Спектральный анализ химического состава. Что такое спектральный анализ


Спектральный анализ , метод качественного и количественного определения состава веществ, основанный на исследовании их спектров испускания, поглощения, отражения и люминесценции. Различают атомный и молекулярный спектральный анализ , задачи которых состоят в определении соответственно элементного и молекулярного состава вещества. Эмиссионный спектральный анализ проводят по спектрам испускания атомов, ионов или молекул, возбужденных различными способами, абсорбционный спектральный анализ - по спектрам поглощения электромагнитного излучения анализируемыми объектами (см. Абсорбционная спектроскопия ). В зависимости от цели исследования, свойств анализируемого вещества, специфики используемых спектров, области длин волн и других факторов ход анализа, аппаратура, способы измерения спектров и метрологические характеристики результатов сильно различаются. В соответствии с этим спектральный анализ подразделяют на ряд самостоятельных методов (см., в частности, спектроскопия отражения , ультрафиолетовая спектроскопия, ).

Часто под спектральным анализом понимают только атомно-эмиссионный спектральный анализ (АЭСА) - метод элементного анализа, основанный на изучении спектров испускания свободных атомов и ионов в газовой фазе в области длин волн 150-800 нм (см. ).

Пробу исследуемого вещества вводят в источник излучения, где происходят ее испарение, диссоциация молекул и возбуждение образовавшихся атомов (ионов). Последние испускают характеристическое излучение, которое поступает в регистрирующее устройство спектрального прибора.

При качественном спектральном анализе спектры проб сравнивают со спектрами известных элементов, приведенных в соответствующих атласах и таблицах спектральных линий, и таким образом устанавливают элементный состав анализируемого вещества. При количественном анализе определяют количество (концентрацию) искомого элемента в анализируемом веществе по зависимости величины аналитического сигнала (плотность почернения или оптическая плотность аналитической линии на фотопластинке; световой поток на фотоэлектрический приемник) искомого элемента от его содержания в пробе. Эта зависимость сложным образом определяется многими трудно контролируемыми факторами (валовый состав проб, их структура, дисперсность, параметры источника возбуждения спектров, нестабильность регистрирующих устройств, свойства фотопластинок и т.д.). Поэтому, как правило, для ее установления используют набор образцов для градуировки, которые по валовому составу и структуре возможно более близки к анализируемому веществу и содержат известные количества определяемых элементов. Такими образцами могут служить специально приготовленные металлич. сплавы, смеси веществ, растворы, в т.ч. и , выпускаемые промышленностью. Для устранения влияния на результаты анализа неизбежного различия свойств анализируемого и стандартных образцов используют разные приемы; например, сравнивают спектральные линии определяемого элемента и так называемого элемента сравнения, близкого по химическим и физическим свойствам к определяемому. При анализе однотипных материалов можно применять одни и те же градуировочные зависимости, которые периодически корректируют по поверочным образцам.

Чувствительность и точность спектрального анализа зависят главным образом от физических характеристик источников излучения (возбуждения спектров) - температуры, концентрации электронов, времени пребывания атомов в зоне возбуждения спектров, стабильности режима источника и т.д. Для решения конкретной аналитической задачи необходимо выбрать подходящий источник излучения, добиться оптимизации его характеристик с помощью различных приемов - использование инертной атмосферы, наложение магнитного поля, введение специальных веществ, стабилизирующих температуру разряда, степень ионизации атомов, диффузионные процессы на оптимальном уровне и т.д. Ввиду многообразия взаимовлияющих факторов при этом часто используют методы математического планирования экспериментов.

При анализе твердых веществ наиболее часто применяют дуговые (постоянного и переменного тока) и искровые разряды, питаемые от специально сконструированных стабилизирующих генераторов (часто с электронным управлением). Созданы также универсальные генераторы, с помощью которых получают разряды разных типов с переменными параметрами, влияющими на эффективность процессов возбуждения исследуемых образцов. Твердая электропроводящая проба непосредственно может служить электродом дуги или искры; не проводящие ток твердые пробы и порошки помещают в углубления угольных электродов той или иной конфигурации. В этом случае осуществляют как полное испарение (распыление) анализируемого вещества, так и фракционное испарение последнего и возбуждение компонентов пробы в соответствии с их физическими и химическими свойствами, что позволяет повысить чувствительность и точность анализа. Для усиления эффекта фракционирования испарения широко применяют добавки к анализируемому веществу реагентов, способствующих образованию в условиях высокотемпературной [(5-7)·10 3 К] угольной дуги легколетучих соединений (фторидов, хлоридов, сульфидов и др.) определяемых элементов. Для анализа геологических проб в виде порошков широко применяют способ просыпки или вдувания проб в зону разряда угольной дуги.

При анализе металлургических проб наряду с искровыми разрядами разных типов используют также источники света тлеющего разряда (лампы Грима, разряд в полом катоде). Разработаны комбинированные автоматизированные источники, в которых для испарения или распыления используют лампы тлеющего разряда или электротермические анализаторы, а для получения спектров, например, - высокочастотные плазматроны. При этом удается оптимизировать условия испарения и возбуждения определяемых элементов.

При анализе жидких проб (растворов) наилучшие результаты получаются при использовании высокочастотных (ВЧ) и сверхвысокочастотных (СВЧ) плазматронов, работающих в инертной атмосфере, а также при пламенно-фотометрическом анализе (см. ). Для стабилизации температуры плазмы разряда на оптимальном уровне вводят добавки легкоионизируемых веществ, например щелочных металлов. Особенно успешно применяют ВЧ разряд с индуктивной связью тороидальной конфигурации (рис. 1). В нем разделены зоны поглощения ВЧ энергии и возбуждения спектров, что позволяет резко повысить эффективность возбуждения и отношение полезного аналитического сигнала к шуму и, таким образом, достичь очень низких пределов обнаружения широкого круга элементов. В зону возбуждения пробы вводят с помощью пневматических или (реже) ультразвуковых распылителей. При анализе с применением ВЧ и СВЧ плазматронов и фотометрии пламени относительное стандартное отклонение составляет 0,01-0,03, что в ряде случаев позволяет применять спектральный анализ вместо точных, но более трудоемких и длительных химических методов анализа.

Для анализа газовых смесей необходимы специальные вакуумные установки; спектры возбуждают с помощью ВЧ и СВЧ разрядов. В связи с развитием газовой хроматографии эти методы применяют редко.

Рис. 1. ВЧ-плазматрон: 1-факел отходящих газов; 2-зона возбуждения спектров; 3-зона поглощения ВЧ энергии; 4-нагревательный индуктор; 5-вход охлаждающего газа (азот, аргон); 6-вход плазмообразующего газа (аргон); 7-вход распыленной пробы (несущий газ - аргон).

При анализе веществ высокой чистоты, когда требуется определять элементы, содержание которых меньше 10 -5 %, а также при анализе токсичных и радиоактивных веществ пробы предварительно обрабатывают; например, частично или полностью отделяют определяемые элементы от основы и переводят их в меньший объем раствора или вносят в меньшую массу более удобного для анализа вещества. Для разделения компонентов пробы применяют фракционную отгонку основы (реже-примесей), адсорбцию, осаждение, экстракцию, хроматографию, ионный обмен. Спектральный анализ с использованием перечисленных химических способов концентрирования пробы, как правило, называют химико-спектральным анализом. Дополнительные операции разделения и концентрирования определяемых элементов заметно повышают трудоемкость и длительность анализа и ухудшают его точность (относительное стандартное отклонение достигает значений 0,2-0,3), но снижает пределы обнаружения в 10-100 раз.

Специфической областью спектрального анализа является микроспектральный (локальный) анализ. При этом микрообъем вещества (глубина кратера от десятков мкм до нескольких мкм) испаряют обычно лазерным импульсом, действующим на участок поверхности образца диаметром несколько десятков мкм. Для возбуждения спектров используют чаще всего импульсный искровой разряд, синхронизованный с лазерным импульсом. Метод применяют при исследовании минералов, в металловедении.

