеристика генотипа как сбалансированной по дозам системы взаимодействующих генов
  • 3.6.5.2. Взаимодействия между генами в генотипе
  • 3.6.6. Регуляция экспрессии генов на геномном уровне организации наследственного материала
  • 3.6.6.1. Общие принципы генетического контроля экспрессии генов
  • 3.6.6.3. Регуляция экспрессии генов у прокариот
  • 3.6.6.4. Регуляция экспрессии генов у эукариот
  • 3.6.7. Биологическое значение геномного уровня организации наследственного материала
  • ГЛАВА 4
  • 4.2. КЛЕТОЧНЫЕ МЕХАНИЗМЫ ОБЕСПЕЧЕНИЯ НАСЛЕДСТВЕННОСТИ И ИЗМЕНЧИВОСТИ
  • 4.2.1. Соматические мутации
  • 4.2.2. Генеративные мутации
  • РАЗДЕЛ III
  • ОНТОГЕНЕТИЧЕСКИЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИВОГО
  • ГЛАВА 5
  • РАЗМНОЖЕНИЕ
  • 5.1. СПОСОБЫ И ФОРМЫ РАЗМНОЖЕНИЯ
  • 5.2. ПОЛОВОЕ РАЗМНОЖЕНИЕ
  • 5.2.1. Чередование поколений
  • 5.3. ПОЛОВЫЕ КЛЕТКИ
  • 5.3.1. Гаметогенез
  • 5.3.2. Мейоз
  • 5.4. ЧЕРЕДОВАНИЕ ГАПЛОИДНОЙ
  • 5.5. ПУТИ ПРИОБРЕТЕНИЯ ОРГАНИЗМАМИ БИОЛОГИЧЕСКОЙ ИНФОРМАЦИИ
  • В ФОРМИРОВАНИИ ФЕНОТИПА
  • 6.1.1. Модификационная изменчивость
  • 6.1.2. Роль наследственных и средовых факторов
  • 6.1.2.1. Доказательства генетического определения признаков пола
  • 6.1.2.2. Доказательства роли факторов среды
  • 6.2. РЕАЛИЗАЦИЯ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ В ИНДИВИДУАЛЬНОМ РАЗВИТИИ. МУЛЬТИГЕННЫЕ СЕМЕЙСТВА
  • 6.3.1.2. Одновременное наследование нескольких признаков. Независимое и сцепленное наследование
  • 6.3.2. Закономерности наследования внеядерных генов. Цитоплазматическое наследование
  • 6.4. РОЛЬ НАСЛЕДСТВЕННОСТИ И СРЕДЫ
  • 6.4.1. Наследственные болезни человека
  • 6.4.1.1. Хромосомные болезни
  • 6.4.1.4. Болезни с нетрадиционным типом наследования
  • 6.4.3. Методы изучения генетики человека
  • 6.4.3.1. Генеалогический метод
  • 6.4.3.2. Близнецовый метод
  • 6.4.3.4. Методы дерматоглифики и пальмоскопии
  • 6.4.3.5. Методы генетики соматических клеток
  • 6.4.3.6. Цитогенетичвский метод
  • 6.4.3.7. Биохимический метод
  • 6.4.3.8. Методы изучения ДНК в генетических исследованиях
  • 6.4.4. Пренатальная диагностика наследственных заболеваний
  • 6.4.5. Медико-генетическое консультирование
  • ПЕРИОДИЗАЦИЯ ОНТОГЕНЕЗА
  • 7.1. ЭТАПЫ. ПЕРИОДЫ И СТАДИИ ОНТОГЕНЕЗА
  • 7.2. ВИДОИЗМЕНЕНИЯ ПЕРИОДОВ ОНТОГЕНЕЗА, ИМЕЮЩИЕ ЭКОЛОГИЧЕСКОЕ И ЭВОЛЮЦИОННОЕ ЗНАЧЕНИЕ
  • 7.3. МОРФОФИЗИОЛОГИЧЕСКИЕ И ЭВОЛЮЦИОННЫЕ ОСОБЕННОСТИ ЯИЦ ХОРДОВЫХ
  • 7.4. ОПЛОДОТВОРЕНИЕ И ПАРТЕНОГЕНЕЗ
  • 7.5. ЭМБРИОНАЛЬНОЕ РАЗВИТИЕ
  • 7.5.1. Дробление
  • 7.5.2. Гаструляция
  • 7.5.3. Образование органов и тканей
  • 7.5.4. Провизорные органы зародышей позвоночных
  • 7.6. ЭМБРИОНАЛЬНОЕ РАЗВИТИЕ МЛЕКОПИТАЮЩИХ И ЧЕЛОВЕКА
  • 7.6.1. Периодизация и раннее эмбриональное развитие
  • 7.6.2. Примеры органогенезов человека, отражающих эволюцию вида
  • 8.1. ОСНОВНЫЕ КОНЦЕПЦИИ
  • 8.2. МЕХАНИЗМЫ ОНТОГЕНЕЗА
  • 8.2.1. Деление клеток
  • 8.2.2. Миграция клеток
  • 8.2.3. Сортировка клеток
  • 8.2.4. Гибель клеток
  • 8.2.5. Дифференцировка клеток
  • 8.2.6. Эмбриональная индукция
  • 8.2.7. Генетический контроль развития
  • 8.3. ЦЕЛОСТНОСТЬ ОНТОГЕНЕЗА
  • 8.3.1. Детерминация
  • 8.3.2. Эмбриональная регуляция
  • 8.3.3. Морфогенез
  • 8.3.4. Рост
  • 8.3.5. Интегрированность онтогенеза
  • 8.4. РЕГЕНЕРАЦИЯ
  • 8.5.1. Изменение органов и систем органов в процессе старения
  • 8.6.1. Генетика старения
  • 8.6.2. Влияние на процесс старения условий жизни
  • 8.6.3. Влияние на процесс старения образа жизни
  • 8.6.4. Влияние на процесс старения эндоэкологической ситуации
  • 8.8. ВВЕДЕНИЕ В БИОЛОГИЮ ПРОДОЛЖИТЕЛЬНОСТИ ЖИЗНИ ЛЮДЕЙ
  • 8.8.2. Вклад социальной и биологической компонент в общую смертность в историческом времени и в разных популяциях
  • 9.1. КРИТИЧЕСКИЕ ПЕРИОДЫ
  • 9.3. ЗНАЧЕНИЕ НАРУШЕНИЯ МЕХАНИЗМОВ ОНТОГЕНЕЗА В ФОРМИРОВАНИИ ПОРОКОВ РАЗВИТИЯ
  • РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА
  • 3.5.3.2. Распределение материала материнских хромосом между дочерними клетками в митозе

