Участие коры больших полушарий в внд. Строение и функции больших полушарий головного мозга

Головной мозг располагается в мозговом отделе черепа. Его средний вес 1360 г. Выделяют три больших отдела мозга: ствол, подкорковый отдел и кару больших полушарий. Из основания мозга выходят 12 пар черепных нервов.

1 - верхний участок спинного мозга; 2 - продолговач ый мозг, 3 - мост, 4 - мозжечок; 5 - средний мозг; 6 - четверохолмие; 7 - промежуточный мозг; 8 - кора больших полушарий; 9 - мозолистое тело, соединяющее правое полушарие с новым; 10 - перекрест зрительных нервов; 11 - обонятельные луковицы.

Отделы головного мозга и их функции

Отделы мозга

Структуры отделов

Функции

СТВОЛ МОЗГА

Задний мозг

Продолговатый мозг

Здесь находятся ядра с отходящими парами черепно-мозговы> нервов:

XII - подъязычных; XI - добавочных; X - блуждающих; IX - языкоглоточных нервов

Проводниковая - связь спинного и вышележащих отделов головного мозга.

Рефлекторные:

1) регуляция деятельности дыхательной, сердечно-сосудистой и пищеварительной систем;

2) пищевые рефлексы слюноотделения, жевания, глотания;

3) защитные рефлексы: чихание, моргание, кашель, рвота;

Варолиев мост

содержит ядра: VIII - слухового; VII - лицевого; VI - отводящего; V - тройничного нервов.

Проводниковая - содержит восходящие и нисходящие нервные пути и нервные волокна, соединяющие полушария мозжечка между собой и с корой большого мозга. Рефлекторная - отвечает за вестибулярные и шейные рефлексы, регулирующие тонус мышц, в т.ч. мимических мышц.

Мозжечок

Полушария мозжечка соединены между собой и образованы серым и белым веществом.

Координация произвольных движений и сохранение положения тела в пространстве. Регуляция мышечного тонуса и равновесия.

Ретикулярная формация - сеть нервных волокон, оплетающих ствол мозга и промежуточный мозг. Обеспечивает взаимодействие восходящих и нисходящих путей мозга, координацию различных функций организма и регуляцию возбудимости всех отделов ЦНС.

Средний мозг

Четверохолмие

С ядрами первичных зрительных и слуховых центров.

Ножки мозга

С ядрами IV - глазодвигательного III - блокового нервов.

Проводниковая.

Рефлекторны:

1) ориентировочные рефлексы на зрительные и звуковые раздражители,которые проявляются в повороте головы и туловища;

2) регуляция мышечного тонуса и позы тела.

ПОДКОРКА

Передний мозг

Промежуточный мозг:

а) таламус (зрительный бугор) с ядрами ll -й пары зрительных нервов;

Сбор и оценка всей поступающей информации от органов чувств. Выделение и передача в кору мозга наиболее важной информации. Регуляция эмоционального поведения.

б) гипоталамус.

Высший подкорковый центр вегетативной нервной системы и всех жизненно важных функций организма. Обеспечение постоянства внутренней среды и обменных процессов организма. Регуляция мотивированного поведения и обеспечение защитных реакций (жажда, голод, насыщение, страх, ярость, удовольствие и неудовольствие). Участие в смене сна и бодрствования.

Базальные ганглии (подкорковые ядра)

Роль в регуляции и координации двигательной активности (вместе с таламусом и мозжечком). Участие в создании и запоминании программ целенаправленных движений,обучения и памяти.

КОРА БОЛЬШИХ ПОЛУШАРИЙ

Древняя и старая кора (обонятельный и висцеральный мозг) Содержит ядра 1-ой пары обонятельных нервов.

Древняя и старая кора вместе с некоторыми подкорковыми структурами формирует лимбическую систему, которая:

1) отвечает за врожденные поведенческие акты и формирование эмоций;

2) обеспечивает гомеостаз и контроль реакций, направленных на самосохранение и сохранение вида:

3 влияет на регуляцию вегетативных функций.

Новая кора

1) Осуществляет высшую нервную деятельность, отвечает за сложное сознательное поведение и мышление. Развитие морали, воли, интеллекта, связаны с деятельностью коры.

2) Осуществляет восприятие, оценку и обработку всей поступающей информации от органов чувств.

3) Координирует деятельность всех систем организма.

4) Обеспечивает взаимодействие организма с внешней средой.


Кора больших полушарий головного мозга

Кора больших полушарий - филогенетически наиболее молодое образование мозга. За счет борозд общая площадь поверхности коры взрослого человека 1700 2000 см2. В коре насчитывают от 12 до 18 млрд, нервных клеток, которые расположены в несколько слоев. Кора представляет собой слой серого вещества толщиной 1,5-4 мм.

На рисунке ниже показаны функциональные зоны и доли коры головного мозга

Расположение серого и белого вещества

Доли полушарий

Зоны полушарий

Кора – серое вещество, белое вещество нахо-дится под ко-рой, в белом веществе есть скопления серо-го вещества в виде ядер

Центры речи

Теменная

Кожно-мышечная зона

Контроль дви-жений, спо-собность раз-личать раздражения

Височная

Слуховая зона

Дуги рефлексов, различающих звуковые раздражения

Вкусовая и обонятельная зоны

Рефлексы различения вкусов и запахов

Затылочная

Зрительная зона

Различение зрительных раздражений

Чувствительная и двигательная зоны коры больших полушарий

Левое полушарие мозга

Правое полушарие мозга

Левое полушарие ("мыслительное”, логическое) - - отвечает за регуляцию речевой деятельности, устной речи, письма, счета и логического мышления. Доминантное у правшей.

Правое полушарие ("художественное", эмоциональное) - - участвует в распознавании зрительных, музыкальных образов, формы и структуры предметов, в сознательной ориентации в пространстве.

Поперечный срез левого полушария через чувствительные центры

Представительство тела в чувствительной зоне коры больших полушарий. Чувствительная зона каждого полушария получает информацию от мышц, кожи и внутренних органов противоположной стороны тела.

Поперечный срез правого полушария через двигательные центры

Представительство тела в двигательной зоне коры больших полушарий. Каждый участок двигательной зоны контролирует движения конкретной мышцы.

_______________

Источник информации:

Биология в таблицах и схемах./ Издание 2е, - СПб.: 2004.

Резанова Е.А. Биология человека. В таблицах и схемах./ М.: 2008.