Спектры регистрируют с помощью спектрографов и спектрометров (квантометров). Имеется много типов этих приборов, различающихся светосилой, дисперсией, разрешающей способностью, рабочей областью спектра. Большая светосила необходима для регистрации слабых излучений, большая дисперсия - для разделения спектральных линий с близкими длинами волн при анализе веществ с многолинейчатыми спектрами, а также для повышения чувствительности анализа. В качестве устройств, диспергирующих свет, используют дифракционные решетки (плоские, вогнутые, нарезные, голографические, профилированные), имеющие от нескольких сотен до нескольких тысяч штрихов на миллиметр, значительно реже - кварцевые или стеклянные призмы.

Спектрографы (рис. 2), регистрирующие спектры на специальных фотопластинках или (реже) на фотопленках, предпочтительнее при качественном спектральном анализе, т.к. позволяют изучать сразу весь спектр образца (в рабочей области прибора); однако используются и для количественного анализа вследствие сравнительной дешевизны, доступности и простоты обслуживания. Почернения спектральных линий на фотопластинках измеряют с помощью микрофотометров (микроденситометров). Использование при этом ЭВМ или микропроцессоров обеспечивает автоматический режим измерений, обработку их результатов и выдачу конечных результатов анализа.


Рис.2. Оптическая схема спектрографа: 1-входная щель; 2-поворотное зеркало; 3-сферическое зеркало; 4-дифракционная решетка; 5-лампочка освещения шкалы; 6-шкала; 7-фотопластинка.


Рис. 3. Схема квантометра (из 40 каналов регистрации показано только три): 1-полихроматор; 2-дифракционные решетки; 3-выходные щели; 4-фото-электронный умножитель; 5-входные щели; 6-штативы с источниками света; 7-генераторы искрового и дугового разрядов; 8-электронно-регистрирующее устройство; 9-управляющий вычислительный комплекс.

В спектрометрах осуществляется фотоэлектрическая регистрация аналитических сигналов с помощью фотоэлектронных умножителей (ФЭУ) с автоматической обработкой данных на ЭВМ. Фотоэлектрические многоканальные (до 40 каналов и более) полихроматоры в квантометрах (рис. 3) позволяют одновременно регистрировать аналитические линии всех предусмотренных программой определяемых элементов. При использовании сканирующих монохроматоров многоэлементный анализ обеспечивается высокой скоростью сканирования по спектру в соответствии с заданной программой.

Для определения элементов (С, S, P, As и др.), наиболее интенсивные аналитические линии которых расположены в УФ области спектра при длинах волн меньше 180-200 нм, применяют вакуумные спектрометры.

При использовании квантометров длительность анализа определяется в значительной мере процедурами подготовки исходного вещества к анализу. Существенное сокращение времени пробоподготовки достигается автоматизацией наиболее длительных этапов - растворения, приведения растворов к стандартному составу, окисления металлов, растирания и смешения порошков, отбора проб заданной массы. Во многих случаях многоэлементный спектральный анализ выполняется в течение нескольких минут, например: при анализе растворов с использованием автоматизированных фотоэлектрических спектрометров с ВЧ плазматронами или при анализе металлов в процессе плавки с автоматической подачей проб в источник излучения.

Спектральный анализ – метод определения химического состава вещества по его спектру. Этот метод разработан в 1859 г. немецкими учеными Г.Р. Кирхгофом и Р.В. Бунзеном.

Но прежде чем рассматривать этот довольно сложный вопрос, давайте сначала поговорим о том, что такое спектр.
Спектр (лат. spectrum «виде́ние») в физике - распределение значений физической величины (обычно энергии, частоты или массы). Обычно под спектром подразумевается электромагнитный спектр - спектр частот (или то же самое, что энергий квантов) электромагнитного излучения.

В научный обиход термин спектр ввёл Ньютон в 1671-1672 годах для обозначения многоцветной полосы, похожей на радугу, которая получается при прохождении солнечного луча через треугольную стеклянную призму. В своём труде «Оптика» (1704 г.) он опубликовал результаты своих опытов разложения с помощью призмы белого света на отдельные компоненты различной цветности и преломляемости, то есть получил спектры солнечного излучения и объяснил их природу. Он показал, что цвет есть собственное свойство света, а не вносятся призмой, как утверждал Бэкон в XIII веке. Фактически Ньютон заложил основы оптической спектроскопии: в «Оптике» он описал все три используемых поныне метода разложения света -преломление, интерференцию (перераспределение интенсивности света в результате наложения нескольких световых волн) и дифракцию (огибание препятствия волнами).
А вот теперь возвратимся к разговору о том, что такое спектральный анализ.

Это метод, который дает ценные и разнообразные сведения о небесных светилах. Как это делается? Анализируется свет, а из анализа света можно произвести качественный и количественный химический состав светила, его температуру, наличие и напряженность магнитного поля, скорость движения по лучу зрения и т. д.
В основе спектрального анализа лежит понятие о том, что сложный свет при переходе из одной среды в другую (например, из воздуха в стекло) разлагается на составные части. Если пучок этого света пустить на боковую грань трехгранной призмы, то, преломляясь в стекле по-разному, составляющие белый свет лучи дадут на экране радужную полоску, называемую спектром. В спектре все цвета расположены всегда в определенном порядке. Если вы забыли этот порядок, то посмотрите на рисунок.

Призма как спектральный прибор

В телескопах для получения спектра используют специальные приборы – спектрографы , устанавливаемые за фокусом объектива телескопа. В прошлом все спектрографы были призменными, но теперь вместо призмы в них используют дифракционную решетку , которая также разлагает белый свет в спектр, его называют дифракционным спектром.
Всем известно, что свет распространяется в виде электромагнитных волн. Каждому цвету соответствует определенная длина электромагнитной волны. Длина волны в спектре уменьшается от красных лучей к фиолетовым примерно от 700 до 400 ммк. За фиолетовыми лучами спектра лежат ультрафиолетовые лучи, не видимые глазом, но действующие на фотопластинку.

Еще более короткую длину волны имеют рентгеновские лучи, применяемые в медицине. Рентгеновское излучение небесных светил атмосфера Земли задерживает. Только недавно оно стало доступно для изучения посредством запусков высотных ракет, поднимающихся выше основного слоя атмосферы. Наблюдения в рентгеновских лучах производят также автоматические приборы, установленные на космических межпланетных станциях.

За красными лучами спектра лежат инфракрасные лучи. Они невидимы, но и они действуют на специальные фотопластинки. Под спектральными наблюдениями понимают обычно наблюдения в интервале от инфракрасных до ультрафиолетовых лучей.

Для изучения спектров применяют приборы, называемые спектроскопом и спектрографом . В спектроскоп спектр рассматривают, в спектрографе его фотографируют. Фотография спектра называется спектрограммой .

Виды спектров

Спектр в виде радужной оболочки (сплошной, или непрерывный) дают твердые раскаленные тела (раскаленный уголь, нить электролампы) и находящиеся под большим давлением громадные массы газа. Линейчатый спектр излучения дают разреженные газы и пары при сильном нагревании или под действием электрического разряда. У каждого газа свой излученный набор ярких линий определенных цветов. Их цвет соответствует определенным длинам волн. Они находятся всегда в одних и тех же местах спектра. Изменения состояния газа или условий его свечения, например, нагрев или ионизация, вызывают определенные изменения в спектре данного газа.

Учеными составлены таблицы с перечнем линий каждого газа и с указанием яркости каждой линии. Например, в спектре натрия особенно ярки две желтые линии. Установлено, что спектр атома или молекулы связан с их строением и отражает определенные изменения, происходящие в них в процессе свечения.

Линейчатый спектр поглощения дают газы и пары, когда за ними находится яркий и более горячий источник, дающий непрерывный спектр. Спектр поглощения состоит из непрерывного спектра, перерезанного темными линиями, которые находятся в тех самых местах, где должны быть расположены яркие линии, присущие данному газу. Например, две темные линии поглощения натрия расположены в желтой части спектра.

