Оганесон – как странный сон. Большие торжества были по этому поводу? — Как «встречают» новые название элементов

Дополните информацию о персоне

Медаль_«В_память_850-летия_Москвы».JPG

Медаль_«За_доблестный_труд».jpg

Орден_«За_заслуги_перед_Отечеством»_III_степени.jpg

Орден_«За_заслуги_перед_Отечеством»_IV_степени.jpg

Орден_«Знак_Почёта».jpg

Орден_Дружбы_Народов.jpg

Орден_Трудового_Красного_Знамени.jpg

Офицерский_крест_Ордена_Заслуги_Республики_Польша.jpg

Биография

В 1956 - окончил МИФИ. Директор лаборатории ядерных реакций им. Г.Н. Флерова Объединенного института ядерных исследований (г. Дубна). Председатель Научного совета по прикладной ядерной физике.

Главные направления научной деятельности

Ядерная физика и физика ускорителей, синтез и исследование свойств новых элементов.

Научные открытия и достижения

Совместно с акад. Г.Н. Флёровым, Ю.Ц. Оганесян является создателем в нашей стране научно-технической и экспериментальной базы нового научного направления - физики тяжёлых ионов. Под его научным руководством и при непосредственном участии в ОИЯИ было создано поколение ускорителей тяжёлых ионов (5 установок) с рекордными параметрами. Последний проект - уникальный ускорительный комплекс для получения пучков радиоактивных ядер, пуск которого был осуществлён в 2002 г.

Ю.Ц. Оганесяном проведены фундаментальные исследования механизма взаимодействия сложных ядер. Им было обнаружено и исследовано влияние ядерной структуры на кол-лективное движение ядер в процессах слияния и деления, он является автором открытия ново-го класса ядерных реакций - холодного слияния массивных ядер (1974 г.), широко используемых по настоящее время в различных лабораториях мира для синтеза новых элементов вплоть до Z = 112.

Ю.Ц. Оганесяну принадлежат основополагающие работы по синтезу новых элементов на пучках тяжёлых ионов. В 60-70х гг. им с сотрудниками были впервые проведены эксперименты по синтезу элементов с Z = 104 - 108. Для исследований предельно тяжёлых ядер Ю.Ц. Оганесяном были выбраны реакции слияния нейтронно-обогащённых изотопов актинидов с ускоренными ионами кальция-48. В 1999 - 2003 гг. в этих реакциях были впервые синтезированы атомы с Z = 111 - 116 и 118, свойства распада которых доказывают существование "островов стабильности" в области сверхтяжёлых элементов.

Группа Юрия Цолаковича Оганесяна в Объединенном институте ядерных исследований в Дубне, которая много лет синтезировала новые вещества с фантастическими свойствами сообщила о синтезе элемента с порядковым номером 117 совместно с американскими коллегами из национальных лабораторий в Окридже и Ливермор университета Вандербильда. Этот эксперимент стал в мире науки сенсационным, так как в природе не существует элементов с атомными номерами больше 92, т.е. тяжелее урана. Отметим, что 118-й появился раньше 117-го. Это было связано с тем, что для синтеза 117-го требовалось специфическое вещество, которое могли наработать только американцы. Они наработали его у себя на высокоточном реакторе, доставили в Дубну, где из него приготовили мишень и в течение шести месяцев в Дубне был синтезирован 117-й элемент. Надо сказать, что Юрий Оганесян является еще и соавтором открытий иностранными учеными ряда тяжелых элементов: 104 (резерфордий), 105 (Дубний), 106 (Сиборий), 107 (Борий), 117 (Унунсептий).

В 2002 г. в мировом научном сообществе наиболее реальным претендентом на получение Нобелевской премии рассматривался именно Академик РАН Ю.Оганесян. Однако, в США разгорелся скандал с фальсификацией открытия сверхтяжелых элементов командой физиков, которые конкурировали с группой Ю.Оганесяна. Американцы, голос которых является решающим при присуждении Нобелевской премии, приложили все усилия, чтобы премия не досталась России.