ФУНКЦИИ КОРЫ БОЛЬШИХ ПОЛУШАРИЙ

В функциональном отношении кора больших полушарий делиться на три области: сенсорную, двигательную (моторную) и ассоциативную кору. Сенсорная область включает те области коры больших полушарий, в которых проецируются сенсорные раздражители. Сенсорная кора располагается преимущественно в теменной, височной и затылочной долях большого мозга. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса. Зоны сенсорной коры включают первичные и вторичные области коры. В первичных областяхкорыформируются ощущения одного качества. Во вторичных областях коры формируются ощущения, возникающее в ответ на действие нескольких раздражителей.

Основные сенсорная области коры находиться в:

Постцентральной извилине: кожной чувствительности от тактильных, болевых температурных рецепторов; чувствительность опорно-двигательного аппарата – мышц, суставов, сухожилий; тактильная и вкусовая чувствительность языка.

- средняя височная извилина (и. Гешля), здесь формируются звуковые ощущения,–

Верхняя и средняя височная извилина, здесь локализуется центр вестибулярного анализатора, формируются ощущения «схемы тела»

- областьклиновидной извилины – первичная зрительная область, расположенная в затылочной коре.

Ассоциативная область коры включает участки, расположенные рядом с сенсорными и двигательными зонами, но не выполняющие непосредственно чувствительных или двигательных функций. Границы этих областей обозначены недостаточно четко. В ассоциативной коре можно выделить зоны:

Таламолобная система;

Таламотеменная система;

Таламовисочная система.

Таламолобная система участвует в формировании доминирующей мотивации:эта функция обусловлена двусторонней связью между лобной корой и лимбической системой, обеспечивает вероятности прогнозирования и самоконтроля действий путем постоянного сравнения результат действия с исходными намерениями.

Таламотеменная система выполняет функции гнозиса, формирование «схемы тела» - стереогнизис, и праксиса. Гнозис – это функция различных видов узнавания: формы, величины, значения предметов, понимания речи, познание процессов и закономерностей. Стереогнизис функция обеспечивающая способность узнавания предметов на ощупь. В центре стереогнизиса формируются ощущения, отвечающие за создание трехмерной модели тела – «схема тела». Праксис – это функция, направленная на выполнение какой-либо деятельности, ее центр располагается в надкраевой извилине, обеспечивает хранение и реализацию программы двигательных актов (рукопожатие, причесывание и т.д.).

Таламовисочная системанаходится в верхней извилине височной коры, здесь расположен слуховой центр речи Вернике. Он обеспечивает речевой гнозис – распознавание и хранение устной речи. В средней части верхней височной извилины находится центр распознания музыкальных звуков. В границах височной, теменной и затылочной долей находится центр чтения письменной речи, обеспечивающий распознание и хранение образов письменной речи.

Двигательная кора занимает области лобной доли коры больших полушарий. В первичной моторной коре (прецентральная извилина) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. Вторичная двигательная кора расположена на латеральной поверхности полушарий, впереди прецентарльной извилины (премоторная кора). Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Эта кора получает основную часть эфферентной импульсации от базальных ядер и мозжечка и участвует в перекодировке информации программ сложных движений. В премоторной коре расположены центры, связанные с социальными функциями человека:

В заднем отделе средней лобной извилины - центр письменной речи,

В заднем отделе нижней лобной извилины центр моторной речи Брока, обеспечивающие речевой праксис, а также музыкальный моторный центр, определяющий тональность речи.

Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ганглиев и мозжечка. Основные эфферентные выходы двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки коры. Пирамидные нейроны двигательной коры возбуждают или тормозят мотонейроны стволовых и спинальных центров.

Одним из основных принципов функционирования коры больших полушарий головного мозга является принцип межполушарной асимметрии. Межполушарная асимметрия обусловлена асимметричной локализацией нервного аппарата второй сигнальной системы и доминированием правой руки, как средства адаптивного поведения. По данным современной нейрофизиологии (В.Л. Бианки), левое полушарие большого мозга у человека специализируется на выполнение вербальных символических функций, а правое полушарие на реализации пространственных образных функций. Результатом такого функционального разделения является асимметрия психической деятельности, которая проявляется различиями типах мыслительных операций. Доминирование левого полушария обусловливает мыслительный тип, а правого полушария художественный тип мышления.

ПРАКТИЧЕСКАЯ РАБОТА

Для определения коэффициента функциональной асимметрии используются бланки, представляющие собой листы бумаги (А4), на которых расположены 8 равных прямоугольников по 4 в ряд. Каждый прямоугольник заполняется последовательно слева направо с №1 по №4 и в обратном направлении с №5 по №8. Форма бланка представлена на рисунке 1.

Рисунок 1 – Бланк задания

Инструкция: «По моему сигналу вы должны начать проставлять точки в каждом прямоугольнике бланка. За отведенное для каждого прямоугольника время (5 с) вы должны поставить в нем как можно больше точек. Переходить из одного прямоугольника в другой нужно по команде, не прерывая работы. Все время работаете в максимальном для себя темпе. Теперь возьмите в правую (или левую руку) карандаш и поставьте его перед первым прямоугольником бланка».

По секундомеру экспериментатор подает сигнал: «Начали!», затем через каждые 5 секунд дает команду: «Следующий!». По истечении 5 секунды работы в прямоугольнике №8 экспериментатор подает команду: «Стоп». Подсчитайте количество точек в каждом квадрате и заполните таблицу 1 в рабочей тетради.

Таблица 1 – Протокол исследования



Используя результаты таблицы 1, составьте график зависимости между временем выполнения этапа задания (ось Х) и количеством точек для каждой руки (ось Y). Сделайте вывод, руководствуясь следующей закономерностью: у правшей – работоспособность правой руки выше работоспособности левшей, а у левшей – наоборот.

Рассчитайте коэффициент функциональной асимметрии по работоспособности левой и правой руки, получив суммарные значения работоспособности рук путем сложения всех данных по каждому из восьми прямоугольников. Для расчета используйте формулу для оценки коэффициента функциональной асимметрии (1):

KF A = [(SR - SL) / (SR + SL)] (1)

где KF A – коэффициент функциональной асимметрии, д.е.;

SR – общая сумма точек, поставленных правой рукой, шт;

SL – общая сумма точек, поставленных правой левой, шт.

Знак коэффициента функциональной асимметрии интерпретируется следующим образом: если величина коэффициент принимает положительное значение «+», это свидетельствует о смещении баланса в сторону активности левого полушария; если полученный коэффициент принимает отрицательное значение, знак «–», это указывает на активность правого полушария.

Проанализируйте получившийся результат и сделайте вывод.


Синонимы: проекционная кора или корковый отдел анализаторов

Третичная кора

На одном графике две кривые – для правой (синий) и левой руки (красный);

Условно-рефлекторная деятельность коры больших полушарий.