Таким образом, спектральный анализ позволяет установить химический состав паров, излучающих свет или поглощающих его; определить, находятся ли они в лаборатории или на небесном светиле. Количество атомов или молекул, лежащих на нашем луче зрения, излучающих или поглощающих, определяется по интенсивности линий. Чем больше атомов, тем ярче линия или тем она темнее в спектре поглощения. Солнце и звезды окружены газовыми атмосферами. Непрерывный спектр их видимой поверхности перерезан темными линиями поглощения, возникающими при прохождении света через атмосферу звезд. Поэтому спектры Солнца и звезд - это спектры поглощения.

Но спектральный анализ позволяет определять химический состав только самосветящихся или поглощающих излучение газов. Химический состав твердого или жидкого тела при помощи спектрального анализа определить нельзя.

Когда тело раскалено докрасна, в его сплошном спектре ярче всего красная часть. При дальнейшем нагревании наибольшая яркость в спектре переходит в желтую, потом в зеленую часть и т. д. Теория излучения света, проверенная на опыте, показывает, что распределение яркости вдоль сплошного спектра зависит от температуры тела. Зная эту зависимость, можно установить температуру Солнца и звезд. Температуру планет и температуру звезд определяют еще при помощи термоэлемента, помещенного в фокусе телескопа. При нагревании термоэлемента в нем возникает электрический ток, характеризующий количество теплоты, приходящее от светила.

СПЕКТРАЛЬНЫЙ АНАЛИЗ (при помощи спектров испускания) имеет применение почти во всех отраслях хозяйства. Широко применяется в металлопромышленности для быстрого анализа железа, стали, чугуна, а также различных специальных сталей и готовых металлических изделий, для установления чистоты легких, цветных и драгоценных металлов. Большое применение имеет спектральный анализ в геохимии при изучении состава полезных ископаемых. В химической промышленности и близких к ней отраслях спектральный анализ служит для установления чистоты выпускаемой и применяемой продукции, для анализа катализаторов, различных остатков, осадков, мутей и промывных вод; в медицине - для открытия металлов в различных органических тканях. Ряд специальных задач, трудно разрешаемых или вовсе не разрешимых иным путем, решается при помощи спектрального анализа быстро и точно. Сюда относится, например, распределение металлов в сплавах, исследование в сплавах и минералах сульфидных и других включений; такого рода исследования иногда обозначаются термином локальный анализ .

Выбор того или другого типа спектрального аппарата с точки зрения достаточности его дисперсии производится в зависимости от цели и задач спектрального анализа. Для исследования платиновых металлов (Ru, Rh, Pd, Os, Ir, Pt), а также Fe, Co, Ni, Сг, V, Mo, W, Ti, Mn, Zr, Re, Nb и Та наиболее пригодны кварцевые спектрографы с большей дисперсией, дающие для длин волн 4000-2200 Ӑ полоску спектра длиной по крайней мере 22 см. Для остальных элементов м. б. применены аппараты, дающие спектры длиной 7-15 см. Спектрографы со стеклянной оптикой в общем имеют меньшее значение. Из них удобны комбинированные приборы (например, фирмы Гильгера и Фюсса), которые по желанию можно применять в качестве спектроскопа и спектрографа. Для получения спектров применяются следующие источники энергии. 1) Пламя горящей смеси - водорода и кислорода, смеси кислорода и светильного газа, смеси кислорода и ацетилена или наконец воздуха и ацетилена. В последнем случае температура источника света доходит до 2500-3000°С. Пламя наиболее всего пригодно для получения спектров щелочных и щелочноземельных металлов, а также для таких элементов, как Сu, Hg и Тl. 2) Вольтова дуга . а) Обычная, гл. обр. постоянного тока, силой 5-20 А. С большим успехом она применяется для качественного анализа трудно сплавляемых минералов, которые вводятся в дугу в виде кусочков или тонко растертых порошков. Для количественного анализа металлов применение обычной вольтовой дуги имеет очень существенный недостаток, заключающийся в том, что поверхность анализируемых металлов покрывается пленкой окиси и горение дуги становится в конце концов неравномерным. Температура вольтовой дуги доходит до 5000-6000°С. б) Прерывистая дуга (Abreissbogen) постоянного тока силой 2-5 А при напряжении около 80 V. При помощи специального приспособления горение дуги прерывается 4-10 раз в сек. Этот способ возбуждения уменьшает окисление поверхности анализируемых металлов. При более высоком напряжении - до 220 V и силе тока 1-2 А - прерывистая дуга может применяться также и для анализа растворов. 3) Искровые разряды , получаемые при помощи индукционной катушки или, чаще, трансформатора постоянного или (предпочтительнее) переменного тока мощностью до 1 kW, дающего во вторичной цепи 10000-30000 V. Применяются три типа разрядов, а) Искровые разряды без емкости и индуктивности во вторичной цепи, называемые иногда дугой высокого напряжения (Hochspannungsbogen). Анализ жидкостей и расплавленных солей при помощи таких разрядов отличается большой чувствительностью. б) Искровые разряды с емкостью и индуктивностью во вторичной цепи, часто называемые также конденсированными искрами , представляют собой более универсальный источник энергии, пригодный для возбуждения спектров почти всех элементов (кроме щелочных металлов), а также газов. Схема включения дана на фиг. 1,

где R - реостат в первичной цепи, Тr- трансформатор переменного тока, С 1 - емкость во вторичной цепи I, S - переключатель для изменения индуктивности L 1 , U - синхронный прерыватель, LF - искрогаситель, F - рабочий искровой промежуток. В резонанс ко вторичной цепи I при помощи индуктивности и переменной емкости С 2 настраивается вторичная цепь II; признаком наличия резонанса является наибольшая сила тока, показываемая миллиамперметром А. Назначение вторичной цепи II синхронного прерывателя U и искрогасителя LF - делать электрические разряды возможно однообразными как по характеру, так и по числу в течение определенного промежутка времени; при обычных работах такие добавочные приспособления не вводятся.

При исследованиях металлов во вторичной цепи применяется ёмкость 6000-15000 см и индуктивность до 0,05-0,01 Н. Для анализа жидкостей во вторичную цепь иногда вводится водяной реостат с сопротивлением до 40000 Ом. Газы исследуются без индуктивности с небольшой емкостью. в) Разряды токов Тесла, которые осуществляются при помощи схемы, изображенной на фиг. 2,

где V - вольтметр, А - амперметр, Т - трансформатор, С - емкость, Т-Т - трансформатор Тесла, F - искровой промежуток, куда вводится анализируемое вещество. Токи Тесла применяются для исследований веществ, которые имеют невысокую точку плавления: различных растительных и органических препаратов, осадков на фильтрах и т. п. При спектральном анализе металлов в случае большого их количества они обычно сами являются электродами, причем им придается какая-либо форма, например, из указанных на фиг. 3,

где а - электрод из анализируемой толстой проволоки, b - из жести, с - согнутая тонкая проволока, d - диск, отрезанный от толстого цилиндрического стержня, е - форма, выпиливаемая из больших кусков литья. При количественном анализе необходимо иметь всегда одинаковую форму и размеры подвергающейся действию искр поверхности электродов. При небольшом количестве анализируемого металла можно воспользоваться оправой из какого-либо чистого металла, например, из золота и платины, в которой укрепляется анализируемый металл, как показано на фиг. 4.

Для введения в источник света растворов предложено довольно много способов. При работе с пламенем применяется распылитель Люндегорда, схематически изображенный на фиг. 5 вместе со специальной горелкой.