Сочинения

Посвящены ядерным реакциям, ускорителям тяжелых ионов, синтезу и исследованию новых тяжелых химических элементов, среди них:

  • Многоцелевой изохронный циклотрон У-250 / Р. Ц. Оганесян, Э. Бакевич, И. Б. Енчевич, 16 с. 21 см, Дубна ОИЯИ 1979
  • Нейтроноизбыточные ядра легчайших элементов / Ю. Ц. Оганесян, Ю. Э. Пенионткевич, Р. Калпакчиева, 12 с. ил. 22 см, Дубна ОИЯИ 1989
  • Изомерные мишени и пучки / Ю. Ц. Оганесян, С. А. Карамян, 26 с. ил. 22 см, Дубна ОИЯИ 1994
  • Синтез и радиоактивные свойства тяжелейших ядер / Ю. Ц. Оганесян, 14 с. ил. 22 см, Дубна ОИЯИ 1996
  • Синтез и свойства сверхтяжелых ядер / Ю. Ц. Оганесян, 10 с. ил. 22 см, Дубна ОИЯИ 1994
  • Программа ОИЯИ по физике тяжелых ионов при низких и средних энергиях / Ю. Ц. Оганесян, Ю. Э. Пенионжкевич, 18 с. ил. 22 см, Дубна ОИЯИ 1994
  • План работы Лаборатории ядерных реакций имени Флерова на 1995 год: Докл. к 76-й сес. науч. совета ОИЯИ (7-9 июня 1994 г.) / Ю. Ц. Оганесян, 12 с. ил. 21 см, Дубна ОИЯИ 1994
  • К вопросу о гамма-лазере на ядерных уровнях / Ю. Ц. Оганесян, С. А. Карамян, 11 с. ил. 22 см, Дубна ОИЯИ 1994
  • Исследование структуры ядер с помощью лазерного излучения / Ю. Ц. Оганесян, Ю. П. Гангрский, Б. Н. Марков, 8 с. ил. 21 см., Дубна ОИЯИ 1982
  • Доклад о научно-исследовательской деятельности в 1996 г. : Лаб. ядер. реакций им. Флерова: Докл. на 81-й сес. науч. совета ОИЯИ, 16-17 янв. 1997 г. / Ю. Ц. Оганесян, 9 с. ил. 22 см, Дубна ОИЯИ 1996
  • Возбуждение и разрядка изомеров в ядерных реакциях / Ю. Ц. Оганесян, С. А. Карамян, 12 с. ил. 22 см, Дубна ОИЯИ 1996
  • Ю.Ц. Оганесян. Реакции синтеза тяжелых ядер: краткий итог и перспективы. Ядерная фи-зика. Т.69, No.6. с. 961 (2006).
  • Yu. Oganessian. Heaviest nuclei from 48Ca-induced reactions. J. of Physics G, v.34, p.R165 (2007).
  • Yu. Oganessian et al. Synthesis of Elements 115 and 113 in the reaction 243Am+48Ca. Physical Re-view C, v.72, p.034611 (2005).
  • Yu. Oganessian et al. Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm +48Ca fusion reactions. Physical Review C, v.74, p. 044602, (2006).
  • Yu. Oganessian. Synthesis and decay properties of superheavy elements. J. International Union of Pure and Applied Chemistry, v.78, p. 889 (2006).
  • Yu. Oganessian. Sizing up the heavyweights. NATURE, v. 413, p. 122 (2001).

Достижения

  • член-корреспондент АН СССР (1990)
  • действительный член РАН (член-корр. 1991)
  • доктор физико-математических наук (1970)
  • профессор (1980)
  • иностранный член НАН РА

Награды, премии

  • Государственная премия СССР (1975)
  • Государственная премия Российской Федерации (2010)
  • премия Ленинского Комсомола
  • премия им. И.В. Курчатова
  • премия Г.Н. Флёрова (ОИЯИ 1993)
  • премия А. фон Гумбольда (Германия 1995)
  • премия имени Лизы Мейтнер (Европейское Физическое Общество 2000)
  • Лауреат Главной премии за 2001 год МАИК Наука/Интерпериодика (РАН. 2002)
  • орден "Трудового Красного Знамени"
  • орден "Знак почета"
  • орден "Дружбы народов"
  • орден "За заслуги перед Отечеством" III степени
  • орден "За заслуги перед Отечеством" IV степени
  • орден Дружбы (Монголия)
  • орден Дружбы II степени (КНДР)
  • офицерский крест ордена Заслуги Республики Польша
  • медаль «В память 850-летия Москвы»
  • медаль «За доблестный труд. В ознаменование 100-летия со дня рождения В.И. Ленина»
  • Золотая медаль № 1 (Госкомитет по науке Министерства образования и науки Республики Армения - за выдающиеся достижения)

