Переносчики фундаментальных взаимодействий. Теории элементарных частиц

Способность к взаимодействию – важнейшее и неотъемлемое свойство материи. Именно взаимодействия обеспечивают объединение различных материальных объектов мега-, макро- и микромира в системы. Все известные современной науке силы сводятся к четырем типам взаимодействий, которые называются фундаментальными: гравитационное, электромагнитное, слабое и сильное.

Гравитационное взаимодействие впервые стало объектом изучения физики в XVII в. Теория гравитации И. Ньютона, основу которой составляет закон всемирного тяготения, стала одной из составляющих классической механики. Любая материальная частица является источником гравитационного воздействия и испытывает его на себе. По мере увеличения массы, гравитационные взаимодействия возрастают, т.е. чем больше масса взаимодействующих веществ, тем сильнее действуют гравитационные силы. Силы гравитации – это силы притяжения. Гравитационное взаимодействие – наиболее слабое из ныне известных. Гравитационная сила действует на очень больших расстояниях, ее интенсивность с увеличением расстояния убывает, но не исчезает полностью. Считается, что переносчиком гравитационного взаимодействия является гипотетическая частица гравитон. В микромире гравитационное взаимодействие не играет существенной роли, однако в макро- и особенно мегапроцессах ему принадлежит ведущая роль.

Электромагнитное взаимодействие стало предметом изучения в физике XIX в. Первой единой теорией электромагнитного поля выступила концепция Дж. Максвелла. Электромагнитные взаимодействия существуют только между заряженными частицами: электрическое поле – между двумя покоящимися заряженными частицами, магнитное – между двумя движущимися заряженными частицами. Электромагнитные силы могут быть как силами притяжения, так и силами отталкивания. Одноименно заряженные частицы отталкиваются, разноименно – притягиваются. Переносчиками этого типа взаимодействия являются фотоны. Электромагнитное взаимодействие проявляется в микро-, макро- и мегамире.

В середине XX в. была создана квантовая электродинамика – теория электромагнитного взаимодействия, которая описывает взаимодействие заряженных частиц – электронов и позитронов. В 1965 г. ее авторы С. Томанага, Р. Фейнман и Дж. Швингер были удостоены Нобелевской премии.

Слабое взаимодействие было открыто только в XX в., в 60-е гг. построена общая теория слабого взаимодействия. Слабое взаимодействие связано с распадом частиц, поэтому его открытие последовало только вслед за открытием радиоактивности. Физик В. Паули предположил, что в процессе радиоактивного распада вещества вместе с электроном выделяется частица, обладающая высокой проникающей способностью. Позже эта частица была названа «нейтрино». Оказалось, что в результате слабых взаимодействий нейтроны, входящие в состав атомного ядра, распадаются на три типа частиц: положительно заряженные протоны, отрицательно заряженные электроны и нейтральные нейтрино. Слабое взаимодействие значительно меньше электромагнитного, но больше гравитационного, и в отличие от них распространяется на небольших расстояниях – не более 10 –22 см. Именно поэтому долгое время слабое взаимодействие экспериментально не наблюдалось. Переносчиками слабого взаимодействия являются бозоны.


В 70-е гг. XX в. была создана общая теория электромагнитного и слабого взаимодействия, получившая название теории электрослабого взаимодействия. Ее создатели С. Вайнберг, А. Сапам и С. Глэшоу в 1979 г. получили Нобелевскую премию. Теория электрослабого взаимодействия рассматривает два типа фундаментальных взаимодействий как проявления единого, более глубокого. Так, на расстояниях более 10 –17 см преобладает электромагнитный аспект явлений, на меньших расстояниях в одинаковой степени важны и электромагнитный, и слабый аспекты. Создание рассматриваемой теории означало, что объединенные в классической физике XIX в., в рамках теории Фарадея–Максвелла электричество, магнетизм и свет, в последней трети XX в. дополнились феноменом слабого взаимодействия.