Продуваемый через распылитель ВС воздух захватывает испытуемую жидкость, наливаемую в количестве 3 -10 см 3 в углубление С, и в виде тонкой пыли относит ее в горелку А, где происходит смешение с газом. Для введения растворов в дугу, а также в искру применяются чистые угольные или графитовые электроды, на одном из которых делается углубление. Необходимо, однако, отметить, что очень трудно приготовить угли совершенно чистыми. Применяемые для очистки способы - попеременное кипячение в соляной и плавиковой кислотах, а также прокаливание в атмосфере водорода до 2500-3000°С - не дают углей, свободных от примесей, остаются (хотя и следы) Са, Mg, V, Ti, Al, Fe, Si, В. Удовлетворительной чистоты получаются также угли путем прокаливания их на воздухе при помощи электрического тока: через угольный стержень диаметром 5 мм пропускается ток силой около 400 А, и достигаемое таким путем сильное накаливание (до 3 000°С) оказывается достаточным для того, чтобы в течение нескольких секунд большинство загрязняющих угли примесей улетучилось. Существуют также такие способы введения растворов в искру, где сам раствор является нижним электродом, и искра проскакивает на его поверхность; другим электродом может служить какой-либо чистый металл. Примером такого устройства может служить изображенный на фиг. 6 жидкостный электрод Герляха.

Углубление, куда наливается испытуемый раствор, облицовывается платиновой фольгой или покрывается толстым слоем позолоты. На фиг. 7 изображен аппарат Хитчена, служащий также для введения растворов в искру.

Из сосуда А испытуемый раствор слабой струей поступает через трубку В и кварцевую насадку С в сферу действия искровых разрядов. Нижний электрод, впаянный в стеклянную трубку, прикрепляется к аппарату при помощи каучуковой трубки Е. Насадка С, изображенная на фиг. 7 отдельно, имеет с одной стороны вырез для стенания раствора. D - стеклянный предохранительный сосуд, в котором делается круглое отверстие для выхода ультрафиолетовых лучей. Сосуд этот удобнее делать кварцевым без отверстия. К верхнему электроду F, графитовому, угольному или металлическому, также приспосабливается предохраняющая от брызг пластинка. Для «дуги высокого напряжения», сильно накаливающей анализируемые вещества, Герлях при работе с растворами применяет электроды с охлаждением, как это схематически показано на фиг. 8.

На толстой проволоке (диаметром 6 мм) укрепляется при помощи пробки К стеклянная воронка G, куда помещаются кусочки льда. На верхнем конце проволоки укрепляется круглый железный электрод Е диаметром 4 см и высотой 4 см, на который накладывается платиновая чашечка Р; последняя должна легко сниматься для очистки. Верхний электрод также д. б. толстым во избежание расплавления. При анализе небольших количеств веществ - осадков на фильтрах, различных порошков и т. д. - можно пользоваться приспособлением, изображенным на фиг. 9.

Из испытуемого вещества и фильтровальной бумаги делается комочек, смачивается для лучшей проводимости раствором, например, NaCl, помещается на нижний электрод, состоящий иногда из чистого кадмия, заключенного в кварцевой (хуже стеклянной) трубочке; верхний электрод также является каким-либо чистым металлом. Для таких же анализов при работе с токами Тесла применяется специальная конструкция искрового промежутка, изображенная на фиг. 10 а и б.

В круглом шарнире К укрепляется в нужном положении алюминиевая пластинка Е, на которую накладывается стеклянная пластинка G, а на последнюю - препарат Р на фильтровальной бумаге F. Препарат смачивается какой-либо кислотой или раствором соли. Вся эта система представляет небольшой конденсатор. Для исследования газов применяются закрытые стеклянные или кварцевые сосуды (фиг. 11).

Для количественного анализа газов удобно пользоваться золотыми или платиновыми электродами, линии которых можно применить для сравнения. Почти все из упомянутых выше приспособлений для введения веществ в искру и дугу при работе укрепляются в специальных штативах. Примером может являться штатив Грамона, изображенный на фиг. 12:

при помощи винта D электроды одновременно раздвигаются и сдвигаются; винт Е служит для передвигания верхнего электрода параллельно оптической скамье, а винт С - для боковых поворотов нижнего электрода; для боковых поворотов всей верхней части штатива служит винт В; наконец при помощи винта А можно поднимать или опускать всю верхнюю часть штатива; Н - подставка для горелок, стаканов и пр. Выбор источника энергии для той или иной цели исследования можно сделать, руководствуясь следующей примерной таблицей.

Качественный анализ . При качественном спектральном анализе открытие какого-либо элемента зависит от многих факторов: от характера определяемого элемента, источника энергии, разрешающей способности спектрального аппарата, а также от чувствительности фотографических пластинок. Относительно чувствительности анализа можно сделать следующие указания. При работе с искровыми разрядами в растворах можно открывать 10 -9 -10 -3 %, а в металлах 10 -2 -10 -4 % исследуемого элемента; при работе с вольтовой дугой пределы открытия лежат около 10 -3 %. Абсолютное количество, которое м. б. открыто при работе с пламенем, составляет 10 -4 -10 -7 г, а при искровых разрядах 10 -6 -10 -8 г исследуемого элемента. Наибольшая чувствительность открытия относится к металлам и металлоидам - В, Р, С; меньше чувствительность для металлоидов As, Se и Те; галоиды, а также S, О, N в их соединениях совсем не м. б. открыты и м. б. открыты лишь в некоторых случаях в газовых смесях.

Для качественного анализа наибольшее значение имеют «последние линии», и при анализе задача заключается в наиболее точном определении длин волн спектральных линий. При визуальных исследованиях длины волн отсчитываются по барабану спектрометра; эти измерения можно считать лишь приблизительными, так как точность составляет обычно ±(2-З) Ӑ и в таблицах Кайзера этому интервалу ошибок могут отвечать около 10 спектральных линий, принадлежащих различным элементам, для λ 6000 и 5000 Ӑ и около 20 спектральных линий для λ ≈ 4000 Ӑ. Гораздо точнее определяется длина волн при спектрографическом анализе. В этом случае на спектрограммах при помощи измерительного микроскопа измеряется расстояние между линиями с известной длиной волны и определяемой; по формуле Гартмана находится длина волны последней. Точность таких измерений при работе с прибором, дающим полоску спектра длиной около 20 см, составляет ± 0,5 Ӑ для λ ≈ 4000 Ӑ, ± 0,2 Ӑ для λ ≈ 3000 Ӑ и ± 0,1 Ӑ для λ ≈ 2500 Ӑ. По длине волны в таблицах находят соответствующий элемент. Расстояние между линиями при обычных работах измеряется с точностью до 0,05-0,01 мм. Этот прием иногда удобно комбинировать со съемками спектров с так называемыми заслонками Гартмана, два типа которых изображены на фиг. 13, а и b; при помощи их щель спектрографа можно делать различной высоты. Фиг. 13, с схематически изображает случай качественного анализа вещества X - установление в нем элементов А и В. Спектры фиг. 13, d показывают, что в веществе Y кроме элемента А, линии которого обозначены буквой G, имеется примесь, линии которой обозначены z. При помощи этого приема в простых случаях можно выполнить качественный анализ, не прибегая к промеру расстояний между линиями.

Количественный анализ . Для количественного спектрального анализа наибольшее значение имеют линии, обладающие возможно большей концентрационной чувствительностью dI/dK, где I - интенсивность линии, а К - концентрация дающего ее элемента. Чем больше концентрационная чувствительность, тем точнее анализ. С течением времени разработан целый ряд методов количественного спектрального анализа. Эти методы следующие.

