Закон больцмана распределения молекул в гравитационном поле. Барометрическая формула

Атмосферное давление на высоте h обусловлено весом вышележащих слоев газа. Пусть Р давление газа на высоте h. Тогда давление на высоте h+dh будет P+dP, а разность давлений dP будет равна весу газа mg в объеме V с площадью основания S = 1 м 2 и высотой dh (V=Sdh), отнесенному к S.

Выразим плотность газа ρ через давление P из уравнения Менделеева-Клапейрона

Тогда

Проинтегрируем отдельно левую и правую части уравнения. Считая температуру постоянной T=const, получим lnP = -
, где С – постоянная интегрирования. Выражение для давления будет
Постоянную интегрирования определяют из граничного условия. Еслиh = 0, то С = Р 0 и тогда

Это уравнение носит название барометрической формулы и показывает зависимость давления газа от высоты.

Видно, что чем тяжелее молекулы и чем ниже температура, тем быстрее уменьшается давление с увеличением высоты.

Заменим в формуле давление, выразив его через концентрацию молекул из уравнений P = nkT, P 0 = n 0 kT и

где n 0 - концентрация молекул на высоте h=0;

n - концентрация молекул на высоте h≠0.

Данная формула описывает изменение концентрации молекул от высоты h в потенциальном поле земного тяготения и от температуры Т. Можно отметить две тенденции, определяющих распределение молекул по высоте:

1. Притяжение молекул к Земле (mg) стремится расположить их на поверхности Земли.

2. Тепловое движение (kT) стремится разбросать молекулы равномерно по всем высотам от 0 до .

В результате этих конкурирующих процессов распределение молекул газа по высоте имеет промежуточный вид.

Потенциальная энергия молекулы  Р =mgh. Следовательно, полученная формула представляет собой распределение молекул по значениям потенциальной энергии

Это формула функции распределения Больцмана. Здесь n 0 концентрация моле-кул в том месте, где  Р = 0, n –концентрация молекул в той точке простран-ства, где молекула обладает потенциальной энергией  p ≠ 0. Молекулы стремятся расположиться с наибольшей плотностью там, где у них минимальная потенциальная энергия

Закон Максвелла дает распределение молекул по значениям кинетической энергии, а закон Больцмана - по значениям потенциальной энергии.

Больцман доказал, что формула распределения справедлива не только в случае потенциального поля земного тяготения, но и в любом потенциальном поле сил для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения.

Контрольные вопросы

    Что такое степень свободы молекул?

    Чему равно число степеней свободы одно-, двух- и трехатомной молекул?

    Сформулируйте закон распределения энергии по степеням свободы молекул.

    Приведите выражение функции распределения молекул по скоростям.

    По каким формулам определяются среднеарифметическая, наиболее вероятная и среднеквадратичная скорости молекул?

    Каково выражение для функции распределения Больцмана по значениям потенциальной энергии?

Тесты

    чему равно число степеней свободы двухатомной молекулы?

а) 1; б) 2; в) 3; г) 4; д) 5.

    Сколько степеней свободы приходится на вращательное движение у двухатомной молекулы?

а) 1; б) 2; в) 3; г) 4; д) 5.

    Какое из приведенных выражений описывает наиболее вероятную скорость?

Барометрическая формула - зависимость давления или плотности газа от высоты в поле силы тяжести.

Для идеального газа, имеющего постоянную температуру и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения одинаково), барометрическая формула имеет следующий вид:

где - давление газа в слое, расположенном на высоте , - давление на нулевом уровне (), - молярная масса газа, - универсальная газовая постоянная, - абсолютная температура. Из барометрической формулы следует, что концентрация молекул (или плотность газа) убывает с высотой по тому же закону:

где - масса молекулы газа, - постоянная Больцмана.

Барометрическая формула может быть получена из закона распределения молекул идеального газа по скоростям и координатам в потенциальном силовом поле (см. Статистика Максвелла - Больцмана). При этом должны выполняться два условия: постоянство температуры газа и однородность силового поля. Аналогичные условия могут выполняться и для мельчайших твёрдых частичек, взвешенных в жидкости или газе. Основываясь на этом, французский физик Ж. Перрен в 1908 году применил барометрическую формулу к распределению по высоте частичек эмульсии, что позволило ему непосредственно определить значение постоянной Больцмана.