Членство в научных обществах и организациях

  • иностранный член Сербской Академии Наук и Искусств (1995)
  • почетный доктор Университета им. Гете (Франкфурт на Майне, Германия, 2002)
  • почетным доктор Университета Мессина (Италия, 2002)
  • заведующий филиалом кафедры МИФИ
  • председатель диссертационного совета, председателем научного совета РАН по прикладной ядерной физике
  • почетный доктор Ереванского государственного университета
  • "J.Phys.G"
  • "Nuclear Physics News International"
  • "Il Nuovo Cimente"
  • "Particles and Nuclei"
  • "Particle Accelerators"
  • член редакции журнала «Физика элементарных частиц и атомного ядра»
  • GANIL (Франция)
  • RIKEN (Япония)

Разное

Изображения

Библиография

  • Большая русская биографическая энциклопедия.(3 CD)

Новые элементы

28 ноября собрание Международного союза по теоретической и прикладной химии (IUPAC) утвердило официальные названия 113, 115, 117 и 118 элементов таблицы Менделеева. За ними закрепили наименования, в июне 2016 года - нихоний (Nh), московий (Mc), теннессин (Ts) и оганессон (Og). Об этом сообщает пресс-релиз союза.

Для внесения элемента в таблицу Менделеева необходимо пройти через несколько формальных этапов. Среди них доказательство получения элементов в чистом виде, определение приоритета в открытии, определение названия для элемента его первооткрывателями и признание названия международным сообществом.

IUPAC признал синтез элементов 113,115, 117 и 118 и определил приоритет в их открытии в январе 2016 года. Согласно решению комиссии, приоритет в выборе названия для 113 элемента получил институт RIKEN, а 115, 117 и 118 элементы были открыты совместно российско-американской группой из Объединенного института ядерных исследований в Дубне (ОИЯИ), Ливерморской национальной лаборатории в Калифорнии (LLNL) и Национальной лаборатории Оак-Ридж в Теннесси (ORNL).

До июня 2016 года научные группы предложили названия и IUPAC порекомендовал их для включения в таблицу Менделеева. На протяжении пяти месяцев союз принимал комментарии и апелляции к названиям. Среди них комиссия выделила касавшиеся краткого сокращения для теннессина - Ts. Традиционно это обозначение используется в органической химии для тозильных групп (остатков толуолсульфокислоты). Эксперты отметили, что аналогичный вопрос возникал при наименовании коперниция (112 элемент, Cn) - первооткрыватели предлагали для него аббревиатуру Cp, также «занятую» органиками. Тогда апелляция была принята. Однако для теннессина двухбуквенное обозначение осталось неизменным - комиссия отметила, что обозначения для актиния (Ac) и празеодима (Pr) тоже «заняты» органиками (ацетил, пропил), а контекст использования названия тенессина не позволит спутать его с другими вариантами прочтения.

Интересно, что оганессон стал вторым элементом таблицы Менделеева, прижизненно названным в честь ученого - Юрия Цолаковича Оганесяна , научного руководителя лаборатории ядерных реакций ОИЯИ и соавтора открытий 104-107 элементов периодической системы. Московий получил свое название в честь Московской области, где располагается ОИЯИ. Нихоний стал первым из элементов, название которого связано с Японией.

Необычные окончания в названиях оганессона и тенессина связаны с их положением в таблице Менделеева. Оганессон относится к благородным газам: гелию, неону, аргону, криптону, ксенону и радону. Теннессин - к галогенам: фтору, хлору, брому, иоду и астату, чьи англоязычные названия оканчиваются на -ine (fluorine, chlorine, bromine, iodine, astatine). Возможно, следуя традиции, более правильным русскоязычным названием для элемента могло бы быть «теннесс».

Владимир Королёв

Два новых элемента периодической таблицы Менделеева с атомными числами 115 и 118 в ноябре этого года получат официальные названия «московий» и «оганессий» в честь Подмосковья и академика Юрия Цолаковича Оганесяна. Всего в периодическую таблицу внесут названия четырех новых химических элементов, синтезированных в Объединенном институте ядерных исследований (ОИЯИ) в Дубне.