I. Спектроскопические методы (без фотографической съемки) почти все являются фотометрическими методами. Сюда относятся: 1) Метод Барратта . Одновременно возбуждаются спектры двух веществ - испытуемого и стандартного - видные в поле зрения спектроскопа рядом, один над другим. Ход лучей изображен на фиг. 14,

где F 1 и F 2 - два искровых промежутка, свет от которых проходит через призмы Николя N 1 и N 2 , поляризующие лучи во взаимно перпендикулярных плоскостях. При помощи призмы D лучи попадают в щель S спектроскопа. В его зрительной трубе помещается третья призма Николя - анализатор, - вращая которую добиваются одинаковой интенсивности двух сравниваемых линий. Предварительно при исследованиях стандартов, т. е. веществ с известным содержанием элементов, устанавливается зависимость между углом поворота анализатора и концентрацией, и по этим данным вычерчивается диаграмма. При анализе по углу поворота анализатора из этой диаграммы находится искомое процентное содержание. Точность метода ±10 %. 2) . Принцип метода заключается в том, что лучи света после призмы спектроскопа проходят через призму Волластона, где расходятся на два пучка и поляризуются во взаимно перпендикулярных плоскостях. Схема хода лучей показана на фиг. 15,

где S - щель, Р - призма спектроскопа, W - призма Волластона. В поле зрения получаются два спектра B 1 и В 2 , лежащие рядом, друг над другом; L - лупа, N - анализатор. Если вращать призму Волластона, то спектры будут передвигаться относительно друг друга, что позволяет совместить какие-либо две их линии. Например, если анализируется железо, содержащее ванадий, то совмещается линия ванадия с какой-либо близлежащей одноцветной линией железа ; затем, поворачивая анализатор, добиваются одинаковой яркости этих линий. Угол поворота анализатора, как и в предыдущем методе, является мерой концентрации искомого элемента. Метод особенно пригоден для анализа железа, спектр которого имеет много линий, что позволяет всегда найти линии, пригодные для исследований. Точность метода ± (3-7)%. 3) Метод Оккиалини . Если расположить электроды (например, анализируемые металлы) горизонтально и проектировать изображен из источника света на вертикальную щель спектроскопа, то как при искровых, так и при дуговых разрядах линии примесей м. б. открыты в зависимости от концентрации на большем или меньшем расстоянии от электродов. Источник света проектируется на щель при помощи специальной линзы, снабженной микрометрическим винтом. При анализе эта линза передвигается и вместе с ней передвигается изображение источника света до тех пор, пока какая-либо линия примеси в спектре исчезнет. Мерой концентрации примеси является отсчет по шкале линзы. В настоящее время этот метод разработан также и для работ с ультрафиолетовой частью спектра. Надо отметить, что таким же способом освещения щели спектрального аппарата пользовался Локиер и им был разработан метод количественного спектрального анализа, т. н. метод «длинных и коротких линий». 4) Прямое фотометрирование спектров . Описанные выше методы носят название визуальных. Люндегорд вместо визуальных исследований пользовался для измерения интенсивности спектральных линий фотоэлементом. Точность определения щелочных металлов при работе с пламенем достигала ± 5%. При искровых разрядах этот способ неприменим, так как они менее постоянны, чем пламя. Существуют также способы, основанные на изменении индуктивности во вторичной цепи, а также использующие искусственное ослабление света, попадающего в спектроскоп, до исчезновения в поле зрения исследуемых спектральных линий.

II. Спектрографические методы . При этих методах исследуются фотографические снимки спектров, причем мерой интенсивности спектральных линий является почернение, даваемое ими на фотографической пластинке. Интенсивность оценивается или глазом, или фотометрически.

А . Методы без применения фотометрии . 1) Метод последних линий . При изменении концентрации какого-либо элемента в спектре изменяется число его линий, что дает возможность при неизменных условиях работы судить о концентрации определяемого элемента. Фотографируется ряд спектров веществ с известным содержанием интересующего компонента, на спектрограммах определяется число его линий и составляются таблицы, в которых указывается, какие линии видны при данных концентрациях. Эти таблицы служат дальше для аналитических определений. При анализе на спектрограмме определяется число линий интересующего элемента и по таблицам находится процентное содержание, причем метод дает не однозначную его цифру, а границы концентраций, т. е. «от-до». Наиболее достоверно возможно различить концентрации, отличающиеся друг от друга в 10 раз, например, от 0,001 до 0,01%, от 0,01 до 0,1% и т. д. Аналитические таблицы имеют значение лишь для вполне определенных условий работы, которые в различных лабораториях могут очень сильно различаться; кроме того, требуется тщательное соблюдение постоянства условий работы. 2) Метод сравнительных спектров . фотографируется несколько спектров анализируемого вещества А + х% В, в котором определяется содержание х элемента В, и в промежутках между ними на той же фотографической пластинке -спектры стандартных веществ А + а% В, А + b% В, А + с% В, где а, b, с - известное процентное содержание В. На спектрограммах по интенсивности линий В определяется, между какими концентрациями заключается значение х. Критерием постоянства условий работы является равенство интенсивности на всех спектрограммах какой-либо близлежащей линии А. При анализе растворов в них добавляется одинаковое количество какого-либо элемента, дающего линию близко к линиям В, и тогда о постоянстве условий работы судят по равенству интенсивности этих линий. Чем меньше разница между концентрациями а, Ь, с, … и чем точнее достигнуто равенство интенсивности линий А, тем точнее анализ. А. Райс, например, применял концентрации а, b, с, ... , относящиеся друг к другу, как 1: 1,5. К методу сравнительных спектров примыкает метод «подбора концентраций» (Testverfahren) по Гюттигу и Турнвальду, применимый только к анализу растворов. Он заключается в том, что если в двух растворах, содержащих а% А и х% А (х больше или меньше а), что сейчас же можно определить по их спектрам, то прибавляют в какой-либо из этих растворов такое количество n элемента А, чтобы интенсивность его линий на обоих спектрах стала одинаковой. Тем самым определится концентрация х, которая будет равна (а ± n)%. Можно также прибавить в анализируемый раствор какой-либо другой элемент В до равенства интенсивности определенных линий А и В и по количеству В оценить содержание А. 3) Метод гомологических пар . В спектре вещества А + а% В линии элементов А и В не являются одинаково интенсивными и, если этих линий достаточное количество, можно найти две такие линии А и В, интенсивность которых будет одинакова. Для другого состава А + b% В одинаковыми по интенсивности будут другие линии А и В и т. д. Эти две одинаковые линии называются гомологическими парами. Концентрации В, при которых осуществляется та или иная гомологическая пара, называются фиксирующими пунктами этой пары. Для работы по этому методу требуется предварительное составление таблиц гомологических пар при помощи веществ известного состава. Чем полнее таблицы, т. е. чем больше они содержат гомологических пар с фиксирующими пунктами, отличающимися как можно меньше друг от друга, тем точнее анализ. Этих таблиц составлено довольно большое количество, причем они могут иметь применение в любой лаборатории, т. к. точно известны условия разрядов при их составлении и эти условия м. б. совершенно точно воспроизведены. Достигается это при помощи следующего простого приема. В спектре вещества А + а% В выбираются две линии элемента А, интенсивность которых очень сильно меняется в зависимости от величины самоиндукции во вторичной цепи, именно одна дуговая (принадлежащая нейтральному атому) и одна искровая линия (принадлежащая иону). Эти две линии называются фиксирующей парой . Путем подбора величины самоиндукции линии этой пары делаются одинаковыми и составление ведется именно при этих условиях, всегда указываемых в таблицах. При таких же условиях проводится и анализ, и по осуществлению той или иной гомологической пары находится процентное содержание. Имеется несколько модификаций метода гомологических пар. Из них главнейшим является метод вспомогательного спектра , применяемый в том случае, когда элементы А и В не обладают достаточным количеством линий. В этом случае линии спектра элемента А определенным образом связываются с линиями другого, более пригодного элемента G, и роль А начинает играть элемент G. Метод гомологических пар разработан Герляхом и Швейтцером. Он применим как к сплавам, так и к растворам. Его точность в среднем около ±10%.

В . Методы с применением фотометрии . 1) Метод Барратта . Фиг. 16 дает представление о методе.

F 1 и F 2 - два искровых промежутка, при помощи которых одновременно возбуждаются спектры стандартного и анализируемого вещества. Свет проходит через 2 вращающихся сектора S 1 и S 2 и при помощи призмы D образует спектры, которые расположены один над другим. Путем подбора вырезок секторов линии исследуемого элемента получают одинаковую интенсивность; концентрация определяемого элемента вычисляется из соотношения величин вырезок. 2) является аналогичным, но с одним искровым промежутком (фиг. 17).