Барометрическая формула показывает, что плотность газа уменьшается с высотой по экспоненциальному закону. Величина , определяющая быстроту спада плотности, представляет собой отношение потенциальной энергии частиц к их средней кинетической энергии, пропорциональной . Чем выше температура , тем медленнее убывает плотность с высотой. С другой стороны, возрастание силы тяжести (при неизменной температуре) приводит к значительно большему уплотнению нижних слоев и увеличению перепада (градиента) плотности. Действующая на частицы сила тяжести может изменяться за счёт двух величин: ускорения и массы частиц .

Следовательно, в смеси газов, находящейся в поле тяжести, молекулы различной массы по-разному распределяются по высоте.

Реальное распределение давления и плотности воздуха в земной атмосфере не следует барометрической формуле, так как в пределах атмосферы температура и ускорение свободного падения меняются с высотой и географической широтой. Кроме того, атмосферное давление увеличивается с концентрацией в атмосфере паров воды.

Барометрическая формула лежит в основе барометрического нивелирования - метода определения разности высот между двумя точками по измеряемому в этих точках давлению ( и ). Поскольку атмосферное давление зависит от погоды, интервал времени между измерениями должен быть возможно меньшим, а пункты измерения располагаться не слишком далеко друг от друга. Барометрическая формула записывается в этом случае в виде: (в м), где - средняя температура слоя воздуха между точками измерения, - температурный коэффициент объёмного расширения воздуха. Погрешность при расчётах по этой формуле не превышает 0,1-0,5 % от измеряемой высоты. Более точна формула Лапласа, учитывающая влияние влажности воздуха и изменение ускорения свободного падения.

Распределение Больцмана

Статистика Максвелла - Больцмана - статистический метод описания физических систем, содержащих большое число невзаимодействующих частиц, движущихся по законам классической механики (то есть классического идеального газа); предложена в 1871 г. австрийским физиком Л. Больцманом .

Вывод распределения

Из общего распределения Гиббса. Рассмотрим систему частиц, находящуюся в однородном поле. В таком поле каждая молекула идеального газа обладает полной энергией

Где

Кинетическая энергия её поступательного движения, а - потенциальная энергия во внешнем поле, которая зависит от её положения.

Подставим это выражение для энергии в распределение Гиббса для молекулы идеального газа (где - вероятность того, что частица находится в состоянии со значениями координат и импульсов , в интервале )

,

где интеграл состояний равен:

интегрирование ведется по всем возможным значениям переменных. Далее интеграл состояний можно написать в виде:

,

мы находим, что нормированное на единицу распределение Гиббса для молекулы газа при наличии внешнего поля имеет вид:

.

Полученное распределение вероятностей, характеризующее вероятность того, что молекула имеет данный импульс и находится в данном элементе объема, носит название распределение Максвелла - Больцмана .

Некоторые свойства

При рассмотрении распределения Максвелла - Больцмана, бросается в глаза важное свойство - его можно представить как произведение двух множетелей:

.

Первый множитель есть ничто иное как распределение Максвелла, оно характеризует распределение вероятностей по импульсам. Второй множитель зависит только лишь от координат частиц и определяется видом её потенциальной энергии. Он характеризует вероятность обнаружения частицы в объеме dV.

Согласно теории вероятности , распределение Максвелла - Больцмана можно рассматривать как произведение вероятностей двух независимых событий - вероятность данного значения импульса и данного положения молекулы. Первая из них:

представляет распределение Максвелла; вторая вероятность:

Распределение Больцмана. Очевидно, что каждое из них нормировано на единицу.

Независимость вероятностей дает важный результат: вероятность данного значения импульса совершенно не зависит от положения молекулы и, наоборот, вероятность положения молекулы не зависит от её импульса. Это значит что распределение частиц по импульсам (скоростям) не зависит от поля, другими словами остается тем же самым от точки к точке пространства, в котором заключен газ. Меняется лишь вероятность обнаружения частицы или, что то же самое, число частиц.

См.также

Wikimedia Foundation . 2010 .