Конечный, или большой мозг развивается из переднего мозгового пузыря, состоит из сильно развитых парных частей - правого и левого полушарий большого мозга и соединяющей их срединной части. Полушария разделены продольной щелью, в глубине которой лежит пластинка белого вещества - мозолистое тело. Оно состоит из волокон, соединяющих оба полушария. Под мозолистым телом находится свод, представляющий собой два изогнутых волокнистых тяжа, которые в средней части соединены между собой, а спереди и сзади расходятся, образуя столбы и ножки свода. Спереди от столбов свода находится передняя спайка. Между передней частью мозолистого тела и сводом натянута тонкая вертикальная пластинка мозговой ткани - прозрачная перегородка.

Полушарие большого мозга образовано серым и белым веществом. В нем различают самую большую часть, покрытую бороздами и извилинами- плащ, образованный лежащим на поверхности серым веществом - корой большого мозга, обонятельный мозг и скопления серого вещества внутри полушарий - базальные ядра. Два последних отдела составляют наиболее старую в эволюционном развитии часть полушария. Полостями конечного мозга являются боковые желудочки.

Количество безусловных рефлексов ограничено и они могли бы обеспечить существование организма лишь при постоянстве окружающей (а также внутренней для организма) среды. А так как условия существования весьма сложны, изменчивы и многообразны, то приспособление организма к среде должно обеспечиваться при помощи другого рода реакций- реакций, которые позволили бы организму адекватно реагировать на все изменения окружающей среды. Это и осуществляется благодаря механизму временных связей - условных рефлексов.

Характерной особенностью этих рефлексов является то, что они образуются в течение индивидуальной жизни животного и не является постоянными, они могут исчезать и вновь появляться в зависимости от изменяющихся условий среды.

Временный характер условного рефлекса обеспечивается наличием процесса торможения, который наряду с процессом возбуждения определяет общую динамику корковой деятельности. Причиной возникновения условного торможения является не подкрепление условного сигнала безусловным раздражителем. Процесс торможения лежит также в основе второго важного механизма в работе коры мозга - механизма анализаторов. Сложность окружающей среды и многообразие действующих на организм раздражителей требует от животного различения (дифференцирования) разного рода сигналов, что также лежит в основе приспособления. Способность коры мозга к осуществлению анализа различной тонкости и сложности зависит от уровня ее развития у разных животных, а также от экологических факторов. Последние в значительной мере определяют степень совершенства в деятельности того или другого анализатора. Аналитическая деятельность коры головного мозга находится в неразрывной связи с синтетической, причем в соответствии с требованиями окружающей среды либо одна, либо другая могут приобретать решающее значение.

Условный рефлекс вырабатывается на базе какого-либо безусловного рефлекса. При выработке условного рефлекса должно иметь место сочетания действия двух раздражителей: условного и безусловного. Условным раздражителем может быть любой агент, действующий на рецепторы животного (свет, звук, прикосновение и т.д.). Причем сила этого агента должна быть достаточной, чтобы вызвать отчетливую (но не чрезмерную) реакцию организму.

Функции мозжечка

Главная функция мозжечка заключается в коррекции деятельности других двигательных центров, в координации целенаправленных движений и регуляции тонуса мышц.

Мозжечок участвует в координации движений, сохранении позы и равновесия. Это осуществляется путём перераспределения мышечного тонуса, обеспечения мышечного тонуса, обеспечения правильного напряжения различных групп мышц при каждом двигательном акте, устранения ненужных, лишних движений.

Мозжечок участвует в регуляции вегетативных функциях (сосудистого тонуса, деятельности желудочно-кишечного тракта, состава крови)за счёт многочисленных связей с ядрами ретикулярной формации ствола мозга.

Тема: Физиология ЦНС

Лекция №6– Общая характеристика головного мозга. Физиология продолговатого, среднего, промежуточного мозга, мозжечка, лимбической системы и коры больших полушарий.

Цель – Дать представление о роли различных отделов головного мозга в интегративной деятельности человека.

Головной мозг состоит из продолговатого мозга (его вместе с мостом называют задним мозгом), среднего и промежуточного мозга, мозжечка, базальных ядер, лимбической системы и коры больших полушарий. Каждый из них выполняет свою важную функцию, но в целом обеспечивает физиологические функции внутренних органов, скелетной мускулатуры и осуществление деятельности организма как единого целого.

Продолговатый мозг и варолиев мост – их относят к заднему мозгу, который является частью ствола мозга. Задний мозг осуществляет сложную рефлекторную деятельность и служит для соединения спинного мозга с вышележащими отделами головного мозга. В срединной его области расположены задние отделы ретикулярной формации, оказывающие неспецифические тормозные влияния на спинной и головной мозг.

Через продолговатый мозг проходят восходящие пути от рецепторов слуховой и вестибулярной чувствительности. Функции нейронов вестибулярных ядер продолговатого мозга разнообразны. Одна часть их реагирует на перемещение тела (например, при горизонтальных ускорениях в одну сторону они увеличивают частоту разрядов, а при ускорениях в другую сторону уменьшают их). Другая часть предназначена для связи с моторными системами. Эти вестибулярные нейроны, повышая возбудимость мотонейронов спинного мозга и нейронов двигательной зоны коры больших полушарий, позволяют регулировать двигательные акты в соответствии с вестибулярными влияниями.

В продолговатом мозгу оканчиваются афферентные нервы, несущие информацию от рецепторов кожи и мышечных рецепторов. Здесь они переключаются на другие нейроны, образуя путь в таламус и далее в кору больших полушарий. Восходящие пути кожно-мышечной чувствительности (как и большая часть нисходящих кортико-спинальных волокон) перекрещиваются на уровне продолговатого мозга.

В продолговатом мозгу и варолиевом мосту находится большая группа черепно-мозговых ядер (от V до XII пары), иннервирующих кожу, слизистые оболочки, мускулатуру головы и ряд внутренних органов (сердце, легкие, печень). Совершенство этих рефлексов обусловлено наличием большого количества нейронов, образующих ядра и соответственно большого числа нервных волокон. Так, только в одном нисходящем корешке тройничного нерва, проводящем болевую, температурную и тактильную чувствительность от головы, содержится во много раз больше волокон, чем в спинно-таламическом пути, содержащем волокна, идущие от болевых и температурных рецепторов остальной части тела.

На дне IV желудочка в продолговатом мозгу находится жизненно важный дыхательный центр, состоящий из центров вдоха и выдоха и пнеймотаксического отдела. Его составляют мелкие нервные клетки, посылающие импульсы к дыхательным мышцам через мотонейроны спинного мозга. В непосредственной близости расположены сердечный и сосудо -двигательный центры. Они регулируют деятельность сердца и состояние сосудов. Функции этих центров взаимосвязаны. Ритмические разряды дыхательного центра изменяют частоту сердечных сокращений, вызывая дыхательную аритмию - учащение сердцебиений на вдохе и замедление их на выдохе.