    В ходе митотического деления обеспечивается закономерное распределение сестринских хроматид каждой хромосомы между дочерними клетками. В составе дочерних хромосом (бывших сестринских хроматид) каждая клетка нового поколения получает одну из двух молекул ДНК, образовавшихся в результате репликации материнской двойной спирали. Следовательно, новое поколение клеток получает одинаковую генетическую информацию в составе каждой группы сцепления.

    Таким образом, процессы, происходящие с хромосомами при подготовке клеток к делению и в самом делении, обеспечивают самовоспроизведение и постоянство их структуры в ряду клеточных поколений (см. разд. 3.6.2.1).

    После митоза хромосомы дочерней клетки представлены одной молекулой ДНК, компактно упакованной с помощью белков в одну хроматиновую нить, т.е. имеют такую же структуру, какую имели хромосомы материнской клетки до начала процесса репликации ДНК. Если вновь образованная клетка выбирает путь подготовки к делению, то в ней должны произойти все описанные выше события, связанные с динамикой структурной организации ее хромосом.

    3.5.3.3. Изменения структурной организации хромосом. Хромосомные мутации

    Несмотря на эволюционно отработанный механизм, позволяющий сохранять постоянной физико-химическую и морфологическую организацию хромосом в ряду клеточных поколений, под влиянием различных воздействий эта организация может изменяться. В основе изменения структуры хромосомы, как правило, лежит первоначальное нарушение ее целостности - разрывы, которые сопровождаются различными перестройками, называемымихромосомными мутациями или

    аберрациями.

    Разрывы хромосом происходят закономерно в ходе кроссинговера, когда они сопровождаются обменом соответствующими участками между гомологами (см. разд. 3.6.2.3). Нарушение кроссинговера, при котором хромосомы обмениваются неравноценным генетическим материалом, приводит к появлению новых групп сцепления, где отдельные участки выпадают - делении - или удваиваются -дупликации (рис. 3.57). При таких перестройках изменяется число генов в группе сцепления.

    Разрывы хромосом могут возникать также под влиянием различных мутагенных факторов, главным образом физических (ионизирующего и других видов излучения), некоторых химических соединений, вирусов.

    Рис. 3.57. Виды хромосомных перестроек

    Нарушение целостности хромосомы может сопровождаться поворотом ее участка, находящегося между двумя разрывами, на 180° - инверсия. В зависимости от того, включает ли данный участок область центромеры или нет, различают

    перицентрические и парацентрические инверсии(рис. 3.57).

    Фрагмент хромосомы, отделившийся от нее при разрыве, может быть утрачен клеткой при очередном митозе, если он не имеет центромеры. Чаще такой фрагмент прикрепляется к одной из хромосом - транслокация. Нередко две поврежденные негомологичные хромосомы взаимно обмениваются оторвавшимися участками - ре-ципрокная транслокация (рис. 3.57). Возможно присоединение фрагмента к своей же хромосоме, но в новом месте -транспозиция (рис. 3.57). Таким образом, различные виды инверсий и транслокаций характеризуются изменением локализации генов.

    Хромосомные перестройки, как правило, проявляются в изменении морфологии хромосом, что можно наблюдать в световой микроскоп. Метацентрические хромосомы превращаются в субметацентрические и

    акроцентрические и наоборот (рис. 3.58), появляются кольцевые и полицентрические хромосомы (рис. 3.59). Особую категорию хромосомных мутаций представляют аберрации, связанные с центрическим слиянием или разделением хромосом, когда две негомологичные структуры объединяются в одну - робертсоновская транслокация, или одна хромосома образует две самостоятельные хромосомы (рис. 3.60). При таких мутациях не только появляются хромосомы с новой морфологией, но и изменяется их количество в кариотипе.

