Неорганические катализаторы от ферментов отличаются высокой активностью. Ферменты,понятие

Неорганические катализаторы и ферменты (биокатализаторы), не расходуясь сами, ускоряют течение химических реакций и их энергетические возможности. В присутствии любых катализаторов энергия в химической системе сохраняет постоянство. В процессе катализа направление химической реакции остается неизменным.

Что такое ферменты и неорганические катализаторы

Ферменты являются биологическими катализаторами. Их основа – белок. Активная часть ферментов содержит неорганическое вещество, к примеру, атомы металлов. При этом каталитическая эффективность металлов, включенных в молекулу фермента, увеличивается в миллионы раз. Примечательно то, что органический и неорганический фрагменты фермента не способны по отдельности проявлять свойства катализатора, тогда как в тандеме являются мощными катализаторами.
Неорганические катализаторы ускоряют всевозможные химические реакции.

Сравнение ферментов и неорганических катализаторов

В чем разница между ферментами и неорганическими катализаторами? Неорганические катализаторы по своей природе – неорганические вещества, а ферменты – белки. В составе неорганических катализаторов нет белка.
Ферменты по сравнению с неорганическими катализаторами обладают специфичностью действия к субстрату и наиболее высокой эффективностью. Благодаря ферментам реакция протекает быстрее в миллионы раз.
Например, перекись водорода без присутствия катализаторов разлагается довольно медленно. При наличии неорганического катализатора (обычно солей железа) реакция несколько убыстряется. А при добавлении фермента каталазы пероксид разлагается с невообразимой скоростью.
Ферменты способны работать в ограниченном диапазоне температур (как правило, 370 С). Скорость действия неорганических катализаторов с каждым увеличением температуры на 10 градусов повышается в 2-4 раза. Ферменты подвергаются регуляции (существуют ингибиторы и активаторы ферментов). Неорганическим катализаторам свойственна нерегулируемая работа.
Для ферментов характерна конформационная лабильность (их структура подвергается незначительным изменениям, образующимся в процессе разрыва старых связей и образования новых связей, прочность которых слабее). Реакции с участием ферментов протекают лишь в физиологических условиях. Ферменты способны работать внутри организма, его тканей и клеток, где создаются необходимый температурный режим, давление и рН.

TheDifference.ru определил, что отличие ферментов и неорганических катализаторов заключается в следующем:

Ферменты – высокомолекулярные белковые тела, они довольно специфичны. Ферменты способны катализировать всего лишь один-единственный тип реакции. Они являются катализаторами биохимических реакций. Неорганические катализаторы ускоряют разные реакции.
Ферменты могут действовать в конкретном узком температурном интервале, определенном давлении и кислотности среды.
Ферментативные реакции обладают высокой скоростью.

Основу всех жизненных процессов составляют тысячи химических реакций, катализируемых ферментами. Значение ферментов точно и образно определил И.П.Павлов, назвав их "возбудителями жизни" . Нарушения в работе ферментов ведут к возникновению тяжелых заболеваний – фенилкетонурия , гликогенозы , галактоземия , тирозинемия или существенному снижению качества жизни – дислипопротеинемии , гемофилия.

Известно, что для осуществления химической реакции необходимо, чтобы реагирующие вещества имели суммарную энергию выше, чем величина, называемая энергетическим барьером реакции. Для характеристики величины энергетического барьера Аррениус ввел понятие энергии активации . Преодоление энергии активации в химической реакции достигается либо увеличением энергии взаимодействующих молекул, например нагреванием, облучением, повышением давления, либо снижением требуемых для реакции затрат энергии (т.е. энергии активации) при помощи катализаторов.

Величина энергии активации с ферментом и без него

По своей функции ферменты являются биологическими катализаторами. Сущность действия ферментов, так же как неорганических катализаторов, заключается:

  • в активации молекул реагирующих веществ,
  • в разбиении реакции на несколько стадий, энергетический барьер каждой из которых ниже такового общей реакции.