В продолговатом мозгу находится ряд рефлекторных центров, связанных с процессами пищеварения. Это группа центров моторных рефлексов (жевания, глотания, движений желудка и части кишечника), а также секреторных (слюноотделение, выделение пищеварительных соков желудка, поджелудочной железы и др.). Кроме того, здесь находятся центры некоторых защитных рефлексов: чихания, кашля, мигания, слезоотделения, рвоты.

Продолговатый мозг играет важную роль в осуществлении двигательных актов и в регуляции тонуса скелетных мышц. Влияния, исходящие из вестибулярных ядер продолговатого мозга, усиливают тонус мышц-разгибателей, что важно для организации позы.

Неспецифические отделы продолговатого мозга, наоборот, оказывают угнетающее влияние на тонус скелетных мышц, снижая его и в мышцах-разгибателях. Продолговатый мозг участвует в осуществлении рефлексов поддержания и восстановления позы тела, так называемых установочных рефлексов.

Средний мозг. Через средний мозг, являющийся продолжением ствола мозга, проходят восходящие пути от спинного и продолговатого мозга к таламусу, коре больших полушарий и мозжечку.

В состав среднего мозга входят четверохолмия, черная субстанция и красное ядро . Срединную его часть занимает ретикулярная формация, нейроны которой оказывают мощное активирующее влияние на всю кору больших полушарий, а также на спинной мозг.

Передние бугры четверохолмия представляют собой первичные зрительные центры, а задние бугры-первичные слуховые центры. Ими осуществляются также реакции, являющимися компонентами ориентировочного рефлекса при появлении неожиданных раздражителей. В ответ на внезапное раздражение происходит поворот головы и глаз в сторону раздражителя, а у животных-настораживание ушей. Этот рефлекс (по И. П. Павлову, рефлекс «Что такое?») необходим для подготовки организма к своевременной реакции на любое новое воздействие. Он сопровождается усилением тонуса мыщц-сгибателей (подготовка к двигательной реакции) и изменениями вегетативных функций (дыхание, сердцебиения).

Средний мозг играет важную роль в регуляции движений глаз. Управление глазодвигательным аппаратом осуществляют расположенные в среднем мозгу ядра блокового (IV) нерва, иннервирующего верхнюю косую мышцу глаза, и глазодвигательного (III) нерва, иннервирующего верхнюю, нижнюю и внутреннюю прямые мышцы нижнюю косую мышцу и мышцу, поднимающую веко, а также расположенное в заднем мозгу ядро отводящего (VI) нерва, иннервирующего наружную прямую мышцу глаза. С участием этих ядер осуществляются поворот глаза в любом направлении, аккомодация глаза, фиксация взгляда на близких предметах путем сведения зрительных осей, зрачковый рефлекс (расширение зрачков в темноте и сужение их на свету).

У человека при ориентации во внешней среде ведущим является зрительный анализатор, поэтому особое развитие получили передние бугры четверохолмия (зрительные подкорковые центры). У животных с преобладанием слуховой ориентации (собака, летучая мышь), наоборот, в большей степени развиты задние бугры (слуховые подкорковые центры).

Черная субстанция среднего мозга имеет отношение к рефлексам жевания и глотания, участвует в регуляции тонуса мышц (особенно при выполнении мелких движений пальцами рук).

В среднем мозгу важные функции осуществляет красное ядро. О возрастании роли этого ядра в процессе эволюции свидетельствует резкое увеличение его размеров по отношению к остальному объему среднего мозга. Красное ядро тесно связано с корой больших полушарий, ретикулярной формацией ствола, мозжечком и спинным мозгом.

От красного ядра начинается руброспинальный путь к мотонейронам спинного мозга. С его помощью осуществляется регуляция тонуса скелетных мышц, происходит усиление тонуса мышц-сгибателей. Это имеет большое значение как при поддержании позы в состоянии покоя, так и при осуществлении движений. Импульсы, приходящие в средний мозг от рецепторов сетчатки глаза и от проприорецепторов глазодвигательного аппарата, участвуют в осуществлении глазодвигательных реакций, необходимых для ориентации в пространстве, выполнении точных движений. В опыте при перерезке мозга ниже красного ядра происходит возбуждение мышц – расгибателей и торможение мышц – сгибателей, что характеризуется определенной позой, называемой децеребрационной ригидностью.

Промежуточный мозг. В состав промежуточного мозга, который является передним концом ствола мозга, входят зрительные бугры - таламус и подбугровая область - гипоталамус.

Таламус представляет собой важнейшую «станцию» на пути афферентных импульсов в кору больших полушарий.

Ядра таламуса подразделяют на специфические и неспецифические.

К специфическим относят переключательные (релейные) ядра и ассоциативные. Через переключательные ядра таламуса передаются афферентные влияния от всех рецепторов тела. Это так называемые специфические восходящие пути. Они характеризуются соматотопической организацией. Особенно большое представительство в таламусе имеют эфферентные влияния, поступающие от рецепторов лица и пальцев рук. От таламических нейронов начинается путь к соответствующим воспринимающим областям коры - слуховым, зрительных и др. Ассоциативные ядра непосредственно не связаны с периферией. Они получают импульсы от переключающих ядер и обеспечивают их взаимодействие на уровне таламуса, т. е. осуществляют подкорковую интеграцию специфических влияний. Импульсы от ассоциативных ядер таламуса поступают в ассоциативные области коры больших полушарий, где участвуют в процессах высшего афферентного синтеза.

Помимо этих ядер, в таламусе имеются неспецифические ядра, которые могут оказывать как активирующее, так и тормозящее влияние на кору.

Благодаря обширным связям таламус играет важнейшую роль в жизнедеятельности организма. Импульсы, идущие от таламуса в кору, изменяют состояние корковых нейронов и регулируют ритм корковой активности. Между корой и таламусом существуют кольцевые кортико-таламические взаимосвязи, лежащие в основе образования условных рефлексов. С непосредственным участием таламуса происходит формирование эмоций человека. Таламусу принадлежит большая роль в возникновении ощущений, в частности ощущения боли.

Подбугровая область (гипоталамус) расположена под зрительными буграми и имеет тесные нервные и сосудистые связи с прилежащей железой внутренней секреции-гипофизом. Здесь расположены важные вегетативные нервные центры, регулирующие обмен веществ в организме, обеспечивающие поддержание постоянства температуры тела (у теплокровных) и другие вегетативные функции.