Сильное взаимодействие также было открыто только в XX в. Оно удерживает протоны в ядре атома, не позволяя им разлететься под действием электромагнитных сил отталкивания. Сильное взаимодействие осуществляется на расстояниях не более чем 10 –13 см и отвечает за устойчивость ядер. Ядра элементов, находящихся в конце таблицы Д.И. Менделеева, неустойчивы, поскольку их радиус велик и, соответственно, сильное взаимодействие теряет свою интенсивность. Такие ядра подвержены распаду, который и называется радиоактивным. Сильное взаимодействие ответственно за образование атомных ядер, в нем участвуют только тяжелые частицы: протоны и нейтроны. Ядерные взаимодействия не зависят от заряда частиц, переносчиками этого типа взаимодействий являются глюоны. Глюоны объединены в глюонное поле (по аналогии с электромагнитным), благодаря которому и осуществляется сильное взаимодействие. По своей мощи сильное взаимодействие превосходит другие известные и является источником огромной энергии. Примером сильного взаимодействия выступают термоядерные реакции на Солнце и других звездах. Принцип сильного взаимодействия использован при создании водородного оружия.

Теорию сильного взаимодействия называют квантовой хромодинамикой. Согласно этой теории сильное взаимодействие есть результат обмена глюонами, в результате чего обеспечивается связь кварков в адронах. Квантовая хромодинамика продолжает развиваться, ее нельзя пока считать законченной концепцией сильного взаимодействия, но она имеет прочную экспериментальную базу.

В современной физике продолжаются поиски единой теории, которая позволила бы объяснить все четыре типа фундаментальных взаимодействий. Создание подобной теории означало бы также построение единой концепции элементарных частиц. Этот проект получил название «Великое объединение». Основанием для убежденности, что такая теория возможна, является то обстоятельство, что на малых расстояниях (менее 10 –29 см) и при большой энергии (более 10 14 ГэВ) электромагнитные, сильные и слабые взаимодействия описываются одинаковым образом, что означает общность их природы. Однако этот вывод имеет только теоретический характер, проверить его экспериментально пока не удалось.

Важную роль в понимании механизмов взаимодействия элементарных частиц, их образования и распада сыграли законы сохранения. Помимо законов сохранения, действующих в макромире (закона сохранения энергии, закона сохранения импульса и закона сохранения момента импульса), в физике микромира были обнаружены новые: закон сохранения барионного, лептонного зарядов и др.

Что в различных веществах содержится достаточно много элементарных частиц, фундаментальные физические взаимодействия представлены четырьмя типами: сильным, электромагнитным, слабым и гравитационным. Последнее считается самым всеобъемлющим.

Гравитации подвержены все макротела и микрочастицы без исключения. Гравитационному воздействию подвергаются абсолютно все элементарные частицы. Проявляется оно в форме всемирного тяготения. Это фундаментальное взаимодействие управляет самыми глобальными процессами, происходящими во Вселенной. Гравитация обеспечивает структурную стабильность Солнечной системы.

В соответствии с современными представлениями, фундаментальные взаимодействия возникают вследствие обмена частицами. Гравитация формируется посредством обмена гравитонами.

Фундаментальные взаимодействия - гравитационное и электромагнитное - являются по природе своей дальнодействующими. Соответствующие им силы могут проявиться на значительных расстояниях. Указанные фундаментальные взаимодействия при этом имеют свои особенности.

Описано однотипными зарядами (электрическими). При этом заряды могут иметь как положительный, так отрицательный знак. Электромагнитные силы, в отличие от (гравитации), могут выступать в качестве сил отталкивания и притяжения. Данным взаимодействием обуславливаются химические и физические свойства различных веществ, материалов, живой ткани. Электромагнитные силы приводят в действие и электронную и электрическую аппаратуру, связывая при этом между собой заряженные частицы.

Фундаментальные взаимодействия известны за пределами узкого круга астрономов и физиков в разной степени.