Смотреть что такое "Распределение Больцмана" в других словарях:

    распределение Больцмана - Bolcmano skirstinys statusas T sritis fizika atitikmenys: angl. Boltzmann distribution; Boltzmann distribution law vok. Boltzmannsche Verteilung, f; Boltzmannsches Verteilungsgesetz, n; Boltzmann Verteilung, f rus. больцмановское распределение,… … Fizikos terminų žodynas

    Статистич. метод описания физ. св в систем, содержащих большое число невзаимодействующих ч ц, движущихся по законам классич. механики (т. е. св в классич. идеального газа). Создана австр. физиком Л. Больцманом в 1868 71. В Б. с. рассматривается… … Физическая энциклопедия

    Распределение Гиббса распределение, определяющее количества частиц в различных квантовых состояниях. Основывается на постулатах статистики: Все доступные микросостояния системы равновероятны. Равновесию соответствует наиболее вероятное… … Википедия

    Физическая статистика для систем из большого числа невзаимодействующих частиц. Строго Б.с. подчиняются атомные и молекулярные идеальные газы, т. е. газы, у которых потенциальная энергия взаимодействия молекул считается равной нулю.… … Большая советская энциклопедия

    Как функция от ε/μ, построенная для 4 различных температур. С ростом температуры ступенька размывается Статистика Ферми Дирака в статистической физике квантовая статистика, применяемая к системам тождественных фермионов (как правило, частиц с… … Википедия

    Статистически равновесная ф ция распределения по импульсам р и координатам r ч ц идеального газа, молекулы к рого движутся по законам классич. механики, во внеш. потенц. поле: f(p, r) = Aехр{ (р2/2m+U(r))/kT}. (1) Здесь p2/2m кинетич. энергия… … Физическая энциклопедия

    - (Максвелла Больцмана распределение) равновесное распределение частиц идеального газа по энергиям (E) во внешнем силовом поле (напр., в поле тяготения); определяется функцией распределения f e E/kT, где E сумма кинетической и потенциальной энергий … Большой Энциклопедический словарь

    - (Максвелла Больцмана распределение), равновесное распределение частиц идеального газа по энергиям во внешнем силовом поле (например, в поле тяготения); определяется функцией распределения f ≈ e E/kT, где Е сумма кинетической и потенциальной… … Энциклопедический словарь

    Функция плотности распределения Распределение Максвелла распределение вероятности, встречающееся в физике и химии. Оно лежит в основании кинетической теории газов, которая объясняет многие фундаментальные свойства газов, включая давление и… … Википедия

Барометрическая формула. Рассмотрим газ, находящийся в равновесии в поле силы тяжести. В этом случае сумма действующих сил на каждый элемент объема газа равна нулю. Выделим малый объем газа на высоте h (рис.2.7) и рассмотрим действующие на него силы:

На выделенный объем действует сила давления газа снизу, сила давления газа сверху и сила тяжести. Тогда баланс сил запишется в виде

где dm – масса выделенного объема. Для этого объема можно записать уравнение Менделеева-Клапейрона

Выражая величину dm , можно получить уравнение

.

Разделяя переменные, получим

.

Проинтегрируем полученное уравнение, учтя, что температура постоянна,

.

Пусть давление на поверхности равно p 0 , тогда полученное уравнение легко преобразовать к виду

. (2.24)

Полученная формула называется барометрической и достаточно хорошо описывает распределение давления по высоте в атмосфере Земли и других планет. Важно помнить, что эта формула была выведена из предположения равновесия газа, при этом величины g и T считались постоянными, что, конечно, не всегда справедливо для реальной атмосферы.

Распределение Больцмана. Запишем барометрическую формулу (2.24) через концентрацию частиц, воспользовавшись тем, что p = nkT :

, (2.25)

где m 0 - масса молекулы газа.

Такой же вывод можно провести для любой потенциальной силы (не обязательно для силы тяжести). Из формулы (2.25) видно, что в числителе экспоненты стоит потенциальная энергия одной молекулы в потенциальном поле. Тогда формулу (2.25) можно записать в виде

. (2.26)

В таком виде эта формула пригодна для нахождения концентрации молекул, находящихся в равновесии в поле любой потенциальной силы.

Найдем число частиц газа, координаты которых находятся в элементе объема dV = dxdydz

.

Полное число частиц в системе может быть записано в виде

.

Здесь интеграл формально записан по всему пространству, но надо иметь в виду, что объем системы конечен, что приведет к тому, что интегрирование будет вестись по всему объему системы. Тогда отношение

как раз и даст вероятность того, что частица попадет в элемент объема dV . Тогда для этой вероятности запишем

,

где величина потенциальной энергии молекулы будет, вообще говоря, зависеть от всех трех координат. Пользуясь определением функции распределения, можно записать функцию распределения молекул по координатам в следующем виде:

. (2.27)

Это и есть функция распределения Больцмана по координатам частиц (или по потенциальным энергиям, имея в виду, что потенциальная энергия зависит от координат). Легко показать, что полученная функция нормирована на единицу.