Участвуя в выработке условных рефлексов и регулируя вегетативные реакции организма, промежуточный мозг играет очень важную роль в двигательной деятельности, особенно при формировании новых двигательных актов и выработке двигательных навыков.

Базальные ядра – так называют группу ядер серого вещества, расположенных непосредственно под полушариями большого мозга. К ним относятся парные образования: хвостатое тело и скорлупа, составляющие вместе полосатое тело (стриатум), и бледное ядро (паллидум). Базальные ядра получают сигналы от рецепторов тела через зрительные бугры. Эфферентные импульсы подкорковых ядер направляются к нижележащим центрам экстрапирамидной системы. Подкорковые узлы функционируют в единстве с корой больших полушарий, промежуточным мозгом и другими отделами мозга. Это обусловлено наличием кольцевых связей между ними. Через эти подкорковые ядра могут соединять между собою разные отделы коры больших полушарий, что имеет большое значение при образовании условных рефлексов. Совместно с промежуточным мозгом подкорковые ядра участвуют в осуществлении сложных безусловных рефлексов: оборонительных, пищевых и др.

Представляя собой высший отдел мозгового ствола, базальные ядра объединяют деятельность нижележащих образований, регулируя мышечный тонус и обеспечивая необходимое положение тела во время физической работы. Бледное ядро выполняет моторную функцию. Оно обеспечивает проявление древних автоматизмов - ритмических рефлексов. С его деятельностью связано также выполнение содружественных (например, движения туловища и рук при ходьбе), мимических и других движений.

Полосатое тело оказывает на двигательную деятельность тормозящее, регулирующее влияние, угнетая функции бледного ядра, а также моторкой области коры больших полушарий. При заболевании полосатого тела возникают непроизвольные беспорядочные сокращения мышц (гиперкинезы). Они обусловливают некоординированные толчкообразные движения головы, рук и ног. Нарушения возникают также в чувствительной сфере - понижается болевая чувствительность, расстраиваются внимание и восприятие.

В настоящее время выявлено значение хвостатого тела в самооценке поведения человека. При неправильных движениях или умственных операциях из хвостатого ядра в кору больших полушарий поступают импульсы, сигнализирующие об ошибке.

Мозжечок. Это - надсегментарное образование, не имеющее непосредственной связи с исполнительными аппаратами. Мозжечок входит в состав экстрапирамидной системы. Он состоит из двух полушарий и червя, находящегося между ними. Наружные поверхности полушарий покрыты серым веществом - корой мозжечка, а скопления серого вещества в белом веществе образуют ядра мозжечка.

Мозжечок получает импульсы от рецепторов кожи, мышц и сухожилий через спинно-мозжечковые пути и через ядра продолговатого мозга (от спинно-бульбарного пути). Из продолговатого мозга в мозжечок поступают также вестибулярные влияния, а из среднего мозга-зрительные и слуховые. Корково-мосто-мозжечковый путь связывает мозжечок с корой больших полушарий. В коре мозжечка представительство различных периферических рецепторов имеет соматотопическую организацию. Кроме того, наблюдается упорядоченность связей этих зон с соответствующими воспринимающими областями коры. Так, зрительная зона мозжечка связана со зрительной зоной коры, представительство каждой группы мышц в мозжечке - с представительством одноименных мышц в коре и т. д. Такое соответствие облегчает совместную деятельность мозжечка и коры в управлении различными функциями организма.

Эфферентные импульсы от мозжечка поступают к красным ядрам ретикулярной формации, продолговатому мозгу, таламусу, коре и подкорковым ядрам.

Мозжечок участвует в регуляции двигательной деятельности. Электрические раздражения поверхности мозжечка вызывают движения глаз, головы и конечностей, которые отличаются от корковых моторных эффектов тоническим характером и большой длительностью. Мозжечок регулирует изменение и перераспределение тонуса скелетных мышц, что необходимо для организации нормальной позы и двигательных актов.

Функции мозжечка изучались в клинике при его поражениях у человека, а также у животных путем удаления (экстирпации мозжечка) (Л. Лючиани, Л. А. Орбели). В результате выпадения функций мозжечка возникают двигательные расстройства: атония- резкое падение и неправильное распределение тонуса мышц, астазия - невозможность сохранения неподвижного положения, непрерывные качательные движения, дрожание головы, туловища и конечностей, астения - повышенная утомляемость мышц, атаксия - нарушение координированных движений, походки и др.

Мозжечок оказывает влияние также на ряд вегетативных функций, например желудочно-кишечного тракта, на уровень кровяного давления, на состав крови.

Таким образом, в мозжечке происходит интеграция самых различных сенсорных влияний, в первую очередь проприоцептивных и вестибулярных. Мозжечок даже ранее считали центром равновесия и регуляции мышечного тонуса. Однако его функции, как оказалось, гораздо обширнее-охватывают также регуляцию деятельности вегетативных органов. Деятельность мозжечка протекает в непосредственной связи с корой больших полушарий, под ее контролем.

Функции ретикулярной формации. Различают два основных типа влияния неспецифической системы на работу других нервных центров - активирующее и тормозящее влияния. Оба они могут адресоваться как вышележащим центрам (восходящие влияния), так и нижележащим (нисходящие влияния).

Восходящие влияния. В опытах на животных было показано, что из сетевидного образования среднего мозга исходит мощное активирующее влияние на кору больших полушарий. Электрические раздражения этих отделов неспецифической системы через вживленные электроды вызывали пробуждение спящего животного. У бодрствующего животного подобное раздражение повышало уровень корковой активности, усиливало внимание к внешним сигналам и улучшало их восприятие.

Нисходящие влияния. Все отделы неспецифической системы оказывают помимо восходящих значительные нисходящие влияния. Отделы ствола мозга регулируют (активируют или угнетают) активность нейронов спинного мозга и проприорецепторов мышц (мышечных веретен). Эти влияния совместно с воздействиями из экстрапирамидной системы и мозжечка играют большую роль в регуляции тонуса мышц и обеспечении позы человека. Непосредственные команды к осуществлению движений и влияния, формирующие перестройки тонуса мышц, передаются по специфическим путям. Однако неспецифические влияния позволяют существенно изменить протекание этих реакций. При усилении активирующих воздействий из ретикулярной формации среднего мозга на нейроны спинного мозга увеличивается амплитуда производимых движений и повышается тонус скелетных мышц. Включение этих влияний при некоторых эмоциональных состояниях помогает повысить эффективность двигательной деятельности человека и выполнить значительно большую работу, чем в обычных условиях.