Несмотря на меньшую известность (в сравнении с прочими типами), слабые силы играют важную роль в жизни Вселенной. Так, если бы не было слабого взаимодействия, то погасли бы звезды, Солнце. Эти силы относятся к короткодействующим. Радиус приблизительно в тысячу раз меньше, чем у сил ядерных.

Ядерные силы считаются самыми мощными из прочих. Сильным взаимодействием определяются связи только между адронами. Действующие в между нуклонами ядерные силы являются его проявлением. приблизительно в сто раз мощнее электромагнитного. Отличаясь от гравитационного (как, собственно, и от электромагнитного), оно является короткодействующим на расстоянии, которое больше 10-15 м. Кроме того, описание его возможно при помощи трех зарядов, формирующих сложные сочетания.

Радиус действия считается важнейшим признаком фундаментального взаимодействия. Радиусом действия называют максимальное расстояние, которое образуется между частицами. За его рамками взаимодействием можно пренебречь. Малый радиус характеризует силу как короткодействующую, большой радиус - как дальнодействующую.

Как уже отмечалось выше, слабые и сильные взаимодействия считаются короткодействующими. Интенсивность их убывает достаточно быстро при увеличении между частицами расстояния. Указанные взаимодействия проявляются на небольших, недоступных для восприятия посредством органов чувств расстояниях. В связи с этим, данные силы были открыты значительно позже остальных (только в двадцатом столетии). При этом были применены достаточно сложные экспериментальные установки. Гравитационные и электромагнитные виды фундаментальных взаимодействий считаются дальнодействующими. Они отличаются медленным убыванием при увеличении между частицами расстояния и не наделены конечным радиусом действия.