    Рис. 3.58. Изменение формы хромосом в результате перицентрических инверсий

    Рис. 3.59. Образование кольцевых (I ) и полицентрических (II ) хромосом

    Рис. 3.60. Хромосомные перестройки, связанные с центрическим слиянием или разделением хромосом являются причиной изменения числа хромосом в кариотипе

    Рис. 3.61. Петля, образующаяся при конъюгации гомологичных хромосом, которые несут неравноценный наследственный материал в соответствующих участках в результате хромосомной перестройки

    Описанные структурные изменения хромосом, как правило, сопровождаются изменением генетической программы, получаемой клетками нового поколения после деления материнской клетки, так как изменяется количественное соотношение генов (при делениях и дупликациях), меняется характер их функционирования в связи с изменением взаимного расположения в хромосоме (при инверсии и транспозиции) или с переходом в другую группу сцепления (при транслокации). Чаще всего такие структурные изменения хромосом отрицательно сказываются на жизнеспособности отдельных соматических клеток организма, но особенно серьезные последствия имеют хромосомные перестройки, происходящие в предшественниках гамет.

    Изменения структуры хромосом в предшественниках гамет сопровождаются нарушением процесса конъюгации гомологов в мейозе и их последующего расхождения. Так, делении или дупликации участка одной из хромосом сопровождаются при конъюгации образованием петли гомологом, имеющим избыточный материал (рис. 3.61). Реципрокная транслокация между двумя

    негомологичными хромосомами приводит к образованию при конъюгации не бивалента, а квадривалента, в котором хромосомы образуют фигуру креста благодаря притягиванию гомологичных участков, расположенных в разных хромосомах (рис. 3.62). Участие в реципрокных транслокациях большего числа хромосом с образованием поливалента сопровождается формированием еще более сложных структур при конъюгации (рис. 3.63).

    Рис. 3.62. Образование при конъюгации квадривалента из двух пар хромосом, несущих реципрокную транслокацию

    Рис. 3.63. Образование при конъюгации поливалента шестью парами хромосом, участвующих

    в реципрокных транслокациях: I - конъюгация между парой

    хромосом, не несущих транслокацию; II - поливалент, образуемый шестью парами хромосом, участвующих

    в транслокации

    В случае инверсии бивалент, возникающий в профазе I мейоза, образует петлю, включающую взаимно инвертированный участок (рис. 3.64).

    Конъюгация и последующее расхождение структур, образованных измененными хромосомами, приводит к появлению новых хромосомных перестроек. В результате гаметы, получая неполноценный наследственный материал, не способны обеспечить формирование нормального организма нового поколения. Причиной этой является нарушение соотношения генов, входящих в состав отдельных хромосом, и их взаимного расположения.

    Однако, несмотря на неблагоприятные, как правило, последствия хромосомных мутаций, иногда они оказываются совместимыми с жизнью клетки и организма и обеспечивают возможность эволюции структуры хромосом, лежащей в основе биологической эволюции. Так, небольшие по размеру делении могут сохраняться в гетерозиготном состоянии в ряду поколений. Менее вредными, чем

    делении, являются дупликации, хотя большой объем материала в увеличенной дозе (более 10% генома) приводит к гибели организма.

    Рис. 3.64. Конъюгация хромосом при инверсиях:

    I - парацентрическая инверсия в одном из гомологов,II - перидентрическая инверсия в одном из гомологов

    Нередко жизнеспособными оказываются робертсоновские транслокации, часто не связанные с изменением объема наследственного материала. Этим можно объяснить варьирование числа хромосом в клетках организмов близкородственных видов. Например, у разных видов дрозофилы количество хромосом в гаплоидном наборе колеблется от 3 до 6, что объясняется процессами слияния и разделения хромосом. Возможно, существенным моментом в появлении вида Homo sapiens были структурные изменения хромосом у его обезьяноподобного предка. Установлено, что два плеча крупной второй хромосомы человека соответствуют двум разным хромосомам современных человекообразных обезьян (12-й и 13-й - шимпанзе, 13-й и-14-й -гориллы и орангутана). Вероятно, эта человеческая хромосома образовалась в результате центрического слияния по типу робертсоновской транслокации двух обезьяньих хромосом.

    К существенному варьированию морфологии хромосом, лежащему в основе их эволюции, приводят транслокации, транспозиции и инверсии. Анализ хромосом человека показал, что его 4, 5, 12 и 17-я хромосомы отличаются от соответствующих хромосом шимпанзе перицентрическими инверсиями.

    Таким образом, изменения хромосомной организации, чаще всего оказывающие неблагоприятное воздействие на жизнеспособность клетки и организма, с определенной вероятностью могут быть перспективными, наследоваться в ряду поколений клеток и организмов и создавать предпосылки для эволюции хромосомной организации наследственного материала.


    Мутационная изменчивость возникает в случае появления мутаций - стойких изменений генотипа (т.е. молекул днк), которые могут затрагивать целые хромосомы, их части или отдельные гены.