Возникновение эмоций, а также поведенческие реакции связывают с деятельностью лимбической системы, в которую входят некоторые подкорковые образования и участки коры. Корковые отделы лимбической системы, представляющие ее высший отдел находятся на нижних и внутренних поверхностях больших полушарий (поясная извилина, гиппокамп и др.). К подкорковым структурам лимбической системы относят также грушевидную долю, обонятельную луковицу и тракт, миндалевидное ядро, гипоталамус, некоторые ядра таламуса, среднего мозга и ретикулярной формации. Между всеми этими образованиями имеются тесные прямые и обратные связи образующие «лимбическое кольцо».

Лимбическая система участвует в самых разнообразных проявлениях деятельности организма. Она формирует положительные и отрицательные эмоции со всеми двигательными, вегетативными и эндокринными их компонентами (изменением дыхания, сердцебиения кровяного давления, деятельности желез внутренней секреции, скелетных и мимических мышц и др.). От нее зависит эмоциональная окраска психических процессов и изменения двигательной активности. Она создает мотивацию поведения (определенную предрасположенность ). Возникновение эмоций имеет «оценочное влияние» на деятельность специфических систем, так как, подкрепляя определенные способы действий, пути решения поставленных задач, они обеспечивают избирательный характер поведения в ситуациях со многими выборами. Области коры, относящиеся к лимбической системе (нижние и внутренние части коры), обеспечивают эмоциональную окраску движений и управляют вегетативными реакциями организма при работе.

Лимбическая система участвует в формировании ориентировочных и условных рефлексов. Благодаря центрам лимбической системы могут вырабатываться даже без участия других отделов коры оборонительные и пищевые условные рефлексы. При поражениях этой системы затрудняется упрочение условных рефлексов, нарушаются процессы памяти, теряется избирательность реакций и отмечается неумеренное их усиление (чрезмерно повышенная двигательная активность и т. д.). Известно, что так называемые психотропные вещества, изменяющие нормальную психическую деятельность человека, действуют именно на структуры лимбической системы. Таким образом, лимбическая система задает общий контекст поведения, в зависимости от условий, переводя в нужное предрасположенное состояние- эмоцию. Направленность эмоции (положительная или отрицательна) и определяет вид формирующегося рефлекса и более сложной реакции. Лимбическая система обусловливает эмоциональный настрой и побуждение к действию, а также процессы научения и памяти. Лимбика придает информации от внутренней среды и окружающего мира то особое значение, которое она имеет для каждого человека и тем самым определяет его целенаправленную деятельность.

Электрические раздражения различных участков лимбической системы через вживленные электроды (в эксперименте на животных и в клинике в процессе лечения больных) выявили наличие центров удовольствия, формирующих положительные эмоции, и центров неудовольствия, формирующих отрицательные эмоции. Изолированное раздражение таких точек в глубоких структурах мозга человека вызывало появление чувства «беспричинной радости», «беспредметной тоски», «безотчетного страха».

Кора больших полушарий:

Общий план организации коры. Кора больших полушарий является высшим отделом центральной нервной системы, который в процессе филогенетического развития появляется позже всего и формируется в ходе индивидуального (онтогенетического) развития позже других отделов мозга. Кора представляет собой слой серого вещества толщиной 2-3 мм, содержащий в среднем около 14 млрд. (от 10 до 18 млрд.) нервных клеток, нервные волокна и межуточную ткань (нейроглию). На поперечном ее срезе по расположению нейронов и их связей различают 6 горизонтальных слоев. Благодаря многочисленным извилинам и бороздам площадь поверхности коры достигает 0,2 м 2 . Непосредственно под корой находится белое вещество, состоящее из нервных волокон, которые передают возбуждение в кору и из нее, а также от одних участков коры другим.

Корковые нейроны и их связи. Несмотря на огромное число нейронов в коре, известно очень немного их разновидностей. Основными типами их являются пирамидные и звездчатые нейроны. В афферентной функции коры и в процессах переключения возбуждения на соседние нейроны основная роль принадлежит звездчатым нейронам. Они составляют у человека более половины всех клеток коры. Эти клетки имеют короткие ветвящиеся аксоны, не выходящие за пределы серого вещества коры, и короткие ветвящиеся дендриты. Звездчатые нейроны участвуют в процессах восприятия раздражении и объединении деятельности различных пирамидных нейронов.

Пирамидные нейроны осуществляют эфферентную функцию коры и внутрикорковые процессы взаимодействия между удаленными друг от друга нейронами. Они делятся на крупные пирамиды, от которых начинаются проекционные, или эфферентные, пути к подкорковым образованиям, и мелкие пирамиды, образующие ассоциативные пути к другим отделам коры. Наиболее крупные пирамидные клетки - гигантские пирамиды Беца - находятся в передней центральной извилине, в так называемой моторной зоне коры. Характерная особенность крупных пирамид - их вертикальная ориентация в толще коры. От тела клетки вертикально вверх к поверхности коры направлен наиболее толстый (верхушечный) дендрит, через который в клетку поступают различные афферентные влияния от других нейронов, а вертикально вниз отходит эфферентный отросток - аксон.

Многочисленность контактов (например, только на дендритах крупной пирамиды их насчитывают от 2 до 5 тыс.) обеспечивает возможность широкой регуляции деятельности пирамидных клеток со стороны множества других нейронов. Это позволяет координировать ответные реакции коры (в первую очередь ее моторную функцию) с разнообразными воздействиями из внешней среды и внутренней среды организма.

Для коры больших полушарий характерно обилие межнейронных связей. По мере развития мозга человека после его рождения увеличивается число межцентральных взаимосвязей, особенно интенсивно до 18 лет.

Функциональной единицей коры является вертикальная колонка взаимосвязанных нейронов. Вытянутые по вертикали крупные пирамидные клетки с расположенными над ними и под ними нейронами образуют функциональные объединения нейронов. Все нейроны вертикальной колонки отвечают на одно и то же афферентное раздражение (от одного и того же рецептора) одинаковой реакцией и совместно формируют эфферентные ответы пирамидных нейронов.

Распространение возбуждения в поперечном направлении-от одной вертикальной колонки к другой - ограничено процессами торможения. Возникновение активности в вертикальной колонке приводит к возбуждению спинальных мотонейронов и сокращению связанных с ними мышц. Этот путь используется, в частности, при произвольном управлении движениями конечностей.

Первичные, вторичные и третичные поля коры. Особенности строения и функционального значения отдельных участков коры позволяют выделить отдельные корковые поля.

Различают три основные группы полей в коре: сенсорные, ассоциативные и моторные поля.