Однако энергетически невозможные реакции ферменты катализировать не будут, они ускоряют только те реакции, которые могут идти в данных условиях.

Сходство и отличия ферментов и неорганических катализаторов

Ускорение реакций при помощи ферментов весьма значительно, например:

А. Уреаза ускоряет реакцию разложения вполне устойчивой мочевины до аммиака и воды в 10 13 раз, поэтому при инфекции мочевых путей (появление бактериальной уреазы) моча приобретает аммиачный запах.

Б. Рассмотрим реакцию разложения пероксида водорода:

2Н 2 О 2 → О 2 + 2Н 2 О

Если скорость реакции без катализатора принять за единицу, то в присутствии платиновой черни скорость реакции увеличивается в 2×10 4 раза и энергия активации снижается с 18 до 12 ккал/моль, в присутствии фермента каталазы скорость реакции возрастает в 2×10 11 раза с энергией активации 2 ккал/моль.

Неорганические катализаторы и ферменты (биокатализаторы), не расходуясь сами, ускоряют течение химических реакций и их энергетические возможности. В присутствии любых катализаторов энергия в химической системе сохраняет постоянство. В процессе катализа направление химической реакции остается неизменным.

Определение

Ферменты являются биологическими катализаторами. Их основа – белок. Активная часть ферментов содержит неорганическое вещество, к примеру, атомы металлов. При этом каталитическая эффективность металлов, включенных в молекулу фермента, увеличивается в миллионы раз. Примечательно то, что органический и неорганический фрагменты фермента не способны по отдельности проявлять свойства катализатора, тогда как в тандеме являются мощными катализаторами.

Неорганические катализаторы ускоряют всевозможные химические реакции.

Сравнение

Неорганические катализаторы по своей природе – неорганические вещества, а ферменты – белки. В составе неорганических катализаторов нет белка.

Ферменты по сравнению с неорганическими катализаторами обладают специфичностью действия к субстрату и наиболее высокой эффективностью. Благодаря ферментам реакция протекает быстрее в миллионы раз.

Например, перекись водорода без присутствия катализаторов разлагается довольно медленно. При наличии неорганического катализатора (обычно солей железа) реакция несколько убыстряется. А при добавлении фермента каталазы пероксид разлагается с невообразимой скоростью.

Ферменты способны работать в ограниченном диапазоне температур (как правило, 37 0 С). Скорость действия неорганических катализаторов с каждым увеличением температуры на 10 градусов повышается в 2-4 раза. Ферменты подвергаются регуляции (существуют ингибиторы и активаторы ферментов). Неорганическим катализаторам свойственна нерегулируемая работа.

Для ферментов характерна конформационная лабильность (их структура подвергается незначительным изменениям, образующимся в процессе разрыва старых связей и образования новых связей, прочность которых слабее). Реакции с участием ферментов протекают лишь в физиологических условиях. Ферменты способны работать внутри организма, его тканей и клеток, где создаются необходимый температурный режим, давление и рН.

Выводы сайт

  1. Ферменты – высокомолекулярные белковые тела, они довольно специфичны. Ферменты способны катализировать всего лишь один-единственный тип реакции. Они являются катализаторами биохимических реакций. Неорганические катализаторы ускоряют разные реакции.
  2. Ферменты могут действовать в конкретном узком температурном интервале, определенном давлении и кислотности среды.
  3. Ферментативные реакции обладают высокой скоростью.

Ферменты - это специализированные белки, образуются в клетках и способны ускорять биохимические процессы, т.е. это биологические катализаторы.

Многие ферменты для проявления каталитической активности нуждаются в присутствии некоторых веществ небелковой природы - кофакторов. Различают 2 группы кофакторов - ионы металлов (а также некоторые неорганические соединения) и коферменты, которые представляют собой органические вещества. В числе коферментов есть такие, которые содержат металлы (железо в геме, кобальт в кобаламиде).