    Мутации могут быть полезными, вредными или нейтральными. Согласно современной классификации мутации принято делить на следующие группы.

    1. Геномные мутации - связанные с изменением числа хромосом. Особый интерес представляет ПОЛИПЛОИДИЯ - кратное увеличение числа хромосом, т.е. вместо 2n хромосомного набора возникает набор 3n,4n,5n и более. Возникновение полиплоидии связанно с нарушением механизма деления клеток. В частности, нерасхождение гомологичных хромосом во время первого деления мейоза приводит к появлению гамет с 2n набором хромосом.

    Полиплоидия широко распространена у растений и значительно реже у животных (аскарид, шелкопряда, некоторых земноводных). Полиплоидные организмы, как правило, характеризуются более крупными размерами, усиленным синтезом органических веществ, что делает их особенно ценными для селекционных работ.

    Изменение числа хромосом, связанное с добавлением или потерей отдельных хромосом, называется анеуплоидией. Мутацию анеуплоидии можно записать как 2n-1, 2n+1, 2n-2 и т.д. Анеуплоидия свойственна всем животным и растениям. У человека ряд заболеваний связан именно с анеуплоидией. Например, болезнь Дауна связана с наличием лишней хромосомы в 21-й паре.

    2. Хромосомные мутации - это перестройки хромосом, изменение их строения. Отдельные участки хромосом могут теряться, удваиваться, менять свое положение.

    Схематично это можно показать следующим образом:

    ABCDE нормальный порядок генов

    ABBCDE удвоение участка хромосомы

    ABDE потеря одного участка

    ABEDC поворот участка на 180 градусов

    ABCFG обмен участками с негомологичной хромосомой

    Как и геномные мутации, хромосомные мутации играют огромную роль в эволюционных процессах.

    3. Генные мутации связаны с изменением состава или последовательности нуклеотидов ДНК в пределах гена. Генные мутации наиболее важны среди всех категорий мутаций.

    Синтез белка основан на соответствии расположения нуклеотидов в гене и порядком аминокислот в молекуле белка. Возникновение генных мутаций (изменение состава и последовательности нуклеотидов) изменяет состав соответствующих белков-ферментов и в итоге к фенотипическим изменениям. Мутации могут затрагивать все особенности морфологии, физиологии и биохимии организмов. Многие наследственные болезни человека также обусловлены мутациями генов.

    Мутации в естественных условиях случаются редко - одна мутация определенного гена на 1000-100000 клеток. Но мутационный процесс идет постоянно, идет постоянное накопление мутаций в генотипах. А если учесть, что число генов в организме велико, то можно сказать, что в генотипах всех живых организмов имеется значительное число генных мутаций.

    Мутации - это крупнейший биологический фактор, обуславливающий огромную наследственную изменчивость организмов, что дает материал для эволюции.

    Причинами мутаций могут быть естественные нарушения в метаболизме клеток (спонтанные мутации), так и действие различных факторов внешней среды (индуцированные мутации). Факторы, вызывающие мутации называют мутагенами. Мутагенами могут быть физические факторы - радиация, температура.... К биологическим мутагена относят вирусы, способные осуществлять перенос генов между организмами не только близких, но далеких систематических групп.

    Хозяйственная деятельность человека принесла в биосферу огромное количество мутагенов.

    Большинство мутаций неблагоприятны для жизни особи, но иногда возникают такие мутации, которые могут представлять интерес для ученых-селекционеров. В настоящее время созданы методы направленного мутагенеза.

    1. По характеру изменения фенотипа мутации могут быть биохимическими, физиологическими, анатомо-морфологическими.

    2. По степени приспособительности мутации делятся на полезные и вредные. Вредные - могут быть летальными и вызывать гибель организма еще в эмбриональном развитии.

    Чаще мутации вредны, так как признаки в норме являются результатом отбора и адаптируют организм к среде обитания. Мутация всегда изменяет адаптацию. Степень ее полезности или бесполезности определяется временем. Если мутация дает возможность организму лучше приспособиться, дает новый шанс выжить, то она "подхватывается" отбором и закрепляется в популяции.

    3. Мутации бывают прямые и обратные. Последние встречаются гораздо реже. Обычно прямая мутация связана с дефектом функции гена. Вероятность вторичной мутации в обратную сторону в той же точке очень мала, чаще мутируют другие гены.

    Мутации чаще рецессивные, так как доминантные проявляются сразу же и легко "отбрасываются" отбором.

    4. По характеру изменения генотипа мутации делятся на генные, хромосомные и геномные.

    Генные, или точковые, мутации - изменение нуклеотида в одном гене в молекуле ДНК, приводящее к образованию аномального гена, а следовательно, аномальной структуры белка и развитию аномального признака. Генная мутация - это результат "ошибки" при репликации ДНК.

    Результатом генной мутации у человека являются такие заболевания, как серповиднокле-точная анемия, фенилкетонурия, дальтонизм, гемофилия. Вследствие генной мутации возникают новые аллели генов, что имеет значение для эволюционного процесса.