Связь распределений Максвелла и Больцмана. Распределения Максвелла и Больцмана являются составными частями распределения Гиббса. Температура определяется средней кинетической энергией. Поэтому возникает вопрос, почему в потенциальном поле температура постоянная, хотя по закону сохранения энергии при изменении потенциальной энергии частиц должна также изменяться их кинетическая энергия, а следовательно, как кажется на первый взгляд, и их температура. Другими словами, почему в поле тяжести при движении частиц вверх у всех них кинетическая энергия уменьшается, а температура остается постоянной, т.е. остается постоянной их средняя кинетическая энергия, а при движении частиц вниз энергия всех частиц увеличивается, а средняя энергия остается постоянной?

Это объясняется тем, что при подъеме из потока частиц выбывают наиболее медленные, т.е. «наиболее холодные». Поэтому расчет энергии ведется по меньшему числу частиц, которые на исходной высоте были в среднем «более горячими». Иначе говоря, если с нулевой высоты на высоту прибыло какое-то число частиц, то их средняя энергия на высоте равна средней энергии всех частиц на нулевой высоте, часть которых не смогла достигнуть высоты из-за малой кинетической энергии. Однако если на нулевой высоте рассчитать среднюю энергию частиц, достигших высоты , то она больше средней энергии всех частиц на нулевой высоте. Поэтому можно сказать, что средняя энергия частиц на высоте действительно уменьшилась и в этом смысле они «охладились» при подъеме. Однако средняя энергия всех частиц на нулевой высоте и высоте одинакова, т.е. и температура одинакова. С другой стороны, уменьшение плотности частиц с высотой также является следствием выбывания частиц из потока.

Поэтому закон сохранения энергии при подъеме частиц на высоту приводит к уменьшению их кинетических энергий и выбыванию частиц из потока. Благодаря этому, с одной стороны, плотность частиц с высотой уменьшается, а с другой стороны, их средняя кинетическая энергия сохраняется, несмотря на то, что кинетическая энергия каждой из частиц убывает. Это возможно подтвердить прямым расчетом, который рекомендуется проделать в качестве упражнения.

Атмосфера планет. Потенциальная энергия частицы массой в поле тяготения шарообразного небесного тела равна

, (2.28)

где – масса тела; – расстояние от центра тела до частицы; – гравитационная постоянная. Атмосфера планет, в том числе и Земли, не находится в равновесном состоянии. Например, вследствие того, что атмосфера Земли находится в неравновесном состоянии, ее температура не постоянна, как это должно было быть, а изменяется с высотой (уменьшается с увеличением высоты). Покажем, что равновесное состояние атмосферы планеты в принципе невозможно. Если бы оно было возможно, то плотность атмосферы должна была бы изменяться с высотой по формуле (2.26), которая принимает вид

(2.29)

где учтено выражение (2.28) для потенциальной энергии, – радиус планеты. Формула (2.29) показывает, что при плотность стремится к конечному пределу

(2.30)

Это означает, что если в атмосфере имеется конечное число молекул, то они должны быть распределены по всему бесконечному пространству, т.е. атмосфера рассеяна.

Поскольку, в конечном счете, все системы стремятся к равновесному состоянию, то атмосфера планет постепенно рассеивается. У некоторых из небесных тел, например у Луны, атмосфера полностью исчезла, другие, например Марс, имеют очень разряженную атмосферу. Таким образом, атмосфера Луны достигла равновесного состояния, а атмосфера Марса уже находится близко к достижению равновесного состояния. У Венеры атмосфера очень плотная и, следовательно, находится в начале пути к равновесному состоянию.

Для количественного рассмотрения вопроса о потере атмосферы планетами необходимо принять во внимание распределение молекул по скоростям. Силу земного притяжения могут преодолеть лишь молекулы, скорость которых превосходит вторую космическую. Эти молекулы находятся в «хвосте» распределения Максвелла и их относительное число незначительно. Тем не менее за значительные промежутки времени потеря молекул является чувствительной. Поскольку вторая космическая скорость у тяжелых планет больше, чем у легких, интенсивность потери атмосферы у массивных небесных тел меньше, чем у легких, т.е. легкие планеты теряют атмосферу быстрее, чем тяжелые. Время потери атмосферы зависит также от радиуса планеты, состава атмосферы и т.д. Полный количественный анализ этого вопроса является сложной задачей.