Юрий Оганесян родился в 1933 году в Ростове на Дону. В 1956 году закончил Московский инженерно-физический институт. Свою научную деятельность Ю. Ц. Оганесян начал в Институте атомной энергии. Являясь ближайшим учеником академика Г. Н. Флёрова, внёс большой самостоятельный вклад в развитие этого направления как в реализацию оригинальных физических идей, так и в становление экспериментальной базы ускорителей.

С 1958 г. научная деятельность Ю. Ц. Оганесяна связана с Лабораторией ядерных реакций (ныне им. Г. Н. Флёрова) Объединённого института ядерных исследований в Дубне. Оганесяном проведены фундаментальные исследования механизма взаимодействия сложных ядер. Им было обнаружено и исследовано влияние ядерной структуры на коллективное движение ядер в процессах слияния и деления, он является автором открытия нового класса ядерных реакций - холодного слияния массивных ядер (1974 г.), широко используемых по настоящее время в различных лабораториях мира для синтеза новых элементов.

Ю. Ц. Оганесяну принадлежат основополагающие работы по синтезу новых элементов на пучках тяжёлых ионов. В 1960-70-х гг. им совместно с сотрудниками были впервые проведены эксперименты по синтезу элементов с Z = 104-108. Для исследований предельно тяжёлых ядер Ю. Ц. Оганесяном были выбраны реакции слияния нейтронно-обогащённых изотопов актинидов с ускоренными ионами кальция-48.

«Гениальный Менделеев, в общем-то, первый, пожалуй, кто понял некие законы природы, что элементов вроде много, хотя их тогда было не очень много, 63 всего. И, тем не менее, их как-то можно разделить на группы. И это разделение на группы является случайным. Он искал микромир. В его понимании микромир – это был эфир, и он занимался этим эфиром, что до эфира можно дойти тогда, когда откачаешь воздух, который тебе мешает, должен быть полный вакуум, и тогда я увижу основную структуру, которая ответственна за то, что эти элементы разделяются на группы. Таблица элементов, как мы называем – таблица Менделеева, она этим-то и прекрасна. Не то, что там просто написаны элементы. А то, что демонстрирует закон, что эти элементы разделяются на группы и ведут себя каждый в этой группе подобно своему "родственнику".

Поэтому, когда мы получили новые элементы, первое, что мы подумали: надо бы проверить. А вот эти новые искусственные элементы, которые мы получили – может быть, их нет в природе? Может, это руки человека создали этот элемент. Будут они подчиняться законам Менделеева? Подчиняются. Такой эксперимент был сделан недавно. И 112-й элемент, который был получен, который по предсказанию должен быть аналогом ртути. Ртуть – удивительный металл. Во-первых, она жидкая. А, во-вторых, она вступает в соединение с другим металлом, тоже благородным – золотом. Это амальгама ртути, которую мы еще знаем со Средних веков. 112-й элемент будет вступать в соединение с золотом, подобно ртути? Вступает. И это и есть фундаментальность. Что закон природы даже будет распространяться на то, что еще не было получено. Это полученное все равно будет подчиняться этому закону », - рассказывал в одном из интервью академик.

Оганесян является соавтором открытия тяжёлых элементов таблицы Д. И. Менделеева: 104-го элемента - резерфордий, 105-го элемента - дубний, 106-го элемента - сиборгий, 107-го элемента - борий, что было признано как научные открытия и занесено в Государственный реестр открытий СССР. Автор более 250 научных работ, 3 монографий и более 10 обзоров.

Юрий Цолакович - иностранный член Сербской Академии Наук и Искусств (1995), почетный доктор Университета им. Гете (Франкфурт на Майне, Германия, 2002), почетный доктор Университета Мессина (Италия, 2002), почетный доктор Ереванского государственного университета.

Удостоен множества премий и наград.

— Борис Николаевич, как присваивают названия новым элементам? Почему в новостях по нескольку раз появляются сообщения о том, что элементы названы, а потом все меняется или откладывается?

— На самом деле, это издержки работы СМИ. Процесс всегда одинаковый: сначала названия обсуждаются в институтах-открывателях, потом авторы совместно заявляют о предложенных вариантах. В данном случае это произошло в декабре прошлого года. Потом наименования рассматривает ИЮПАК (Международный союз чистой и прикладной химии, IUPAC — прим. «Чердака» ), и сейчас они как раз от своего имени их опубликовали, представили на суд общественности. Сейчас будет некий период ожидания, когда все могут высказать свои соображения или возражения: возможно, название неблагозвучно на каком-то из языков либо в науке уже присутствует аналогичный термин. Если таких возражений не поступает в течение полугода, ИЮПАК утверждает название. Мы ожидаем утверждения осенью, тогда и у нас в Дубне, и в Калифорнии, и в Японии будет большой праздник.