    Хромосомные мутации - изменения структуры хромосом, хромосомные перестройки. Можно выделить основные типы хромосомных мутаций:

    а) делеция - потеря участка хромосомы;

    б) транслокация - перенос части хромосом на другую негомологичную хромосому, как результат - изменение группы сцепления генов;

    в) инверсия - поворот участка хромосомы на 180°;

    г) дупликация - удвоение генов в определенном участке хромосомы.

    Хромосомные мутации приводят к изменению функционирования генов и имеют значение в эволюции вида.

    Геномные мутации - изменения числа хромосом в клетке, появление лишней или потеря хромосомы как результат нарушения в мейозе. Кратное увеличение числа хромосом называется полиплоидией (Зп, 4/г и т. д.). Этот вид мутации часто встречается у растений. Многие культурные растения полиплоидны по отношению к диким предкам. Увеличение хромосом на одну-две у животных приводит к аномалиям развития или гибели организма. Пример: синдром Дауна у человека - трисомия по 21-й паре, всего в клетке 47 хромосом. Мутации могут быть получены искусственно с помощью радиации, рентгеновских лучей, ультрафиолета, химическими агентами, тепловым воздействием.

    Закон гомологических рядов Н.И. Вавилова. Русский ученый-биолог Н.И. Вавилов установил характер возникновения мутаций у близкородственных видов: "Роды и виды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов".

    Открытие закона облегчило поиски наследственных отклонений. Зная изменчивость и мутации у одного вида, можно предвидеть возможность их появления и у родственных видов, что имеет значение в селекции.

    

    Мутации - это изменения в ДНК клетки. Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для естественного отбора.


    Генные мутации - изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена А на Т. Причины - нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия.


    Хромосомные мутации - изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины - нарушения при кроссинговере. Пример: синдром кошачьего крика.


    Геномные мутации - изменение количества хромосом. Причины - нарушения при расхождении хромосом.

    • Полиплоидия - кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера.
    • Анеуплоидия - изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна (при этом общее количество хромосом - 47).

    Цитоплазматические мутации - изменения в ДНК митохондрий и пластид. Передаются только по женской линии, т.к. митохондрии и пластиды из сперматозоидов в зиготу не попадают. Пример у растений - пестролистность.


    Соматические - мутации в соматических клетках (клетках тела; могут быть четырех вышеназванных видов). При половом размножении по наследству не передаются. Передаются при вегетативном размножении у растений, при почковании и фрагментации у кишечнополостных (у гидры).

    Приведённые ниже понятия, кроме двух, используются для описания последствий нарушения расположения нуклеотидов в участке ДНК, контролирующем синтез белка. Определите эти два понятия, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
    1) нарушение первичной структуры полипептида
    2) расхождение хромосом
    3) изменение функций белка
    4) генная мутация
    5) кроссинговер

    Ответ


    Выберите один, наиболее правильный вариант. Полиплоидные организмы возникают в результате
    1) геномных мутаций

    3) генных мутаций
    4) комбинативной изменчивости

    Ответ


    Установите соответствие между характеристикой изменчивости и ее видом: 1) цитоплазматическая, 2) комбинативная
    А) происходит при независимом расхождении хромосом в мейозе
    Б) происходит в результате мутаций в ДНК митохондрий
    В) возникает в результате перекреста хромосом
    Г) проявляется в результате мутаций в ДНК пластид
    Д) возникает при случайной встрече гамет

    Ответ


    Выберите один, наиболее правильный вариант. Синдром Дауна является результатом мутации
    1) геномной
    2) цитоплазматической
    3) хромосомной
    4) рецессивной

    Ответ


    1. Установите соответствие между характеристикой мутации и ее видом: 1) генная, 2) хромосомная, 3) геномная
    А) изменение последовательности нуклеотидов в молекуле ДНК
    Б) изменение строения хромосом
    В) изменение числа хромосом в ядре
    Г) полиплоидия
    Д) изменение последовательности расположения генов

    Ответ


    2. Установите соответствие между характеристиками и типами мутаций: 1) генные, 2) геномные, 3) хромосомные. Запишите цифры 1-3 в порядке, соответствующем буквам.
    А) делеция участка хромосомы
    Б) изменение последовательности нуклеотидов в молекуле ДНК
    В) кратное увеличение гаплоидного набора хромосом
    Г) анеуплоидия
    Д) изменение последовательности генов в хромосоме
    Е) выпадение одного нуклеотида

    Ответ


    Выберите три варианта. Чем характеризуется геномная мутация?
    1) изменением нуклеотидной последовательности ДНК
    2) утратой одной хромосомы в диплоидном наборе
    3) кратным увеличением числа хромосом
    4) изменением структуры синтезируемых белков
    5) удвоением участка хромосомы
    6) изменением числа хромосом в кариотипе

    Ответ


    1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик геномной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
    1) ограничена нормой реакции признака
    2) число хромосом увеличено и кратно гаплоидному
    3) появляется добавочная Х-хромосома
    4) имеет групповой характер
    5) наблюдается потеря Y-хромосомы