Свет от F разделяется на два пучка и проходит через секторы S 1 и S 2 , при помощи ромба Гюфнера R две полоски спектра получаются одна над другой; Sp - щель спектрографа. Вырезки секторов изменяются до получения равенства интенсивности линии примеси и какой-либо близлежащей линии основного вещества и по соотношению величин вырезок высчитывается %-ное содержание определяемого элемента. 3) При применении в качестве фотометра вращающегося логарифмического сектора линии получают на спектрограммах клинообразный вид. Один из таких секторов и его положение относительно спектрографа при работе изображены на фиг. 18, а и б.

Вырезка сектора подчиняется уравнению

- lg Ɵ = 0,3 + 0,2l

где Ɵ - длина дуги в частях полной окружности, находящаяся на расстоянии I, измеренном в мм по радиусу от его конца. Мерой интенсивности линий является их длина, т. к. с изменением концентрации элемента длина его клинообразных линий также изменяется. Предварительно по образцам с известным содержанием строится диаграмма зависимости длины какой-либо линии от %-ного содержания; при анализе на спектрограмме измеряется длина той же линии и по диаграмме находится процентное содержание. Имеется несколько различных модификаций этого метода. Следует указать на модификацию Шейбе, применявшего т. н. двойной логарифмический сектор. Вид этого сектора изображен на фиг. 19.

Линии исследуются затем при помощи специального аппарата. Точность, достижимая при помощи логарифмических секторов, ±(10-15)%; модификация Шейбе дает точность ±(5-7)%. 4) Довольно часто применяется фотометрирование спектральных линий при помощи свето- и термоэлектрических спектрофотометров самых различных конструкций. Удобными являются термоэлектрические фотометры, выработанные специально для целей количественного анализа. Для примера на фиг. 20 приведена схема фотометра по Шейбе:

L– постоянный источник света с конденсором К, М – фотографическая пластинка с исследуемым спектром, Sp - щель, О 1 и О 2 - объективы, V - затвор, Th - термоэлемент, который присоединяется к гальванометру. Мерой интенсивности линий является отклонение стрелки гальванометра. Реже пользуются саморегистрирующими гальванометрами, дающими запись интенсивности линий в виде кривой. Точность анализа при применении этого типа фотометрии составляет ±(5-10)%. При сочетании с другими методами количественного анализа точность м. б. повышена; так, например, метод трех линий Шейбе и Шнеттлера, являющийся сочетанием метода гомологических пар и фотометрических измерений, в благоприятных случаях может дать точность ±(1-2)%.

Не так давно товарищ Makeman описывал , как с помощью спектрального анализа можно разложить некоторый звуковой сигнал на слагающие его ноты. Давайте немного абстрагируемся от звука и положим, что у нас есть некоторый оцифрованный сигнал, спектральный состав которого мы хотим определить, и достаточно точно.

Под катом краткий обзор метода выделения гармоник из произвольного сигнала с помощью цифрового гетеродинирования, и немного особой, Фурье-магии.

Итак, что имеем.
Файл с отсчетами оцифрованного сигнала. Известно, что сигнал представляет собой сумму синусоид со своими частотами, амплитудами и начальными фазами, и, возможно, белый шум.

Что будем делать.
Использовать спектральный анализ для того, чтобы определить:

  • количество гармоник в составе сигнала, а для каждой: амплитуду, частоту (далее в контексте числа длин волн на длину сигнала), начальную фазу;
  • наличие/отсутствие белого шума, а при наличии, его СКО (среднеквадратическое отклонение);
  • наличие/отсутствие постоянной составляющей сигнала;
  • всё это оформить в красивенький PDF отчёт с блэкджеком и иллюстрациями.

Будем решать данную задачу на Java.

Матчасть

Как я уже говорил, структура сигнала заведомо известна: это сумма синусоид и какая-то шумовая составляющая. Так сложилось, что для анализа периодических сигналов в инженерной практике широко используют мощный математический аппарат, именуемый в общем «Фурье-анализ» . Давайте кратенько разберём, что же это за зверь такой.
Немного особой, Фурье-магии
Не так давно, в 19 веке, французский математик Жан Батист Жозеф Фурье показал, что любую функцию, удовлетворяющую некоторым условиям (непрерывность во времени, периодичность, удовлетворение условиям Дирихле) можно разложить в ряд, который в дальнейшем получил его имя - ряд Фурье .

В инженерной практике разложение периодических функций в ряд Фурье широко используется, например, в задачах теории цепей: несинусоидальное входное воздействие раскладывают на сумму синусоидальных и рассчитывают необходимые параметры цепей, например, по методу наложения.

Существует несколько возможных вариантов записи коэффициентов ряда Фурье, нам же лишь необходимо знать суть.
Разложение в ряд Фурье позволяет разложить непрерывную функцию в сумму других непрерывных функций. И в общем случае, ряд будет иметь бесконечное количество членов.

Дальнейшим усовершенствованием подхода Фурье является интегральное преобразование его же имени. Преобразование Фурье .
В отличие от ряда Фурье, преобразование Фурье раскладывает функцию не по дискретным частотам (набор частот ряда Фурье, по которым происходит разложение, вообще говоря, дискретный), а по непрерывным.
Давайте взглянем на то, как соотносятся коэффициенты ряда Фурье и результат преобразования Фурье, именуемый, собственно, спектром .
Небольшое отступление: спектр преобразования Фурье - в общем случае, функция комплексная, описывающая комплексные амплитуды соответствующих гармоник. Т.е., значения спектра - это комплексные числа, чьи модули являются амплитудами соответствующих частот, а аргументы - соответствующими начальными фазами. На практике, рассматривают отдельно амплитудный спектр и фазовый спектр .


Рис. 1. Соответствие ряда Фурье и преобразования Фурье на примере амплитудного спектра.

Легко видно, что коэффициенты ряда Фурье являются ни чем иным, как значениями преобразования Фурье в дискретные моменты времени.

Однако, преобразование Фурье сопоставляет непрерывной во времени, бесконечной функции другую, непрерывную по частоте, бесконечную функцию - спектр. Как быть, если у нас нет бесконечной во времени функции, а есть лишь какая-то записанная её дискретная во времени часть? Ответ на этот вопрос даёт дальнейшей развитие преобразования Фурье - дискретное преобразование Фурье (ДПФ) .

Дискретное преобразование Фурье призвано решить проблему необходимости непрерывности и бесконечности во времени сигнала. По сути, мы полагаем, что вырезали какую-то часть бесконечного сигнала, а всю остальную временную область считаем этот сигнал нулевым.

Математически это означает, что, имея исследуемую бесконечную во времени функцию f(t), мы умножаем ее на некоторую оконную функцию w(t), которая обращается в ноль везде, кроме интересующего нас интервала времени.

Если «выходом» классического преобразования Фурье является спектр – функция, то «выходом» дискретного преобразования Фурье является дискретный спектр. И на вход тоже подаются отсчёты дискретного сигнала.

Остальные свойства преобразования Фурье не изменяются: о них можно прочитать в соответствующей литературе.

Нам же нужно лишь знать о Фурье-образе синусоидального сигнала, который мы и будем стараться отыскать в нашем спектре. В общем случае, это пара дельта-функций, симметричная относительно нулевой частоты в частотной области.


Рис. 2. Амплитудный спектр синусоидального сигнала.

Я уже упомянул, что, вообще говоря, мы рассматриваем не исходную функцию, а некоторое её произведение с оконной функцией. Тогда, если спектр исходной функции - F(w), а оконной W(w), то спектром произведения будет такая неприятная операция, как свёртка этих двух спектров (F*W)(w) (Теорема о свёртке).

На практике это означает, что вместо дельта-функции, в спектре мы увидим что-то вроде этого:


Рис. 3. Эффект растекания спектра.

Этот эффект именуют также растеканием спектра (англ. spectral leekage). А шумы, появляющиеся вследствие растекания спектра, соответственно, боковыми лепестками (англ. sidelobes).
Для борьбы с боковыми лепестками применяют другие, непрямоугольные оконные функции. Основной характеристикой «эффективности» оконной функции является уровень боковых лепестков (дБ). Сводная таблица уровней боковых лепестков для некоторых часто используемых оконных функций приведена ниже.