— Как появились названия «московий» и «оганесон»?

— С московием главная мысль была о том, чтобы увековечить в таблице Менделеева землю московскую. Это не значит Москву или Московскую область, это как бы Московия в старинном понимании этого слова. А насчет названия «оганесон» у нас в лаборатории было не то чтобы напряженное, но эмоциональное обсуждение. Мы все очень уважаем нашего научного руководителя Юрия Цолаковича Оганесяна, его вклад в синтез сверхтяжелых элементов признан во всем мире. А он, как скромный человек, сказал, что не то чтобы не поддерживает такое наименование, но не хочет участвовать в обсуждении. Поэтому во время этого совещания из зала вышел. Остальные авторы единодушно решили назвать элемент в честь Оганесяна. Этот элемент должен обязательно был оканчиваться на «‑он», потому что по правилам названия он попадает в такой период, где должно быть такое окончание. Так и получился «оганесон». Мы думали, что будут сложности с американскими коллегами, которые могли предложить и свое название, но они сразу поддержали эту инициативу. Более того, они сказали, что если бы мы не предложили это название, они сами бы это сделали.

Электронные конфигурации 118-го элемента, унуноктия и 113-го элемента, унунтрия. ИЮПАК предложил их назвать оганесоном и нихонием. Изображение: Pumbaa / Wikipedia

— А как все-таки быть со 113-м элементом?

— Это давние споры. Наши коллеги открыли 113-й элемент в прямой реакции, а мы его открывали как продукт распада 115-го элемента. Международная комиссия решила отдать первенство им.

— Как «встречают» новые название элементов?

— У нас в Москве проходит инаугурация. Как в прошлый раз, когда в 2012-м были названы официально 114-й элемент — флеровий, 116-й элемент — ливерморий. Это та же коллаборация делала, те же физики. Было большое собрание в Доме ученых, в Академии наук, в Москве. Приезжали со всего мира ведущие ученые, по этому поводу были выпущены памятные медали.

— Как происходит синтез сверхтяжелых элементов?

— Для того чтобы получить сверхтяжелые ядра, мы облучаем мишень из специально подобранного тяжелого элемента ионами кальция-48. Это очень редкий изотоп, его в природном кальции всего две десятых процента, но он стабильный, и в нем очень много «избыточных» нейтронов. Для сравнения: масса «обычного» изотопа кальция — 40. Зачем это нужно? Стабильность — понятно, сильно сложнее контролировать реакцию с радиоактивным изотопом, который распадается, дает другие элементы. Мы разгоняем кальций-48 в ускорителе и направляем на мишень, где протекает ядерная реакция. Изначально образуются «горячие» ядра, которым нужно испустить «лишние» нейтроны, для того чтобы стабилизироваться. Вот для этого нужен «избыточный» изотоп.

Цепочка синтеза выглядит следующим образом: ускоритель с кальцием-48, облучение мишени, затем сепаратор — что-то вроде сита, которое отделяет интересные нам объекты от потока частиц, образующегося при бомбардировке мишени: синтез сверхтяжелых элементов — редкое явление, в основном там протекают другие, фоновые процессы. И наконец, — детектор, который регистрирует образовавшиеся сверхтяжелые ядра.

— Как в Дубне начались эти работы?

— Инициатива исходила от первого заведующего нашей лабораторией Георгия Николаевича Флерова. В 1961 году построили и запустили первый в мире специализированный ускоритель для тяжелых ионов У-300. На нем пытались синтезировать новые элементы, и очень успешно: один из элементов был назван именем Дубны — «дубний». Он был добыт на У-300.

Циклотрон У-300 в Объединенном институте ядерных исследований, 1976 г. Фото: Юрий Туманов / ИТАР-ТАСС

— Вы как раз заведуете этим ускорительным комплексом?