    Ответ


    2. Все приведённые ниже характеристики, кроме двух, используют для описания геномных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
    1) нарушение расхождения гомологичных хромосом при делении клетки
    2) разрушение веретена деления
    3) конъюгация гомологичных хромосом
    4) изменение числа хромосом
    5) увеличение числа нуклеотидов в генах

    Ответ


    3. Все приведённые ниже характеристики, кроме двух, используют для описания геномных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
    1) изменение последовательности нуклеотидов в молекуле ДНК
    2) кратное увеличение хромосомного набора
    3) уменьшение числа хромосом
    4) удвоение участка хромосомы
    5) нерасхождение гомологичных хромосом

    Ответ


    Выберите один, наиболее правильный вариант. Рецессивные генные мутации изменяют
    1) последовательность этапов индивидуального развития
    2) состав триплетов в участке ДНК
    3) набор хромосом в соматических клетках
    4) строение аутосом

    Ответ


    Выберите один, наиболее правильный вариант. Цитоплазматическая изменчивость связана с тем, что
    1) нарушается мейотическое деление
    2) ДНК митохондрий способна мутировать
    3) появляются новые аллели в аутосомах
    4) образуются гаметы, неспособные к оплодотворению

    Ответ


    1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик хромосомной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
    1) потеря участка хромосомы
    2) поворот участка хромосомы на 180 градусов
    3) уменьшение числа хромосом в кариотипе
    4) появление добавочной Х-хромосомы
    5) перенос участка хромосомы на негомологичную хромосому

    Ответ


    2. Все приведённые ниже признаки, кроме двух, используются для описания хромосомной мутации. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
    1) число хромосом увеличилось на 1-2
    2) один нуклеотид в ДНК заменяется на другой
    3) участок одной хромосомы перенесен на другую
    4) произошло выпадение участка хромосомы
    5) участок хромосомы перевернут на 180°

    Ответ


    3. Все приведенные ниже характеристики, кроме двух, используются для описания хромосомной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
    1) умножение участка хромосомы в несколько раз
    2) появление дополнительной аутосомы
    3) изменение последовательности нуклеотидов
    4) потеря концевого участка хромосомы
    5) поворот гена в хромосоме на 180 градусов

    Ответ


    ФОРМИРУЕМ
    1) удвоение одного и того же участка хромосомы
    2) уменьшение числа хромосом в половых клетках
    3) увеличение числа хромосом в соматических клетках

    Выберите один, наиболее правильный вариант. К какому виду мутаций относят изменение структуры ДНК в митохондриях
    1) геномной
    2) хромосомной
    3) цитоплазматической
    4) комбинативной

    Ответ


    Выберите один, наиболее правильный вариант. Пестролистность у ночной красавицы и львиного зева определяется изменчивостью
    1) комбинативной
    2) хромосомной
    3) цитоплазматической
    4) генетической

    Ответ


    1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик генной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
    1) обусловлена сочетанием гамет при оплодотворении
    2) обусловлена изменением последовательности нуклеотидов в триплете
    3) формируется при рекомбинации генов при кроссинговере
    4) характеризуется изменениями внутри гена
    5) формируется при изменении нуклеотидной последовательности

    Ответ


    2. Все приведенные ниже характеристики, кроме двух, служат причинами генной мутации. Определите эти два понятия, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
    1) конъюгация гомологичных хромосом и обмен генами между ними
    2) замена одного нуклеотида в ДНК на другой
    3) изменение последовательности соединения нуклеотидов
    4) появление в генотипе лишней хромосомы
    5) выпадение одного триплета в участке ДНК, кодирующей первичную структуру белка

    Ответ


    3. Все приведённые ниже характеристики, кроме двух, используют для описания генных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
    1) замена пары нуклеотидов
    2) возникновение стоп-кодона внутри гена
    3) удвоение числа отдельных нуклеотидов в ДНК
    4) увеличение числа хромосом
    5) потеря участка хромосомы

    Ответ


    4. Все приведённые ниже характеристики, кроме двух, используют для описания генных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
    1) добавление одного триплета в ДНК
    2) увеличение числа аутосом
    3) изменение последовательности нуклеотидов в ДНК
    4) потеря отдельных нуклеотидов в ДНК
    5) кратное увеличение числа хромосом

    Ответ


    5. Все приведённые ниже характеристики, кроме двух, типичны для генных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
    1) возникновение полиплоидных форм
    2) случайное удвоение нуклеотидов в гене
    3) потеря одного триплета в процессе репликации
    4) образование новых аллелей одного гена
    5) нарушение расхождения гомологичных хромосом в мейозе

    Ответ


    ФОРМИРУЕМ 6:
    1) осуществляется перенос участка одной хромосомы на другую
    2) возникает в процессе репликации ДНК
    3) происходит выпадение участка хромосомы

    Выберите один, наиболее правильный вариант. Полиплоидные сорта пшеницы - это результат изменчивости
    1) хромосомной
    2) модификационной
    3) генной
    4) геномной

    Ответ


    Выберите один, наиболее правильный вариант. Получение селекционерами сортов полиплоидной пшеницы возможно благодаря мутации
    1) цитоплазматической
    2) генной
    3) хромосомной
    4) геномной