Сходства ферментов и неорганических катализаторов:

  • 1. катализируют только энергетически возможные реакции;
  • 2. не изменяют равновесия в обратимых реакциях;
  • 3. не изменяют направление реакции;
  • 4. не расходуются в результате реакции.

Отличия между ферментами и неорганическими катализаторами (общие свойства ферментов):

  • 1. сложность строения;
  • 2. высокая мощность действия. За единицу фермента принимают такое его количество, которое катализирует превращение 1мкМ вещества за 1 минуту;
  • 3. специфичность;
  • 4. это вещества с регулируемой активностью;

действуют в мягких условиях организма.

Давно выяснено, что все ферменты являются белками и обладают всеми свойствами белков. Поэтому подобно белкам ферменты делятся на простые и сложные.

Простые ферменты состоят только из аминокислот - например, пепсин, трипсин, лизоцим.

Сложные ферменты (холоферменты) имеют в своем составе белковую часть, состоящую из аминокислот - апофермент, и небелковую часть - кофактор. Кофактор, в свою очередь, может называться коферментом или простетической группой. Примером могут быть сукцинатдегидрогеназа (содержит ФАД) (в цикле трикарбоновых кислот), аминотрансферазы (содержат пиридоксальфосфат) (функция), пероксидаза (содержит гем). Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить не могут.

По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов (КФ, EC -- Enzyme Comission code). Классификация была предложена Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology). Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например, пепсин имеет название ЕС 3.4.23.1. Первое число грубо описывает механизм реакции, катализируемой ферментом:

  • 1. Оксидоредуктазы, катализирующие окисление или восстановление. Пример: каталаза, алкогольдегидрогеназа
  • 2. Трансферазы, катализирующие перенос химических групп с одной молекулы субстрата на другую. Среди трансфераз особо выделяют киназы, переносящие фосфатную группу, как правило, с молекулы АТФ.
  • 3. Гидролазы, катализирующие гидролиз химических связей. Пример: эстеразы, пепсин, трипсин, амилаза, липопротеинлипаза
  • 4. Лиазы, катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов.
  • 5. Изомеразы, катализирующие структурные или геометрические изменения в молекуле субстрата.
  • 6. Лигазы, катализирующие образование химических связей между субстратами за счет гидролиза АТФ. Пример: ДНК-полимераза

1. Ферменты имеют более высокую каталитическую активность (выше в млн.раз);

2. Каталитическая активность проявляется в очень мягких условиях (умеренные температуры 37-40ºС, нормальное давление, близкие к нейтральным значения рН среды 6,0÷8,0). Например, гидролиз белка в присутствии неорганических кислот и щелочей протекает при 100ºС и выше в течение нескольких десятков часов. При участии ферментов этот процесс протекает за десятки минут при 30÷40ºС;

3. Ферменты обладают высокой специфичностью действия, т.е. каждый фермент катализирует в основном только строго определенную химическую реакцию (например, платина катализирует несколько десятков химических реакций);

4. Активность ферментов в клетках строго контролируется и регулируется;

5. Не вызывают каких-либо побочных реакций;

6. Различия связанные с белковой природой ферментов (термолабильность, зависимость от рН среды, наличие активаторов и ингибиторов и др.).

Строение ферментов

До последнего времени считалось, что абсолютно все ферменты являются веществами белковой природы. Но в 80-е годы была обнаружена каталитическая активность у некоторых низкомолекулярных РНК. Эти ферменты назвали рибозимами . Остальные, свыше 2000 известных в настоящее время ферментов, имеют белковую природу и характеризуются всеми свойствами белков.

По строению ферменты делятся на:

Простые или однокомпонентные;

Сложные или двухкомпонентные (холоферменты).

Простые ферменты представляют собой простые белки и при гидролизе распадаются только на аминокислоты. К числу простых ферментов относятся гидролитические ферменты (пепсин, трипсин, уреаза и др.).