Основной проблемой в нашей задаче является то, что боковые лепестки могут маскировать другие гармоники, лежащие рядом.


Рис. 4. Отдельные спектры гармоник.

Видно, что при сложении приведённых спектров, более слабые гармоники как бы растворятся в более сильной.


Рис. 5. Чётко видна лишь одна гармоника. Нехорошо.

Другой подход к борьбе с растеканием спектра состоит в вычитании из сигнала гармоник, создающих это самое растекание.
То есть, установив амплитуду, частоту и начальную фазу гармоники, можно вычесть её из сигнала, при этом мы уберём и «дельта-функцию», соответствующую ей, а вместе с ней и боковые лепестки, порождаемые ей. Другой вопрос состоит в том, как же точно узнать параметры нужной гармоники. Недостаточно просто взять нужные данные из комплексной амплитуды. Комплексные амплитуды спектра сформированы по целым частотам, однако, ничто не мешает гармонике иметь и дробную частоту. В этом случае, комплексная амплитуда как бы расплывается между двумя соседними частотами, и точную её частоту, как и другие параметры, установить нельзя.

Для установления точной частоты и комплексной амплитуды нужной гармоники, мы воспользуемся приёмом, широко применяемым во многих отраслях инженерной практики – гетеродинирование .

Посмотрим, что получится, если умножить входной сигнал на комплексную гармонику Exp(I*w*t). Спектр сигнала сдвинется на величину w вправо.
Этим свойством мы и воспользуемся, сдвигая спектр нашего сигнала вправо, до тех пор, пока гармоника не станет ещё больше напоминать дельта-функцию (то есть, пока некоторое локальное отношение сигнал/шум не достигнет максимума). Тогда мы и сможем вычислить точную частоту нужной гармоники, как w 0 – w гет, и вычесть её из исходного сигнала для подавления эффекта растекания спектра.
Иллюстрация изменения спектра в зависимости от частоты гетеродина показана ниже.


Рис. 6. Вид амплитудного спектра в зависимости от частоты гетеродина.

Будем повторять описанные процедуры до тех пор, пока не вырежем все присутствующие гармоники, и спектр не будет напоминать нам спектр белого шума.

Затем, надо оценить СКО белого шума. Хитростей здесь нет: можно просто воспользоваться формулой для вычисления СКО:

Автоматизируй это

Пришло время для автоматизации выделения гармоник. Повторим ещё разочек алгоритм:

1. Ищем глобальный пик амплитудного спектра, выше некоторого порога k.
1.1 Если не нашли, заканчиваем
2. Варируя частоту гетеродина, ищем такое значение частоты, при которой будет достигаться максимум некоторого локального отношения сигнал/шум в некоторой окрестности пика
3. При необходимости, округляем значения амплитуды и фазы.
4. Вычитаем из сигнала гармонику с найденной частотой, амплитудой и фазой за вычетом частоты гетеродина.
5. Переходим к пункту 1.

Алгоритм не сложный, и единственный возникающий вопрос - откуда же брать значения порога, выше которого будем искать гармоники?
Для ответа на этот вопрос, следует оценить уровень шума еще до вырезания гармоник.

Построим функцию распределения (привет, мат. cтатистика), где по оси абсцисс будет амплитуда гармоник, а по оси ординат - количество гармоник, не превышающих по амплитуде это самое значение аргумента. Пример такой построенной функции:


Рис. 7. Функция распределения гармоник.

Теперь построим еще и функцию - плотность распределения. Т.е., значения конечных разностей от функции распределения.


Рис. 8. Плотность функции распределения гармоник.

Абсцисса максимума плотности распределения и является амплитудой гармоники, встречающейся в спектре наибольшее число раз. Отойдем от пика вправо на некоторое расстояние, и будем считать абсциссу этой точки оценкой уровня шума в нашем спектре. Вот теперь можно и автоматизировать.

Посмотреть на кусок кода, детектирующий гармоники в составе сигнала

public ArrayList detectHarmonics() { SignalCutter cutter = new SignalCutter(source, new Signal(source)); SynthesizableComplexExponent heterodinParameter = new SynthesizableComplexExponent(); heterodinParameter.setProperty("frequency", 0.0); Signal heterodin = new Signal(source.getLength()); Signal heterodinedSignal = new Signal(cutter.getCurrentSignal()); Spectrum spectrum = new Spectrum(heterodinedSignal); int harmonic; while ((harmonic = spectrum.detectStrongPeak(min)) != -1) { if (cutter.getCuttersCount() > 10) throw new RuntimeException("Unable to analyze signal! Try another parameters."); double heterodinSelected = 0.0; double signalToNoise = spectrum.getRealAmplitude(harmonic) / spectrum.getAverageAmplitudeIn(harmonic, windowSize); for (double heterodinFrequency = -0.5; heterodinFrequency < (0.5 + heterodinAccuracy); heterodinFrequency += heterodinAccuracy) { heterodinParameter.setProperty("frequency", heterodinFrequency); heterodinParameter.synthesizeIn(heterodin); heterodinedSignal.set(cutter.getCurrentSignal()).multiply(heterodin); spectrum.recalc(); double newSignalToNoise = spectrum.getRealAmplitude(harmonic) / spectrum.getAverageAmplitudeIn(harmonic, windowSize); if (newSignalToNoise > signalToNoise) { signalToNoise = newSignalToNoise; heterodinSelected = heterodinFrequency; } } SynthesizableCosine parameter = new SynthesizableCosine(); heterodinParameter.setProperty("frequency", heterodinSelected); heterodinParameter.synthesizeIn(heterodin); heterodinedSignal.set(cutter.getCurrentSignal()).multiply(heterodin); spectrum.recalc(); parameter.setProperty("amplitude", MathHelper.adaptiveRound(spectrum.getRealAmplitude(harmonic))); parameter.setProperty("frequency", harmonic - heterodinSelected); parameter.setProperty("phase", MathHelper.round(spectrum.getPhase(harmonic), 1)); cutter.addSignal(parameter); cutter.cutNext(); heterodinedSignal.set(cutter.getCurrentSignal()); spectrum.recalc(); } return cutter.getSignalsParameters(); }

Практическая часть

Я не претендую на звание эксперта Java, и представленное решение может быть сомнительным как по части производительности и потреблению памяти, так и в целом философии Java и философии ООП, как бы я ни старался сделать его лучше. Написано было за пару вечеров, как proof of concept. Желающие могут ознакомиться с исходным кодом на

СПЕКТРАЛЬНЫЙ АНАЛИЗ , метод качеств. и количеств. определения состава в-в, основанный на исследовании их спектров испускания, поглощения, отражения и . Различают атомный и молекулярный спектральный анализ, задачи к-рых состоят в определении соотв. элементного и молекулярного состава в-ва. проводят по спектрам испускания , или , возбужденных разл. способами, абсорбционный спектральный анализ-по спектрам поглощения электромагн. излучения анализируемыми объектами (см. ). В зависимости от цели исследования, св-в анализируемого в-ва, специфики используемых спектров, области длин волн и др. факторов ход анализа, аппаратура, способы измерения спектров и метро-логич. характеристики результатов сильно различаются. В соответствии с этим спектральный анализ подразделяют на ряд самостоят. методов (см., в частности, , ).

Часто под спектральным анализом понимают только атомно-эмис-сионный спектральный анализ (АЭСА)-метод , основанный на изучении спектров испускания своб. и в газовой фазе в области длин волн 150-800 нм (см. ).

При анализе твердых в-в наиб. часто применяют дуговые (постоянного и переменного тока) и искровые разряды, питаемые от специально сконструир. стабилизир. генераторов (часто с электронным управлением). Созданы также универсальные генераторы, с помощью к-рых получают разряды разных типов с переменными параметрами, влияющими на эффективность процессов возбуждения исследуемых образцов. Твердая электропроводящая непосредственно может служить дуги или искры; не проводящие ток твердые и помещают в углубления угольных той или иной конфигурации. В этом случае осуществляют как полное (распыление) анализируемого в-ва, так и фракционное последнего и возбуждение компонентов в соответствии с их физ. и хим. св-вами, что позволяет повысить чувствительность и точность анализа. Для усиления эффекта фракционирования широко применяют к анализируемому в-ву , способствующих образованию в условиях высокотемпературной [(5-7)·10 3 К] угольной дуги легколетучих соед. ( , и др.) определяемых элементов. Для анализа геол. в виде широко применяют способ просыпки или вдувания в зону разряда угольной дуги.