Чтобы понять, стоит ли продолжать писать короткие этюды, объясняющие буквально на пальцах разные физические явления и процессы. Результат развеял мои сомнения. Продолжу. Но чтобы подойти к довольно сложным явлениям придется делать отдельные последовательные серии постов. Так, чтобы дойти до рассказа об устройстве и эволюции Солнца и других типов звезд придется начать с описания типов взаимодействия между элементарными частичами. С этого и начнем. Без формул.
Всего в физике известно четыре типа взаимодействия. Хорошо знакомые все гравитационное и электромагнитное . И почти неизвестные широкой публике сильное и слабое . Опишем их последовательно.
Гравитационное взаимодействие . Человек знаком с ним издревле. Ибо постоянно находится в поле тяжести Земли. А из школьной физики мы знаем, что сила гравитационного взаимодействия между телами пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Под воздействием гравитационной силы Луна вращается вокруг Земли, Земля и другие планеты - вокруг Солнца, а последнее вместе с другими звездами - вокруг центра нашей Галактики.
Довольно медленное убывание силы гравитационного взаимодействия с расстоянием (обратно пропорционально квадрату расстояния) заставляет физиков говорить об этом взаимодействии как о дальнодействующем . Кроме того, действующие между телами силы гравитационного взаимодействия являются только силами притяжения.
Электромагнитное взаимодействие . В самом простейшем случае электростатического взаимодействия, как мы знаем из школьной физики, сила притяжения или отталкивания между электрически заряженными частицами пропорциональна произведению их электрических зарядов и обратно пропорциональна квадрату расстояния между ними. Что очень похоже на закон гравитационного взаимодействия. Отличие лишь в том, что электрические заряды с одинаковыми знаками отталкиваются, а с разными - притягиваются. Поэтому электромагнитное взаимодействие, как и гравитационное, физики называют дальнодействующим .
В то же время электромагнитное взаимодействие сложнее гравитационного. Из школьной физики мы знаем, что электрическое поле создается электрическими зарядами, магнитных зарядов в природе не существует, а магнитное поле создается электрическими токами.
На самом деле электрическое поле может создаваться еще и изменяющимся во времени магнитным полем, а магнитное поле - изменяющимся во времени электрическим полем. Последнее обстоятельство дает возможность существовать электромагнитному полю вообще без электрических зарядов и токов. И эта возможность реализуется в виде электромагнитных волн. Например, радиоволн и квантов света.
Из-за одинаковой зависимости от расстояния электрических и гравитационных сил естественно попытаться сравнить их интенсивности. Так, для двух протонов силы гравитационного притяжения оказываются в 10 в 36-й степени раз (миллиард миллиардов миллиардов миллиардов раз) слабее сил электростатического отталкивания. Поэтому в физике микромира гравитационным взаимодействием вполне обоснованно можно пренебрегать.
Сильное взаимодействие . Это - близкодействующие силы. В том смысле, что они действуют на расстояниях только порядка одного фемтометра (одной триллионной части миллиметра), а на больших расстояниях их влияние практически не ощущаются. Более того, на расстояниях порядка одного фемтометра сильное взаимодействие примерно в сотню раз интенсивнее электромагнитного.
Именно поэтому одинаково электрически заряженные протоны в атомном ядре не отталкиваются друг от друга электростатическими силами, а удерживаются вместе сильным взаимодействием. Поскольку размеры протона и нейтрона составляют около одного фемтометра.
Слабое взаимодействие . Оно действительно очень слабое. Во-первых, оно действует на расстояниях в тысячу раз меньших одного фемтометра. А на больших расстояниях практически не ощущается. Поэтому оно, как и сильное, принадлежит к классу близкодействующих . Во-вторых, его интенсивность примерно в сотню миллиардов раз меньше интенсивности электромагнитного взаимодействия. Слабое взаимодействие отвечает за некоторые распады элементарных частиц. В том числе - свободных нейтронов.
Существует лишь один тип частиц, которые взаимодействуют с веществом только через слабое взаимодействие. Это - нейтрино. Через каждый квадратный сантиметр нашей кожи ежесекундно проходит почти сотня миллиардов солнечных нейтрино. И мы их совершенно не замечаем. В том смысле, что за время нашей жизни вряд ли несколько штук нейтрино провзаимодействует с веществом нашего тела.
Говорить же о теориях, описывающих все эти типы взаимодействий не будем. Ибо для нас важна качественная картина мира, а не изыски теоретиков.

Естествознание не только выделяет типы материальных объектов во Вселенной, но и раскрывает связи между ними. Связь между объектами в целостной системе более упорядочена, более устойчива, чем связь каждого из элементов с элементами из внешней среды. Чтобы разрушить систему, выделить из системы тот или иной элемент, нужно приложить к ней определенную энергию. Эта энергия имеет разную величину и зависит от типа взаимодействия между элементами системы. В мегамире эти взаимодействия обеспечиваются гравитацией, в макромире к гравитации добавляется электромагнитное взаимодействие, и оно становится основным, как более сильное. В микромире на размерах атома проявляется еще более сильное ядерное взаимодействие, обеспечивающее целостность атомных ядер. При переходе к элементарным частицам энергия внутренних связей становится сравнимой с собственной энергией частиц - слабое ядерное взаимодействие обеспечивает их целостность. Так что чем меньше размеры материальных систем, тем более прочно связаны между собой элементы.

История науки знает множество попыток представить сложные процессы во Вселенной в виде определенных схем. Успешное познание окружающего мира и приведение наблюдаемых явлений к простейшим понятиям возможны лишь в том случае, если бы мы сумели описать мир в терминах ограниченного числа фундаментальных частиц и нескольких типов фундаментальных взаимодействий, в которые они могут вступать. Сейчас мы знаем, что природные вещества - это химические соединения элементов, построенных из атомов и собранных в Периодическую


таблицу. Некоторое время считали, что атомы и есть элементарные кирпичики мироздания, но потом установили, что атом представляет собой «целую Вселенную» и состоит из взаимодействующих друг с другом еще более фундаментальных частиц: протонов, электронов, нейтронов, мезонов и т.д. Число частиц, претендующих на элементарность, увеличивается, но так ли уж они элементарны?