— Сейчас — да. А в тот момент главным инженером лаборатории был Юрий Цолакович Оганесян. Именно он руководил строительством циклотрона У-300. Разработан ускоритель был в НИИЭФА им. Д.В. Ефремова в Ленинграде (НИИ электрофизической аппаратуры). На тот момент это был единственный специализированный институт, который мог выпускать ускорители. Сам ускоритель весит 2000 тонн, привезти его из Ленинграда в Дубну была отдельная инженерная задача.

— А как появился У-400?

— Он заработал в 1978 году. Но этому предшествовала довольно длинная история. Работа У-300 признали успешной, но интенсивность, которую он давал, была по нынешним меркам совсем маленькая. Более тяжелые элементы на нем получать было нельзя. Когда это поняли, поставили задачу сделать новые, специализированные ускорители для ускорения кальция-48. Когда мы начали эти опыты, весь кальций, который был в Советском Союзе, передали к нам в лабораторию для проведения этого эксперимента. И сейчас мы используем изотоп отечественного производства. Правда, на тот момент мы использовали его без всякого обогащения. Сейчас мы используем кальций с 60% обогащения — наши ускорители сегодня позволяют получать хорошую интенсивность пучка и с таким обогащением.

Юрий Оганесян (слева), Георгий Флеров (справа) и Роберт Уилсон осматривают ускоритель У-400. Фото: Юрий Туманов / Архив ТАСС

Когда построили У-400, в нем ускорили кальций-48 и сделали первые опыты, стало ясно, что так нам новый элемент не синтезировать. Потому что интенсивность была все еще маленькая, а расход кальция-48 очень большой. То есть если бы мы даже израсходовали весь запас, то не факт, что мы получили хотя бы одно ядро сверхтяжелого элемента. Была поставлена очень радикальная задача, на тот момент непонятная. Нужно было поднять интенсивность более чем в 10 раз. И работающий ускоритель остановили и разобрали. В тот момент он был лучший в мире для этих целей. Был предложен другой подход, с дополнительным внешним источником, новой системой инжекции. И это позволило сразу, при первом же запуске, поднять интенсивность в 20 раз. Стало ясно, что эксперимент можно сделать. Потом интенсивность была повышена еще в два раза. Это произошло в 1995 году. В такой конфигурации мы работаем, получается, уже 20 лет, по 5-6 тысяч часов в год на эти частицы. Много элементов уже синтезировано, на нем как раз был открыт «остров стабильности» с центром — 114-й элемент. Вот такая история.

Роберт Уилсон и Юрий Оганесян (справа) на ускорителе У-400. Фото: Юрий Туманов / Архив ТАСС

— Сейчас мы его тоже хотим реконструировать. Чтобы начать эту работу, мы затеяли другой проект: строим совсем иной ускоритель, по новой схеме, он называется ДС-280. На нем мы хотим поднять интенсивность пучка еще в 10 раз. Потому что задача, которая стояла перед этим, — синтезировать новые элементы. А сейчас мы хотим широко изучать их свойства, в том числе и химические. А для этого одного события (рождения ядра сверхтяжелого элемента — прим. «Чердака» ) в неделю или в месяц маловато. Чтобы химию изучать, нужно, чтобы их было много. На новом ускорителе строятся установки, которые могут синтезировать и использовать пучок кальция-48. Проект называют «фабрика сверхтяжелых элементов». Этой осенью мы начинаем сборку новой машины. Уже есть план-график, утвержденный нашей дирекцией. Здание для фабрики практически достроено.

Если все пойдет благополучно, через год мы надеемся полностью собрать и запустить все системы, включая инженерные, которые обеспечивают охлаждение, вентиляцию, электричество, управление. Мы начнем запуск этой машины уже через два года. Небыстро, но все-таки работы много!

Первые 117 элементов таблицы Менделеева были нормальными. И вот появился 118-й.

Нихоний (Nh), московий (Mc), теннессин (Ts) и оганесон (Og) появились в таблице Менделеева в 2016 году. Фото: Antoine2K.

Оганесон (Og), в девичестве унуноктий, в 2016 году получил имя в честь Юрия Оганесяна , научного руководителя Лаборатории ядерных реакций им. Г.Н. Флерова Объединенного института ядерных исследований в Дубне. Это второй элемент, нареченный именем еще здравствующего человека, после сиборгия (Sg), названного в 1997 году в честь живого Гленна Сиборга (1912–1999).