Сложные белки являются сложными белками и, помимо, полипептидных цепей содержат небелковый компонент (кофактор ). К сложным белкам относится большинство ферментов.

Белковая часть двухкомпонентного фермента называется апоферментом.

Кофакторы могут иметь различную прочность связи с апоферментом.

Если кофактор прочно связан с полипептидной цепью, он называется простетической группой . Между простетической группой и апоферментом – ковалентная связь.

Если кофактор легко отделяется от апофермента и способен к самостоятельному существованию, то такой кофактор называется коферментом.

Между апоферментом и коферментом связи слабые – водородные, электростатические и др.

Химическая природа кофакторов крайне разнообразна. Роль кофакторов в двухкомпонентных ферментах играют:

1 – большинство витаминов (Е, К, Q, С, Н, В 1 , В 2 , В 6 , В 12 и др.);

2- соединения нуклеотидной природы (НАД,НАДФ, АТФ, КоА, ФАД, ФМН), а также целый ряд др. соединений;

3 – липолевая кислота;

4 – многие двухвалентные металлы (Мg 2+ , Mn 2+ ,Ca 2+ и др.).

Активный центр ферментов.

Ферменты – высокомолекулярные вещества, молекулярный вес которых достигает нескольких млн. Молекулы субстратов, взаимодействующих с ферментами обычно имеют гораздо меньший размер. Поэтому естественно предположить, что с субстратом взаимодействует не вся молекула фермента в целом, а только какая-то ее часть – так называемый “активный центр” фермента.

Активный центр фермента – это часть его молекулы, непосредственно взаимодействующая с субстратами участвующая в акте катализа.

Активный центр фермента формируется на уровне третичной структуры. Поэтому при денатурации, когда третичная структура нарушается, фермент теряет свою каталитическую активность !

Активный центр в свою очередь состоит из:

- каталитического центра, который осуществляет химическое превращение субстрата;

- субстратного центра (“якорной” или контактной площадки), которая обеспечивает присоединение субстрата к ферменту, формирование фермент-субстратного комплекса.

Четкую грань между каталитическим и субстратным центром провести можно не всегда – у некоторых ферментов они совпадают или перекрываются.

Помимо активного центра, в молекуле фермента существует т.н. аллостерический центр . Это участок молекулы фермента, в результате присоединения к которому определенного низкомолекулярного вещества (эффектора ), изменяется третичная структура фермента. Это приводит к изменению конфигурации активного центра и, следовательно, к изменению активности фермента. Это явление аллостерической регуляции активности фермента.

Многие ферменты являются мультимерами (или олигомерами ), т.е. состоят из двух и более субъединиц- протомеров (аналогично четвертичной структуре белка).

Связи между субъединицами, в основном, не ковалентные. Максимальную каталитическую активность фермент проявляет именно в виде мультимера. Диссоциация на протомеры резко снижает активность фермента.

Ферменты – мультимеры содержат обычно четкое число субъединиц (2-4), т.е. являются ди- и тетрамерами. Хотя известны гекса- и октамеры (6-8) и чрезвычайно редко встречаются тримеры и пентамеры (3-5).

Ферменты-мультимеры могут быть построены как из одинаковых, так и из разных субъединиц.

Если ферменты-мультимеры образованы из субъединиц различных типов, они могут существовать в виде нескольких изомеров. Множественные формы фермента называют изоферментами (изоэнзимами или изозимами).

Например, фермент состоит из 4 субъединиц типов А и Б. Он может образовать 5 изомеров: АААА, АААБ, ААББ, АБББ, ББББ. Эти изомерные ферменты являются изоферментами.

Изоферменты катализируют одну и ту же химическую реакцию, обычно воздействуют на один и тот же субстрат, но отличаются по некоторым физико-химическим свойствам (молекулярной массе, аминокислотному составу, электрофоретической подвижности и др.), по локализации в органах и тканях.