Механика Ньютона была признана, но происхождение сил, которые вызывают ускорения, в ней не обсуждались. Силы гравитации действуют через пустоту, они дальнодействующие, тогда как силы электромагнитные - через среду. В настоящее время все взаимодействия в природе сводят к четырем типам: гравитационные, электромагнитные, сильные ядерные и слабые ядерные.



Гравитация (от лат. gravitas - тяжесть) - исторически первое исследованное взаимодействие. Вслед за Аристотелем считали, что все тела стремятся в «своему месту» (тяжелые - вниз, к Земле, легкие - вверх). Физике XVII-XVIII вв. были известны только гравитационные взаимодействия. По Ньютону, две точечные массы притягивают друг друга с силой, направленной вдоль соединяющей их прямой: Знак минус указывает на то, что мы имеем дело с притяжением, r - расстояние между телами (считается, что размер тел намного меньше r), т 1 и т 2 - массы тел. Величина G - универсальная постоянная, определяющая значение гравитационных сил. Если тела массой по 1 кг находятся на расстоянии 1 м друг от друга, то сила притяжения между ними равна 6,67 10 -11 н. Гравитация универсальна, все тела подвержены ей и даже сама частица - источник гравитации. Если бы величина G была больше, то увеличилась бы и сила, но G очень мала, и гравитационное взаимодействие в мире субатомных частиц несущественно, а между макроскопическими телами еле заметно. Кэвендиш сумел измерить величину G, пользуясь крутильными весами. Универсальность постоянной G означает, что в любом месте Вселенной и в любой момент времени сила притяжения между телами массой по 1 кг, разделенными расстоянием 1 м, будет иметь то же значение. Поэтому можно говорить, что величина G определяет структуру гравитирующих систем. Гравитация, или тяготение, не очень существенна при взаимодействии между малыми частицами, но она удерживает планеты, всю Солнечную систему и галактики. Мы постоянно ощущаем гравитацию в нашей жизни. Закон утвердил дальнодействующую природу силы тяготения и основное свойство гравитационного взаимодействия - его универсальность.

Теория тяготения Эйнштейна (ОТО) дает отличающиеся результаты от закона Ньютона в сильных гравитационных полях, в слабых - обе теории совпадают. Согласно ОТО, гравитация - это проявление искривления пространства-времени. Тела движутся по искривленным траекториям не потому, что на них действует


гравитация, а потому, что они движутся в искривленном пространстве-времени. Движутся «кратчайшим путем, и тяготение - это геометрия». Влияние искривления пространства-времени можно обнаружить не только вблизи коллапсирующих объектов типа нейтронных звезд или черных дыр. Таковы, например, прецессия орбиты Меркурия или замедление времени на поверхности Земли (см. рис. 2.3, в). Эйнштейн показал, что гравитацию можно описывать как эквивалент ускоренного движения.

Чтобы избежать сжатия Вселенной под влиянием самогравитации и обеспечить ее стационарность, он ввел возможный источник гравитации с необычными свойствами, ведущий к «расталкиванию» материи, а не к концентрации ее, а сила отталкивания возрастает с увеличением расстояния. Но эти свойства могут проявляться только в очень больших масштабах Вселенной. Сила отталкивания неимоверно мала и не зависит от отталкивающей массы; ее представляют в виде где т - масса от-

талкиваемого объекта; r - его расстояние от отталкивающего тела; L - константа. В настоящее время устанавливают верхний предел для L = 10 -53 м -2 , т.е. для двух тел массой по 1 кг, находящихся на расстоянии 1 м, сила притяжения превышает космическое отталкивание, по крайней мере в 10 25 раз. Если две галактики с массами 10 41 кг находятся на расстоянии 10 млн св. лет (около 10 22 м), то для них силы притяжения примерно уравновешивались бы силами отталкивания, если величина L действительно близка к указанному верхнему пределу. Эта величина не измерена до сих пор, хотя и важна для крупномасштабной структуры Вселенной как фундаментальная.