Экспериментальная проверка распределения Больцмана. При выводе распределения Больцмана не налагалось никаких ограничений на массу частиц. Поэтому в принципе оно применимо и для тяжелых частиц. Возьмем в качестве этих частиц, например, песчинки. Ясно, что они расположатся в некотором слое у сосуда. Строго говоря, это является следствием распределения Больцмана. При больших массах частиц показатель экспоненты столь быстро изменяется с высотой, что равен нулю везде за пределами слоя песка. Что касается пространства внутри слоя, то там надо принять во внимание объем песчинок. Это сведется к чисто механической задаче на минимум потенциальной энергии при заданных связях. Задачи такого типа рассматриваются не в статистической физике, а в механике.

Для того чтобы тяжелые частицы не «осели на дно», распределились в достаточно большом слое на высоте, необходимо чтобы их потенциальная энергия была достаточно малой. Этого можно достигнуть, помещая частицы в жидкость, плотность которой лишь на немного меньше плотности материала частиц. Обозначив плотность и объем частиц и , а плотность жидкости – , видим, что сила, действующая на частицу, равна . Следовательно, потенциальная энергия такой частицы на высоте от дна сосуда равна

(2.31)

Поэтому распределение концентраций этих частиц по высоте дается формулой

Чтобы эффект был достаточно хорошо заметен, частицы должны быть достаточно малыми. Число таких частиц на разных высотах в сосуде считают с помощью микроскопа. Эксперименты такого рода впервые были выполнены начиная с 1906 г. Ж.Б. Перреном (1870-1942).

Проделав измерения, можно прежде всего убедиться, действительно ли концентрация частиц изменяется по экспоненциальном закону. Перрен доказал, что это действительно так, и, следовательно, распределение Больцмана справедливо. Далее, исходя из справедливости распределения и измерив независимыми способами объемы и плотности частиц, можно по результатам эксперимента найти значение постоянной Больцмана , поскольку все остальные величины в (2.32) являются известными.

Таким путем Перрен измерил и получил результат, весьма близкий к современному. Другим независимым способом значение было получено Перреном из опытов с броуновским движением.

В последующем были проведены также эксперименты другого типа, полностью подтвердившие распределение Больцмана. Из экспериментов другого типа можно указать, например, на проверку зависимости поляризации полярных диэлектриков от температуры, рассмотренную выше.

Пример 2.2. Перрен использовал распределение гуммигутовых зерен в воде для измерения постоянной Авогадро. Плотность частиц гуммигута составляла r = 1,21×10 3 кг/м 3 , их объем t = 1,03×10 -19 м 3 . Температура, при которой проводился эксперимент, была равна . Найти высоту , на которой плотность распределения гуммигутовых зерен уменьшилась в два раза.

Принимая во внимание, что, по условию задачи, t(r - r 0) = 0,22×10 -16 кг, получаем на основе формулы (2.32) h = kT ln2/ = 12,3×10 -6 м.

Пример 2.3. В воздухе при температуре и давлении Па взвешены шарообразные частицы радиусом 10 -7 м. Найти массу взвешенной частицы.

По формуле (2.32) находим t(r - r 0) = kT ln2/gh = 1,06×10 -23 кг.

Учитывая, что t = 4,19×10 -21 м 3 , находим (r - r 0) = 2,53×10 -3 кг/м 3 . Поскольку r 0 = 1,293 кг/м 3 , получаем r = 1,296 кг/м 3 и, следовательно, масса частицы

В барометрической формуле в отношении M/R разделим и числитель и знаменатель на число Авогадро .

Масса одной молекулы,

Постоянная Больцмана.

Вместо Р и подставим соответственно. (см. лекцию №7), где плотность молекул на высоте h , плотность молекул на высоте .

Из барометрической формулы в результате подстановок и сокращений получим распределение концентрации молекул по высоте в поле силы тяжести Земли.

Из этой формулы следует, что с понижением температуры число частиц на высотах, отличных от нуля, убывает (рис. 8.10), обращаясь в 0 при Т=0 (при абсолютном нуле все молекулы расположились бы на поверхности Земли). При высоких температурах n слабо убывает с высотой, так

Следовательно, распределение молекул по высоте является и распределением их по значениям потенциальной энергии .