Окончание -он свидетельствует о принадлежности оганесона к благородным газам – группе элементов, в которую также входят гелий (He), неон (Ne), аргон (Ar), криптон (Kr), ксенон (Xe), радон (Rn). Да, гелий без надлежащего окончания – может, потому что, когда набираешь полные легкие гелия, голос начинает звучать не слишком благородно.

Оганесон – самый тяжелый на сегодняшний день элемент периодической таблицы, его атомная масса – больше 294 атомных единиц массы , что почти в 25 раз тяжелее типичного изотопа углерода из вашего бренного тела. В отличие от углерода искать оганесон у себя под мышкой или в жировых складочках не стоит – в природе он вообще не встречается, и за все время было искусственно синтезировано всего несколько атомов этого радиоактивного элемента, каждый из которых просуществовал меньше миллисекунды.

В связи с этим, говоря о свойствах оганесона, ученые полагаются исключительно на теоретические предсказания. И многие из этих предсказанных свойств довольно странны.


Распределение плотности электронов в трех благородных элементах без учета релятивистских эффектов (вверху) и с учетом оных (внизу). Согласно расчетам, в оганесоне электроны не ограничивают себя орбиталями, а формируют равномерное облако Ферми-газа.

Если руководствоваться вычислениями, основанными на классической физике, то электроны оганесона должны располагаться в окружающих атомное ядро оболочках, как у почти всех нормальных элементов. Однако оганесон – элемент сверхтяжелый, а значит, из-за большого заряда ядра его электроны разгоняются до таких значительных скоростей, что возникает необходимость учитывать теорию относительности Эйнштейна, и если включить ее в расчеты, то получается странная штука: вместо дискретных электронных оболочек электроны витают в более-менее равномерно размытом облаке электронного газа !

Благородные газы еще называют инертными, потому что они химически неактивны и участвуют в реакциях лишь в экстремальных условиях, как при апокалипсисе. Оганесон – исключение. Из-за необычного распределения электронов он легко отдает и принимает электроны, а значит, может быть химически реактивным. Получается, что оганесон – парадоксально неинертный благородный газ.

К тому же он вовсе и не газ в привычном понимании этого слова. В «размазанном» состоянии облака электроны оганесона легко поляризуются, а значит, атомы элемента будут связываться друг с другом прочными вандерваальсовыми взаимодействиями. Вместо того чтобы отскакивать друг от друга, словно футбольные мячики, как в типичных газах, атомы оганесона при комнатной температуре, вероятно, будут стремиться слипнуться в твердое вещество ! Это уже не благородный газ, а благородная твердь какая-то.

Протоны ядра оганесона тоже могут вести себя нестандартно. Обычно протоны отталкиваются друг от друга в силу положительного заряда, но не разлетаются благодаря так называемым ядерным силам, в основе которых лежит сильное взаимодействие – намного более сильное, чем кулоновские взаимодействия между зарядами. Однако у оганесона протонов аж 118 штук, поэтому их объединенные кулоновские усилия могут частично преодолеть ядерную силушку, в результате чего в ядре сформируется пузырь ! В центре ядра протонов окажется меньше, чем на периферии.

А вот нейтроны ядра, как и электроны вокруг ядра, смешаются в Ферми-газ , предсказывают ученые.


Юрий Оганесян – второй человек после Гленна Сиборга, именем которого еще при его жизни назвали химический элемент. Фото: ОИЯИ.

Сам Юрий Цолакович Оганесян подобные прогнозы относительно его тезки-элемента находит удивительными. Для их проверки необходимы эксперименты, говорит он, с предвкушением потирая руки.

Но куда более удивительными могут оказаться следующие, пока что неоткрытые химические элементы. Согласно недавно предложенной модели , ядра с массой выше 300 могут представлять собой совершенно иную, непривычную нам форму материи, которая будет состоять не из протонов и нейтронов, а из верхних и нижних кварков, собирающихся в какие-нибудь иные конфигурации. Подобная материя может стабильно существовать в недрах нейтронных звезд и потенциально могла бы стать намного более удобным источником энергии, чем ядерный или термоядерный синтез. Так что с нетерпением ждем, когда наши ученые в Дубне синтезируют невероятный и чудной 119-й элемент – ковылиний.

Текст: Виктор Ковылин. По материалам: Science News , Химия и жизнь
Научная статья: Physical Review Letters (Jerabek et al., 2018)