Электромагнитное взаимодействие, обусловленное электрическими и магнитными зарядами, переносится фотонами. Силы взаимодействия между зарядами сложным образом зависят от положения и движения зарядов. Если два заряда q 1 и q 2 неподвижны и сосредоточены в точках на расстоянии r, то взаимодействие между ними электрическое и определяется законом Кулона: В зависимости от знаков зарядов q 1 и q 2 сила электрического взаимодействия, направленная вдоль прямой, соединяющей заряды, будет силой притяжения или отталкивания. Здесь через обозначена постоянная, определяющая интенсивность электростатического взаимодействия, ее значение равно 8,85 10 -12 Ф/м. Так, два заряда по 1 Кл, разнесенные на 1 м, будут испытывать силу 8,99 10 9 Н. Электрический заряд всегда связан с элементарными частицами. Численная величина заряда наиболее известных среди них - протона и электрона - одинакова: это универсальная постоянная е = 1,6 10 -19 Кл. Заряд протона считается положительным, электрона - отрицательным.

Магнитные силы порождаются электрическими токами - движением электрических зарядов. Существуют попытки объединить


теории с учетом симметрий, в которых предсказывается существование магнитных зарядов (магнитных монополей), но они пока не обнаружены. Поэтому величина е определяет и интенсивность магнитного взаимодействия. Если электрические заряды движутся с ускорением, то они излучают - отдают энергию в виде света, радиоволн или рентгеновских лучей в зависимости от диапазона частот. Почти все носители информации, воспринимаемые нашими органами чувств, имеют электромагнитную природу, хотя и проявляются подчас в сложных формах. Электромагнитные взаимодействия определяют структуру и поведение атомов, удерживают атомы от распада, отвечают за связи между молекулами, т. е. за химические и биологические явления.

Гравитация и электромагнетизм - дальнодействующие силы, распространяющиеся на всю Вселенную.

Сильные и слабые ядерные взаимодействия - короткодействующие и проявляются только в пределах размеров атомного ядра, т. е. в областях порядка 10 -14 м.

Слабое ядерное взаимодействие ответственно за многие процессы, обуславливающие некоторые виды ядерных распадов элементарных частиц (например, (3-распад - превращение нейтронов в протоны) с радиусом действия почти точечным: около 10 -18 м. Оно сильнее сказывается на превращениях частиц, чем на их движении, поэтому его эффективность определяют постоянной, связанной со скоростью распада, - универсальной постоянной связи g(W), определяющей скорость протекании процессов типа распада нейтрона. Слабое ядерное взаимодействие осуществляют так называемые слабые бозоны, и одни субатомные частицы могут превращаться в другие. Открытие нестабильных субъядерных частиц обнаружило, что слабое взаимодействие вызывает множество превращений. Сверхновые звезды - один из немногих случаев наблюдаемого слабого взаимодействия.

Сильное ядерное взаимодействие препятствует распаду атомных ядер, и не будь его, ядра распались бы из-за сил электрического отталкивания протонов. В ряде случаев для его характеристики вводят величину g(S), аналогичную электрическому заряду, но намного большую. Сильное взаимодействие, осуществляемое глюонами, резко спадает до нуля за пределами области радиусом около 10 -15 м. Оно связывает между собой кварки, входящие в состав протонов, нейтронов и других подобных частиц, именуемых адронами. Говорят, что взаимодействие протонов и нейтронов есть отражение их внутренних взаимодействий, но пока картина этих глубинных явлений скрыта от нас. С ним связаны энергия, выделяемая Солнцем и звездами, превращения в ядерных реакторах и освобождение энергии.