    Ответ


    Установите соответствие между характеристиками и мутациями: 1) геномная, 2) хромосомная. Запишите цифры 1 и 2 в правильном порядке.
    А) кратное увеличение числа хромосом
    Б) поворот участка хромосомы на 180 градусов
    В) обмен участками негомологичных хромосом
    Г) выпадение центрального участка хромосомы
    Д) удвоение участка хромосомы
    Е) некратное изменение числа хромосом

    Ответ


    Выберите один, наиболее правильный вариант. Появление разных аллелей одного гена происходит в результате
    1) непрямого деления клетки
    2) модификационной изменчивости
    3) мутационного процесса
    4) комбинативной изменчивости

    Ответ


    Все перечисленные ниже термины, кроме двух, используются при классификации мутаций по изменению генетического материала. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
    1) геномные
    2) генеративные
    3) хромосомные
    4) спонтанные
    5) генные

    Ответ


    Установите соответствие между типами мутаций и их характеристиками и примерами: 1) геномные, 2) хромосомные. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
    А) утеря или появление лишних хромосом в результате нарушения мейоза
    Б) приводят к нарушению функционирования гена
    В) примером является полиплоидия у простейших и растений
    Г) удвоение или потеря участка хромосомы
    Д) ярким примером является синдром Дауна

    Ответ


    Установите соответствие между категориями наследственных болезней и их примерами: 1) генные, 2) хромосомные. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
    А) гемофилия
    Б) альбинизм
    В) дальтонизм
    Г) синдром «кошачьего крика»
    Д) фенилкетонурия

    Ответ


    Найдите три ошибки в приведённом тексте и укажите номера предложений с ошибками. (1) Мутации – это случайно возникшие стойкие изменения генотипа. (2) Генные мутации – это результат «ошибок», возникающих в процессе удвоения молекул ДНК. (3) Геномными называют мутации, которые ведут к изменению структуры хромосом. (4) Многие культурные растения являются полиплоидами. (5) Полиплоидные клетки содержат одну–три лишние хромосомы. (6) Полиплоидные растения характеризуются более мощным ростом и крупными размерами. (7) Полиплоидию широко используют как в селекции растений, так и в селекции животных.

    Ответ


    Проанализируйте таблицу «Виды изменчивости». Для каждой ячейки, обозначенной буквой, выберите соответствующее понятие или соответствующий пример из предложенного списка.
    1) соматические
    2) генные
    3) замена одного нуклеотида на другой
    4) удвоение гена в участке хромосомы
    5) добавление или выпадение нуклеотидов
    6) гемофилия
    7) дальтонизм
    8) трисомия в хромосомном наборе

    Ответ

    © Д.В.Поздняков, 2009-2019

    5.2. Хромосомные мутации

    Хромосомные мутации подразделяют на две категории: 1) мутации, связанные с изменениями числа хромосом в составе кариотипа (иногда их называют также численными аберрациями либо геномными мутациями); 2) мутации, состоящие в изменениях структуры отдельных хромосом (структурные аберрации).

    Изменения числа хромосом. Они могут выражаться в добавлении к первоначальному диплоидному набору хромосом (2n) одного или нескольких гаплоидных наборов (n), что приводит к возникновению полиплоидии (триплоидии, 3n, тетраплоидии, 4n, и др.). Возможны также добавления либо потери одной или нескольких хромосом, результатом которых является анеуплоидия (гетероплоидия). Если анеуплоидия связана с утратой одной хромосомы (формула 2n-1), то принято говорить о моносомии; выпадение пары гомологичных хромосом (2n-2) приводит к нуллисомии; при добавлении к диплоидному набору одной хромосомы (2n + 1) имеет место трисомия. В случаях, когда происходит увеличение набора на две и большее число хромосом (но меньше, чем на гаплоидное число), используется термин "полисемия".

    Полиплоидия очень распространена в некоторых группах растений. Получение полиплоидных сортов культурных растений является важной задачей селекционной практики, поскольку с увеличением плоидности повышается хозяйственная ценность таких растений (становятся более крупными листья, стебли, семена, плоды). С другой стороны, полиплоидия довольно редко встречается у раздельнополых животных, так как в этом случае часто нарушается баланс между половыми хромосомами и аутосомами, что приводит к бесплодию индивидуумов либо к летальности (гибели организма). У млекопитающих и человека возникшие полиплоиды, как правило, погибают на ранних этапах онтогенеза.

    Анеуплоидии наблюдаются у многих видов организмов, особенно у растений. Трисомии некоторых сельскохозяйственных растений также имеют определенную практическую ценность, тогда как моносомии и нуллисомии часто приводят к нежизнеспособности особи. Анеуплоидии человека являются причиной тяжелой хромосомной патологии, которая проявляется в серьезных нарушениях развития индивидуума, его инвалидности, нередко заканчиваясь ранней гибелью организма на том или ином этапе онтогенеза (летальным исходом). Хромосомные болезни человека более подробно будут рассматриваться в подразд. 7.2.