Сенсорные поля связаны с органами чувств и органами движения на периферии, они раньше других созревают в онтогенезе, имеют наиболее крупные клетки. Это так называемые ядерные зоны анализаторов, по И. П. Павлову (например, поле болевой, температурной, тактильной и мышечно-суставной чувствительности находится в задней центральной извилине коры, зрительное поле(пол 17 и 18) в затылочной области, слуховое поле(поле 41) в височной области и двигательное поле(поле 6) в передней центральной извилине коры. Эти поля осуществляют анализ отдельных раздражений, поступающих в кору от соответствующих рецепторов. При разрушении сенсорных полей возникают так называемая корковая слепота, корковая глухота и т. п. Рядом расположены ассоциативные поля, которые связаны с отдельными органами только через сенсорные зоны. Они служат для обобщения и дальнейшей обработки поступающей информации. Отдельные ощущения синтезируются в них в комплексы, обусловливающие процессы восприятия. При поражении ассоциативных зон сохраняется способность видеть предметы, слышать звуки, но человек их не узнает, не помнит их значения. Сенсорные и ассоциативные поля имеются и у человека, и у животных.

Наиболее далеки от непосредственных связей с периферией третичные поля, или зоны перекрытия анализаторов. Эти поля есть только у человека. Они занимают почти половину территории коры и имеют обширные связи с другими отделами коры и с неспецифическими системами мозга. В этих полях преобладают наиболее мелкие и разнообразные клетки. Основным клеточным элементом здесь являются звездчатые нейроны. Третичные поля находятся в задней половине коры - на границах теменных, височных и затылочных ее областей и в передней половине - в передних частях лобных областей. В этих зонах оканчивается наибольшее число нервных волокон, соединяющих левое и правое полушария, поэтому роль их особенно велика в организации согласованной работы обоих полушарий. Третичные поля созревают у человека позже других корковых полей, они осуществляют наиболее сложные функции коры. Здесь происходят процессы высшего анализа и синтеза. В третичных полях на основе синтеза всех афферентных раздражении и с Учетом следов прежних раздражении вырабатываются цели и задачи поведения. Согласно им происходит программирование двигательной деятельности. Развитие третичных полей у человека связывают с функцией речи. Мышление (внутренняя речь) возможно только при совместной деятельности анализаторов, объединение информации от которых происходит в третичных полях. Разделение нейронов коры на поля, области и зоны называется функциональной мозаикой. Автором такого разделения является Бродман.

При врожденном недоразвитии третичных полей человек не в состоянии овладеть речью (произносит лишь бессмысленные звуки) и даже простейшими двигательными навыками (не может одеваться, пользоваться орудиями труда и т. п.).

Воспринимая и оценивая все сигналы из внутренней и внешней среды, кора больших полушарий осуществляет высшую регуляцию всех двигательных и эмоционально-вегетативных реакций.

Функции коры больших полушарий.

Кора больших полушарий выполняет наиболее сложные функции организации приспособительного поведения организма во внешней среде. Это прежде всего функция высшего анализа и синтеза всех афферентных раздражении.

Афферентные сигналы поступают в кору по разным каналам, в разные ядерные зоны анализаторов (первичные поля), а затем синтезируются во вторичных и третичных полях, благодаря деятельности которых создается целостное восприятие внешнего мира. Этот синтез лежит в основе сложных психических процессов восприятия, представления, мышления. Кора больших полушарий представляет собою орган, тесно связанный с возникновением у человека сознания и регуляцией его общественного поведения. Важной стороной деятельности коры больших полушарий является замыкательная функция - образование новых рефлексов и их систем (условные рефлексы, динамические стереотипы).

Благодаря необычайно большой продолжительности сохранения в коре следов прежних раздражений (памяти) в ней накапливается огромный объем информации. Это имеет большое значение для сохранения индивидуального опыта, который используется по мере необходимости.

Несмотря на анатомическую одинаковость обоих полушарий переднего мозга они функционально отличаются. Восходящие и нисходящие пути от головного мозга переходят на противоположную половину тела и поэтому левое полушарие отвечает за соматическую чувствительность и движения правой половины тела и наоборот. Также вследствие перекреста зрительных путей правая половина зрительного поля проецируется в левое полушарие, а левая половина – в правое. Изолированное правое полушарие обладает памятью, способностью к зрительному или тактильному распознаванию предметов, абстрактному мышлению и к слабому пониманию речи(выполнение слуховых команд и чтение простейших слов). В правом полушарии лучше развиты: распознавание лиц, пространственное построение и восприятие музыки. Левое полушарие является доминантным по отношению к правому. Оно обеспечивает речь и сознание, вербально – рассудочную деятельность, временные характеристики и связи событий. При его повреждении страдает логическое смысловое мышление.

Электрическая активность коры больших полушарии. Изменения функционального состояния коры отражаются на характере ее биопотенциалов. Регистрация электроэнцефалограммы (ЭЭГ), т. е. электрической активности коры, производится непосредственно с ее обнаженной поверхности (в опытах на животных и при операциях на человеке) или через неповрежденные покровы головы (в естественных условиях на животных и человеке Современные электроэнцефалографы усиливают эти потенциалы в 2-3 млн. раз и дают возможность исследовать ЭЭГ от многих точек коры одновременно.

В ЭЭГ различают определенные диапазоны частот, называемые ритмами ЭЭГ. В состоянии относительного покоя чаще всего регистрируется альфа-ритм (8-12 колебаний в 1 сек.), в состоянии активного внимания - бета-ритм (выше 13 колебаний в 1 сек.), при засыпании, некоторых эмоциональных состояниях - тэта-ритм (4-7 колебаний в 1 сек.), при глубоком сне, потере сознания, наркозе - дельта-ритм (1-3 колебания в 1 сек.).

В ЭЭГ отражаются особенности взаимодействия корковых нейронов при умственной и физической работе. Отсутствие налаженной координации при выполнении непривычной или тяжелой работы приводит к так называемой десинхронизации ЭЭГ - быстрой асинхронной активности. По мере формирования двигательного навыка происходит сонастраивание активности отдельных связанных с данным движением нейронов и отключение посторонних.

Несмотря на совершенство процессов координации в спинном мозгу, он находится под постоянным контролем головного мозга, в первую очередь коры больших полушарий.