Перечисленные типы взаимодействий имеют, видимо, разную природу. К настоящему времени не ясно, исчерпываются ли ими


все взаимодействия в природе. Самое сильное - короткодействующее сильное взаимодействие, электромагнитное слабее его на 2 порядка, слабое - на 14 порядков, а гравитационное меньше сильного на 39 порядков. В соответствии с величиной сил взаимодействия они происходят за разное время. Сильные ядерные взаимодействия возникают при столкновении частиц с околосветовыми скоростями. Время реакций, определяемое делением радиуса действия сил на скорость света, дает величину порядка 10 -23 с. Процессы слабого взаимодействия происходят за 10 -9 с, а гравитационные - порядка 10 16 с, или 300 млн лет.

«Закон обратных квадратов», по которому действуют друг на друга точечные гравитационные массы или электрические заряды, следует, как показал П.Эренфест, из трехмерности пространства (1917). В пространстве п измерений точечные частицы взаимодействовали бы по закону обратной степени (n - 1). Для п = 3 справедлив закон обратных квадратов, так как 3 - 1 = 2. А при и = 4, что соответствует закону обратных кубов, планеты двигались бы по спиралям и быстро упали на Солнце. В атомах при числе измерений больше трех также не существовало бы устойчивых орбит, т. е. не было бы химических процессов и жизни. На связь трехмерности пространства с законом тяготения указывал еще и Кант.

Кроме того, можно показать, что распространение волн в чистом виде невозможно в пространстве с четным числом измерений - появляются искажения, нарушающие переносимую волной структуру (информацию). Пример тому - распространение волны по резиновому покрытию (по поверхности размерности п = 2). В 1955 г. математик Г. Дж. Уитроу заключил, что поскольку живым организмам необходимы передача и обработка информации, то высшие формы жизни не могут существовать в пространствах четной размерности. Этот вывод относится к известным нам формам жизни и законам природы и не исключает существования иных миров, иной природы.

Фундаментальные взаимодействия

В природе существует огромное множество природных систем и структур, особенности и развитие которых объясняется взаимодействием материальных объектов, то есть взаимным действием друг на друга. Именно взаимодействие – это основная причина движения материи и оно свойственно всем материальным объектам вне зависимости от их происхождения и их системной организации . Взаимодействие универсально, как и движение. Взаимодействующие объекты обмениваются энергией и импульсом (это основные характеристики их движения). В классической физике взаимодействие определяется силой, с которой один материальный объект действует на другой. Долгое время парадигмой была концепция дальнодействия – взаимодействие материальных объектов, находящихся на большом расстоянии друг от друга и оно передается через пустое пространство мгновенно . В настоящее время экспериментально подтверждена другая – концепция близкодействия – взаимодействие передается при помощи физических полей с конечной скоростью, не превышающей скорости света в вакууме. Физическое поле – особый вид материи, обеспечивающей взаимодействие материальных объектов и их систем (следующие поля: электромагнитное, гравитационное, поле ядерных сил – слабое и сильное). Источником физического поля являются элементарные частицы (электромагнитного – заряженные частицы), в квантовой теории взаимодействие обусловлено обменом квантами поля между частицами.

Различают четыре фундаментальных взаимодействия в природе: сильное, электромагнитное, слабое и гравитационное, которые определяют структуру окружающего мира.

Сильное взаимодействие (ядерное взаимодействие) – взаимное притяжение составных частей атомных ядер (протонов и нейтронов)и действует на расстоянии порядка 10 -1 3 см, передается глюонами. С точки зрения электромагнитного взаимодействия протон и нейтрон – разные частицы, так как протон электрически заряжен, а нейтрон - нет. Но с точки зрения сильного взаимодействия, эти частицы неразличимы, так как в стабильном состоянии нейтрон является нестабильной частицей и распадается на протон, электрон и нейтрино, но в рамках ядра он становится похожим по своим свойствам с протоном, поэтому и был введен термин «нуклон (от лат. nucleus - ядро)» и протон с нейтроном стали рассматриваться как два различных состояния нуклона. Чем сильнее взаимодействие нуклонов в ядре, тем стабильнее ядро, тем больше удельная энергия связи.