При анализе , наряду с искровыми разрядами разных типов используют также источники света тлеющего разряда (лампы Грима, разряд в полом ). Разработаны комбинир. автоматизир. источники, в к-рых для или распыления используют лампы тлеющего разряда или электротермич. анализаторы, а для получения спектров, напр.,-высокочастотные плазматроны. При этом удается оптимизировать условия и возбуждения определяемых элементов.

При анализе жидких (р-ров) наилучшие результаты получаются при использовании высокочастотных (ВЧ) и сверхвысокочастотных (СВЧ) плазматронов, работающих в инертной , а также при пламенно-фотометрич. анализе (см. ). Для стабилизации т-ры разряда на оптимальном уровне вводят легкоионизируемых в-в, напр. . Особенно успешно применяют ВЧ разряд с индуктивной связью тороидальной конфигурации (рис. 1). В нем разделены зоны поглощения ВЧ энергии и возбуждения спектров, что позволяет резко повысить эффективность возбуждения и отношение полезного аналит. сигнала к шуму и, т. обр., достичь очень низких пределов обнаружения широкого круга элементов. В зону возбуждения вводят с помощью пневматических или (реже) ультразвуковых распылителей. При анализе с применением ВЧ и СВЧ плазматронов и фотометрии пламени относит. стандартное отклонение составляет 0,01-0,03, что в ряде случаев позволяет применять АЭСА вместо точных, но более трудоемких и длительных хим. методов анализа.

Для смесей необходимы спец. вакуумные установки; спект-ры возбуждают с помощью ВЧ и СВЧ разрядов. В связи с развитием эти методы применяют редко.

Рис. 1. ВЧ плазматрон: 1-факел отходящих ; 2-зона возбуждения спектров; 3-зона поглощения ВЧ энергии; 4-нагреват. индуктор; 5-вход охлаж-дающега ( , ); 6-вход плазмообра-зующего (); 7-вход распыленной (несущий газ-аргон).

При анализе в-в высокой чистоты, когда требуется определять элементы, содержание к-рых меньше 10 -5 -10 %, а также при анализе токсичных и радиоактивных в-в предварительно обрабатывают; напр., частично или полностью отделяют определяемые элементы от основы и переводят их в меньший объем р-ра или вносят в меньшую массу более удобного для анализа в-ва. Для разделения компонентов применяют фракционную отгонку основы (реже-примесей), . АЭСА с использованием перечисленных хим. способов , как правило, наз. химико-спектральным анализом. Дополнит. операции разделения и определяемых элементов заметно повышают трудоемкость и длительность анализа и ухудшают его точность (относит. стандартное отклонение достигает значений 0,2-0,3), но снижает пределы обнаружения в 10-100 раз.

Специфич. областью АЭСА является микроспектральный (локальный) анализ. При этом микрообъем в-ва (глубина кратера от десятков мкм до неск. мкм) испаряют обычно лазерным импульсом, действующим на участок пов-сти образца диаметром неск. десятков мкм. Для возбуждения спектров используют чаще всего импульсный искровой разряд, синхронизованный с лазерным импульсом. Метод применяют при исследовании , в металловедении.

Спектры регистрируют с помощью и спектрометров (квантометров). Имеется много типов этих приборов, различающихся светосилой, дисперсией, разрешающей способностью, рабочей областью спектра. Большая светосила необходима для регистрации слабых излучений, большая дисперсия-для разделения спектральных линий с близкими длинами волн при анализе в-в с многолинейчатыми спектрами, а также для повышения чувствительности анализа. В качестве устройств, диспергирующих свет, используют дифракц. решетки (плоские, вогнутые, нарезные, голографич., профилированные), имеющие от неск. сотен до неск. тысяч штрихов на миллиметр, значительно реже-кварцевые или стеклянные призмы.

(рис. 2), регистрирующие спектры на спец. или (реже) на , предпочтительнее при качественном АЭСА, т. к. позволяют изучать сразу весь спектр образца (в рабочей области прибора); однако используются и для количеств. анализа вследствие сравнит. дешевизны, доступности и простоты обслуживания. Почернения спектральных линий на измеряют с помощью микрофотометров (микроденситометров). Использование при этом ЭВМ или микропроцессоров обеспечивает автоматич. режим измерений, обработку их результатов и выдачу конечных результатов анализа.



Рис.2. Оптическая схема : 1-входная щель; 2-поворотное зеркало; 3-сферич. зеркало; 4-дифракц. решетка; 5-лампочка освещения шкалы; 6-шкала; 7-фотопластинка.



Рис. 3. Схема квантометра (из 40 каналов регистрации показано только три): 1-полихроматор; 2-дифракц. решетки; 3-выходные щели; 4-ФЭУ; 5-входные щели; 6 - с источниками света; 7 - генераторы искрового и дугового разрядов; 8- электронно-регистрирующее устройство; 9 - управляющий вычислит. комплекс.

В спектрометрах осуществляется фотоэлектрич. регистрация аналит. сигналов с помощью фотоэлектронных умножителей (ФЭУ) с автоматич. обработкой данных на ЭВМ. Фотоэлектрич. многоканальные (до 40 каналов и более) полихроматоры в квантометрах (рис. 3) позволяют одновременно регистрировать аналит. линии всех предусмотренных программой определяемых элементов. При использовании сканирующих монохроматоров многоэлементный анализ обеспечивается высокой скоростью сканирования по спектру в соответствии с заданной программой.

Для определения элементов (С, S, P, As и др.), наиб, интенсивные аналит. линии к-рых расположены в УФ области спектра при длинах волн меньше 180-200 нм, применяют вакуумные спектрометры.

При использовании квантометров длительность анализа определяется в значит. мере процедурами подготовки исходного в-ва к анализу. Существенное сокращение времени пробоподготовки достигается автоматизацией наиб. длительных этапов - , приведения р-ров к стандартному составу, растирания и , отбора заданной массы. Во мн. случаях многоэлементный АЭСА выполняется в течение неск. минут, напр.: при анализе р-ров с использованием автомати-зир. фотоэлектрич. спектрометров с ВЧ плазматронами или при анализе в процессе плавки с автоматич. подачей в источник излучения.

В черной и цветной распространены экспрессные полуколичественные (относит. стандартное отклонение 0,3-0,5 и более) методики определения содержания основных или наиб. характерных компонентов , напр. при их маркировке, при сортировке металлолома для его утилизации и т.д. Для этого применяют простые, компактные и дешевые визуальные и фотоэлектрич. приборы (стило-скопы и стилометры) в сочетании с искровыми генераторами. Диапазон определяемых содержаний элементов-от неск. десятых долей процента до десятков процентов.

АЭСА применяют в научных исследованиях; с его помощью открывали хим. элементы, исследуют археологич. объекты, устанавливают состав небесных тел и т.д. АЭСА широко применяется также для контроля технол. процессов (в частности, для установления состава исходного сырья, технол. и готовых продуктов), исследования объектов и др. С помощью АЭСА можно определять практически все элементы периодич. системы в весьма широком диапазоне содержаний - от 10 -7 % (пкг/мл) до десятков процентов (мг/мл). Достоинства АЭСА: возмож ность одновременного определения в малой навеске в-ва большого числа элементов (до 40 и более) с достаточно высокой точностью (см. табл.), универсальность методич. приемов при анализе разл. в-в, экспрессность, сравнительная простота, доступность и дешевизна аппаратуры.
, под ред. Х.И. Зильберштейна, Л., 1987; Кузяков Ю.Я., Семененко К.А., Зо-ров Н.Б., Методы спектрального анализа, М., 1990. Ю.И. Коровин,