В организме имеются специальные механизмы, обусловливающие преимущественное воздействие коры больших полушарий на общие конечные пути к мышцам-спинальные мотонейроны. Большая эффективность кортико-спинальных влияний по сравнению с сегментарными афферентными влияниями обеспечивается, во-первых, наличием прямых путей из коры к мотонейронам спинного мозга и, во-вторых, возможностью особенно быстрой их активации корковыми импульсами. Электрофизиологическими исследованиями показано, что ритмические воздействия из двигательной области коры вызывают чрезвычайно резкое нарастание суммарной амплитуды возбуждающих постсинаптических потенциалов спинальных мотонейронов. Амплитуда каждого последующего возбуждающего постсинаптического потенциала увеличивается примерно в 6 раз больше, чем при поступлении к тем же мотонейронам импульсов от проприорецепторов по афферентным путям. Таким образом, достаточно уже 2-3 импульсов, идущих от коры, чтобы деполяризация в мотонейроне достигла порогового уровня, необходимого для возникновения ответного разряда в скелетную мышцу. В результате кора больших полушарий может вызывать двигательные действия быстрее, чем периферические раздражения, и часто даже вопреки им.

В коре больших полушарий происходит выработка цели и задачи движений, соответственно этому строится и программа конкретных действий, которые нужны человеку для осуществления цели. В сложные поведенческие акты включаются не только моторные компоненты, но и необходимые вегетативные компоненты. Еще до начала движении кора больших полушарий повышает активность тех вставочных и моторных нейронов спинного мозга, которым предстоит участвовать в движении. В предстартовый период перед началом циклических движений в электрической активности коры происходит настройка на темп предстоящих движений. В тот момент, когда производится движение, кора тормозит деятельность всех посторонних афферентных путей и оказывается особенно восприимчивой к сигналам от рецепторов мышц, сухожилий и суставных сумок.

В организации двигательного акта участвуют самые различные отделы коры больших полушарий. Моторная зона коры (поле 4) посылает импульсы к отдельным мышцам, преимущественно к дистальным мышцам конечностей. Объединение отдельных элементов движения в целостный акт осуществляют вторичные поля (6-е и 8-е) премоторной области. Они определяют последовательность двигательных актов, формируют ритмические серии движении, регулируют тонус мышц. Задняя центральная извилина коры - общечувствительная область-обеспечивает субъективное ощущение движения. Здесь имеются нейроны, сигнализирующие только о возникновении движений в суставе, и нейроны, постоянно информирующие мозг о положении конечности (нейроны движения и нейроны положения).

К пространственной организации движений прямое отношение имеют задние третичные поля - нижнетеменные и теменно-затылочно-височные области коры. С их участием производится оценка удаленности и расположения предметов, оценка расположения отдельных частей собственного тела в пространстве и др. При поражении этих областей у человека теряется представление о «схеме тела» (о том, где находится нос, глаз, ухо, предплечье, спина, как опустить, например, «руки по швам»). Нарушается также представление о «схеме пространства», пространственная ориентация движения. Трудности возникают при выполнении самых простых актов: человек видит стул и узнает его, но садится мимо него; он не понимает, откуда идет звук, что означает «влево», «вправо» «вперед», «назад», не может правильно есть (например, ложка с супом попадает мимо рта) и т. д. Становится невозможным использование каких-либо орудий для трудовой или спортивной деятельности.

В высшей регуляции произвольных движений важнейшая роль принадлежит лобным долям. В третичных полях лобной коры про. исходит сознательное программирование произвольных движений определение цели поведения, двигательных задач и необходимых для их выполнения двигательных актов, а также сопоставление намеченной программы с результатами ее реализации. При регуляции лобными долями движений используется вторая сигнальная система. Движения программируются в ответ на поступающие извне словесные сигналы (словесные указания тренера, спортивные команды я пр.), а также благодаря участию внешней и внутренней речи (мышления) самого человека.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-30

Мозг - это основной орган человека, управляющий всеми его функциями жизнедеятельности, определяет его личность, поведение и сознание. Его структура крайне сложна и является комбинацией из миллиардов нейронов, сгруппированных в отделы, каждый из которых выполняет свою функцию. Многолетние исследования позволили узнать многое об этом органе.

Из каких частей состоит головной мозг?

Человеческий мозг состоит из нескольких отделов. Каждый из них выполняет свою функцию, обеспечивая жизнедеятельность организма.

По строению мозг разделяется на 5 основных отделов.

Среди них:

  • Продолговатый. Эта часть - продолжение спинного мозга. Она состоит из ядер серого вещества и путей из белого. Именно эта часть определяет связь между мозгом и телом.
  • Средний. Состоит из 4 бугорков, два из которых отвечают за зрение и два – за слух.
  • Задний. Задний мозг включает мост и мозжечок. Это небольшой отдел в затылочной части, который весит в пределах 140 грамм. Состоит из двух полушарий, скрепленных между собой.
  • Промежуточный. Состоит из таламуса, гипоталамуса.
  • Конечный. Этот отдел формирует оба полушария мозга, соединенные мозолистым телом. Поверхность полна извилин и борозд, покрытых корой мозга. Полушария разделены на доли: лобную, теменную, височную и затылочную.

Последний отдел занимает более 80% от общей массы органа. Также мозг можно разделить на 3 части: мозжечок, ствол и большие полушария.

При этом весь мозг имеет покрытие в виде оболочки, разделенной на три составляющие:

  • Паутинную (по ней циркулирует спинномозговая жидкость)
  • Мягкую (прилегает к мозгу и полна кровеносными сосудами)
  • Твердую (соприкасается с черепом и защищает мозг от повреждений)

Все компоненты мозга важны в регуляции жизнедеятельности и имеют определенную функцию. Но центры регуляции деятельности размещены в коре мозга.

Человеческий мозг состоит из множества отделов, каждый из которых имеет сложную структуру и выполняет определенную роль. Наибольший из них - конечный, который состоит из полушарий мозга. Все это покрыто тремя оболочками, обеспечивающими защитные и питающие функции.

О строении и функциях головного мозга узнайте из предложенного видео.

Какие функции выполняет?

Головным мозгом и его корой выполняется ряд важнейших функций.

Головной мозг

Затруднительно перечислить все функции мозга, ведь это крайне сложный орган. Сюда входят все аспекты жизнедеятельности человеческого организма. Однако можно выделить основные функции, выполняемые мозгом.

К функциям головного мозга относятся все чувства человека. Это зрение, слух, вкусовые ощущения, обоняние и осязание. Все они выполняются в коре мозга. Она также отвечает за многие другие аспекты жизнедеятельности, включая двигательную функцию.

Кроме того, заболевания могут возникнуть на фоне внешних инфекций. Тот же менингит, который возникает из-за инфекций пневмококка, менингококка и подобных им. Развитие заболевание характеризуется болью в голове, температурой, резью в глазах и многими другими симптомами вроде слабости, тошноты и сонливости.

Многие заболевания, развивающиеся в головном мозге и его коре, еще не изучены. Поэтому их лечение затруднено недостатком информации. Так что рекомендуется обращаться к врачу при первых нестандартных симптомах, что позволит предотвратить болезнь, диагностируя ее на ранней стадии.