Особую группу ферментов составляют т.н. мультимерные комплексы. Это системы ферментов, катализирующих последовательные стадии превращения какого-либо субстрат. Такие системы характеризуются прочностью связи и строгой пространственной организацией ферментов, обеспечивающей минимальный путь прохождения субстрата и максимальную скорость его превращения.

Примером может служить мультиферментный комплекс, осуществляющий окислительное декарбоксилирование пировиноградной кислоты. Комплекс состоит из 3-х видов ферментов (М.в. = 4 500 000).

Механизм действия ферментов

Механизм действия ферментов заключается в следующем. При соединении субстрат с ферментом образуется нестойкий фермент субстратный комплекс. В нем происходит активация молекулы субстрата за счет:

1. поляризации химических связей в молекуле субстрат и перераспределение электронной плотности;

2. деформации связей, вовлекаемых в реакцию;

3. сближения и необходимой взаимной ориентации молекул субстрата (S).

Молекула субстрат фиксируется в активном центре фермента в напряженной конфигурации, в деформированном состоянии, что приводит к ослаблению прочности химических связей и снижает уровень энергетического барьера, т.е. субстрат активизируется.

В процессе ферментативной реакции различают 4 этапа:

1 – присоединение молекулы субстрат к ферменту и образование фермент-субстратного комплекса;

2 – изменение субстрата под действием фермента, делающее его доступным для химической реакции, т.е. активизация субстрата;

3 – химическая реакция;

4 – отделение продуктов реакции от фермента.

Это можно записать в виде схемы:

E + S ES ES* EP E + P

где: Е – фермент, S – субстрат, S* - активизированный субстрат, Р – продукт реакции.

На 1-ом этапе к субстратному центру присоединяется с помощью слабых взаимодействий та часть молекулы субстрата, которая не подвергается химическим превращениям.

Для образования фермент-субстратного комплекса (ES) необходимо соблюдение трех условий, которые и определяют высокую специфичность действия фермента.

Условия образования фермент-субстратного комплекса:

1 - структурное соответствие между субстратом и активным центром фермента. По выражению Фишера они должны подходить друг к другу, «как ключ к замку». Это подобие обеспечивается на уровне третичной структуры фермента, т.е. пространственного расположения функциональных групп активного центра.

2 Электростатическое соответствие активного центра фермента и субстрата, которое обусловлено взаимодействием противоположно заряженных групп.

3 Гибкость третичной структуры фермента – «индуцированное соответствие». Согласно теории вынужденного или индуцированного соответствия каталитически активная конфигурация молекулы фермента может возникать лишь в момент присоединения субстрата в результате его деформирующего воздействия по принципу «рука-перчатка».

Механизм действия однокомпонентных и двухкомпонентных ферментов аналогичен.

В образовании фермент-субстратного комплекса у сложных ферментов принимают участие и апофермент и кофермент. При этом субстратный центр располагается обычно на апоферменте, а кофермент принимает участие непосредственно в акте химического превращения субстрата. На последнем этапе реакции апофермент и кофермент выделяются в неизменном виде.

На 2 и 3 этапе превращение молекулы субстрата связано с разрывом и замыканием ковалентных связей.

После осуществления химических реакций фермент переходит в исходное состояние и происходит отделение продуктов реакции.

Специфичность

Способность фермента катализировать определенный тип реакции называют специфичностью.

Специфичность бывает трех видов:

1. - относительная или групповая специфичность – фермент действует на определенный вид химической связи (например, фермент пепсин расщепляет пептидную связь);

2. – абсолютная специфичность - фермент действует только на один строго определенный субстрат (например, фермент уреаза расщепляет амидную связь только в мочевине);

3. – стехиометрическая специфичность – фермент действует только на один из стереоизомеров (например, фермент глюкозидаза сбраживает только D-глюкозу, но не действует на L-глюкозу).

Специфичность фермента обеспечивает упорядоченность протекания реакций обмена веществ.