(*)

где плотность молекул в том месте пространства, где потенциальная энергия молекулы имеет значение ; плотность молекул в том месте, где потенциальная энергия равна 0.

Больцман доказал, что распределение (*) справедливо не только в случае потенциального поля сил земного тяготения, но и в любом потенциальном поле сил для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения .

Таким образом, закон Больцмана (*) даёт распределение частиц, находящихся в состоянии хаотического теплового движения, по значениям потенциальной энергии . (рис. 8.11)


Рис. 8.11

4. Распределение Больцмана при дискретных уровнях энергии .

Полученное Больцманом распределение относится к случаям, когда молекулы находятся во внешнем поле и их потенциальная энергия может применяться непрерывно. Больцман обобщил полученный им закон на случай распределения, зависящего от внутренней энергии молекулы.



Известно, что величина внутренней энергии молекулы (или атома) Е может принимать лишь дискретный ряд дозволенных значений . В этом случае распределение Больцмана имеет вид:

,

где число частиц в состоянии с энергией ;

Коэффициент пропорциональности, который удовлетворяет условию

,

где N – полное число частиц в рассматриваемой системе.

Тогда и в результате для случая дискретных значений энергии распределение Больцмана

Но состояние системы в этом случае термодинамически неравновесное.

5. Статистика Максвелла-Больцмана

Распределение Максвелла и Больцмана можно объединить в один закон Максвелла-Больцмана, согласно которому число молекул, компоненты скорости которых лежат в пределах от до , а координаты в пределах от x, y, z до x+dx, y+dy, z+dz , равно

где , плотность молекул в том месте пространства, где ; ; ; полная механическая энергия частицы.

Распределение Максвелла-Больцмана устанавливает распределение молекул газа по координатам и скоростям при наличии произвольного потенциального силового поля .

Примечание : распределение Максвелла и Больцмана являются составными частями единого распределения, называемого распределением Гиббса (этот вопрос подробно рассматривается в спецкурсах по статической физике, и мы ограничимся только упоминанием этого факта).

Вопросы для самоконтроля.

1. Дайте определение вероятности.

2. Каков смысл функции распределения?

3. Каков смысл условия нормировки?

4. Запишите формулу для определения среднего значения результатов измерения величины x с помощью функции распределения.

5. Что представляет собой распределение Максвелла?

6. Что такое функция распределения Максвелла? Каков ее физический смысл?

7. Постройте график функции распределения Максвелла и укажите характерные особенности этой функции.

8. Укажите на графике наиболее вероятную скорость . Получите выражение для . Как изменяется график при повышении температуры?

9. Получите барометрическую формулу. Что она определяет?

10. Получите зависимость концентрации молекул газа в поле силы тяжести от высоты.

11. Запишите закон распределения Больцмана а) для молекул идеального газа в поле силы тяжести; б) для частиц массой m, находящихся в роторе центрифуги, вращающейся с угловой скоростью .

12. Объясните физический смысл распределения Максвелла-Больцмана.

Лекция №9

Реальные газы

1. Силы межмолекулярного взаимодействия в газах. Уравнение Ван-дер-Ваальса. Изотермы реальных газов.

2. Метастабильные состояния. Критическое состояние.

3. Внутренняя энергия реального газа.

4. Эффект Джоуля – Томсона. Сжижение газов и получение низких температур.

1. Силы межмолекулярного взаимодействия в газах

Многие реальные газы подчиняются законам идеальных газов при нормальных условиях . Воздух можно считать идеальным до давлений ~ 10 атм . При повышении давления отклонения от идеальности (отклонение от состояния, описываемого уравнением Менделеева - Клайперона) возрастают и при p=1000 атм достигают более 100%.

и притяжения , а F – их результирующая . Силы отталкивания считаются положительными , а силы взаимного притяжения – отрицательными . Соответствующая качественная кривая зависимости энергии взаимодействия молекул от расстояния r между центрами молекул приведена на

рис. 9.1б). На малых расстояниях молекулы отталкиваются, на больших притягиваются. Быстро возрастающие на малых расстояниях силы отталкивания означают грубо говоря, что молекулы как бы занимают некоторый определённый объём, дальше которого газ не может быть сжат .