    Причины полиплоидии и анеуплоидии связаны с нарушениями расхождения диплоидного комплекса хромосом (либо хромосом отдельных пар) родительских клеток в дочерние клетки в процессе мейоза или митоза. Так, например, если у человека во время оогенеза возникнет нерасхождение одной пары аутосом материнской клетки с нормальным кариотипом (46,XX), то произойдет образование яйцеклеток с мутантными кариотипами 24 и 22,X. Следовательно, при оплодотворении таких яйцеклеток нормальными сперматозоидами (23,X либо 23,X) могут появиться зиготы (индивидуумы) с трисомией (47,XX либо 47,ХУ) и с моносомией (45,XXлибо 45,XУ) по соответствующей аутосоме. На рис. 5.1 приведена общая схема возможных нарушений оогенеза на этапе размножения первичных диплоидных клеток (при митотическом делении оогоний) либо при созревании гамет (во время деления мейоза), приводящих к возникновению триплоидных зигот (см. рис. 3.4). Аналогичные эффекты будут наблюдаться и при соответствующих нарушениях сперматогенеза.

    Если указанные выше нарушения затрагивают митотически делящиеся клетки на ранних этапах эмбрионального развития (эмбриогенеза), то появляются индивидуумы с признаками мозаицизма (мозаики), т.е. имеющие одновременно как нормальные (диплоидные) клетки, так и анеуплоидные (либо полиплоидные) клетки.

    В настоящее время известны различные агенты, например, высокие или низкие температуры, некоторые химические вещества, названные "митотическими ядами" (колхицин, гетероауксин, аценафтол и др.), которые нарушают нормальную работу аппарата клеточного деления у растений и животных, препятствуя

    нормальному завершению процесса расхождения хромосом в анафазе и телофазе. С помощью таких агентов в экспериментальных условиях получают полиплоидные и анеуплоидные клетки разных эукариот.

    Изменения структуры хромосом (структурные аберрации). Структурные аберрации представляют собой внутрихромосомные или межхромосомные перестройки, возникающие при разрывах хромосом под воздействием мутагенов окружающей среды либо как результат нарушений в механизме кроссинговера, приводящих к неправильному (неравноценному) генетическому обмену между гомологичными хромосомами после ферментативного "разрезания" их конъюгирующих участков.

    К числу внутрихромосомных перестроек относятся делеции (нехватки), т.е. потери отдельных участков хромосом, дупликации (дубликации), связанные с удвоением тех или иных участков, а также инверсии и нереципрокные транслокации (транспозиции), изменяющие порядок расположения генов в хромосоме (в группе сцепления). Примером межхромосомных перестроек являются реципрокные транслокации (рис. 5.2).

    Делеции и дупликации могут изменять численность отдельных генов в генотипе индивидуума, что приводит к нарушению баланса их регуляторных взаимоотношений и соответствующим фенотипическим проявлениям. Значительные по размерам делеции обычно бывают летальными в гомозиготном состоянии, тогда как очень мелкие делеции чаще всего не являются непосредственной причиной гибели гомозигот.

    Инверсия возникает в результате полного разрыва двух краев хромосомного участка с последующим поворотом этого участка на 180° и воссоединением разорванных концов. В зависимости от того, включается или не включается центромера в инвертированный участок хромосомы, инверсии подразделяются на перицентрические и парацентрические (см. рис. 5.2). Появляющиеся при этом перестановки в расположении генов отдельной хромосомы (перестройки группы сцепления) также могут сопровождаться нарушениями экспрессии соответствующих генов.

    Перестройки, изменяющие порядок и (или) содержание генных локусов в группах сцепления, происходят и в случае транслокаций. Наиболее часто встречаются реципрокные транслокации, при которых наблюдается взаимный обмен предварительно разорванными участками между двумя негомологичными хромосомами. В случае нереципрокной транслокации происходит перемещение (транспозиция) поврежденного участка в пределах той же хромосомы либо в хромосому другой пары, но без взаимного (реципрокного) обмена (см. рис. 5.2).

    объяснения механизма таких мутаций. Эти перестройки заключаются в центрическом слиянии двух негомологичных хромосом в одну либо в разделении одной хромосомы на две в результате ее разрыва в области центромеры. Следовательно, такие перестройки могут приводить к изменению числа хромосом в кариотипе, не влияя на общее количество генетического материала в клетке. Полагают, что робертсоновские транслокации являются одним из факторов эволюции кариотипов у разных видов эукариотических организмов.


    Как было отмечено ранее, помимо ошибок в системе рекомбинации причиной структурных аберраций обычно являются разрывы хромосом, возникающие при действии ионизирующей радиации, некоторых химических веществ, вирусов и других агентов.

    Результаты экспериментального изучения химических мутагенов свидетельствуют о том, что наиболее чувствительными к их воздействию являются гетерохроматиновые участки хромосом (чаще всего разрывы происходят в районе центромеры). В случае ионизирующей радиации такой закономерности не наблюдается.

    Базисные термины и понятия: аберрация; анеуплоидия (гетероплоидия); делеция (нехватка); дупликация (дубликация); летальность; "митотические яды"; моносомия; нереципрокная транслокация; нуллисомия; парацентрическая инверсия; перицентрическая инверсия; полиплоидия; полисемия; реципрокная транслокация; робертсоновская транслокация; транспозиция; трисомия; хромосомная мутация.