В стабильном веществе взаимодействие между протонами и нейтронами при не слишком высоких температурах усиливается, но если происходит столкновение ядер или их частей (нуклонов, обладающих высокой энергией) тогда происходят ядерные реакции, которые сопровождаются выделением огромной энергией.

При определенных условиях сильное взаимодействие очень прочно связывает частицы в атомные ядра – материальные системы с высокой энергией связи. Именно по этой причине ядра атомов являются весьма устойчивыми, их трудно разрушить.

Без сильных взаимодействий не существовали бы атомные ядра, а звезды и Солнце не могли бы генерировать за счет ядерной энергии теплоту и свет.

Электромагнитное взаимодействие передается при помощи электрических и магнитных полей. Электрическое поле возникает при наличии электрических зарядов, а магнитное при их движении. Изменяющееся электрическое поле порождает переменное магнитное – это и есть источник переменного магнитного поля. Взаимодействие такого типа свойственно электрически заряженным частицам. Носителем электромагнитного взаимодействия является не имеющий заряда фотон - квант электромагнитного поля. В процессе электромагнитного взаимодействия электроны и атомные ядра соединяются в атомы, атомы - в молекулы. В определенном смысле это взаимодействие является основным в химии и биологии.

Около 90% информации об окружающем мире мы получаем через электромагнитную волну, так как различные агрегатные состояния вещества, трение, упругость и т.п. определяются силами межмолекулярного взаимодействия, которые по своей природе электромагнитные. Электромагнитные взаимодействия описываются законами Кулона, Ампера и электромагнитной теорией Максвелла.

Электромагнитное взаимодействие – это основа создания различных электроприборов, радиоприемников, телевизоров, компьютеров и т.д. Оно примерно в тысячу раз слабее сильного, но значительно более дальнодействующее.

Без электромагнитных взаимодействий не было бы атомов, молекул, макрообъектов, тепла и света.

3. Слабое взаимодействие возможно между различными частицами, кроме фотона, оно является короткодействующим и проявляется на расстояниях, меньших размера атомного ядра 10 -15 – 10 -22 см. Слабое взаимодействие слабее сильного и процессы при слабом взаимодействии протекают медленнее, чем при сильном. Отвечает за распад нестабильных частиц (напр., превращения нейтрона в протон, электрон, антинейтрино). Именно благодаря этому взаимодействию, большинство частиц нестабильны. Переносчики слабого взаимодействия – вионы, частицы с массой в 100 раз больше массы протонов и нейтронов. За счет этого взаимодействия светит Солнце (протон превращается в нейтрон, позитрон, нейтрино, испускаемое нейтрино обладает огромной проницающей способностью).

Без слабых взаимодействий не были бы возможны ядерные реакции в недрах Солнца и звезд, не возникали бы новые звезды.

4. Гравитационное взаимодействие самое слабое, не учитывается в теории элементарных частиц, так как на характерных для них расстояниях (10 -13 см) эффекты малые, а на ультрамалых расстояниях (10 -33 см) и при ультрабольших энергиях гравитация приобретает значение и начинают проявляться необычные свойства физического вакуума.

Гравитация (от лат. gravitas - «тяжесть») - фундаментальное взаимодействие является дальнодействующим (это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени) и ему подвержены все материальные тела. В основном гравитация играет определяющую роль в космических масштабах, Мегамире.

В рамках классической механики, гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m 1 и m 2 , разделёнными расстоянием R , есть

Где G - гравитационная постоянная.

Без гравитационных взаимодействий не было галактик, звезд, планет, эволюции Вселенной.

От силы взаимодействия зависит время, в течение которого совершается превращение элементарных частиц (при сильном взаимодействии ядерные реакции происходят в течение 10 -24 – 10 -23 с., при электромагнитном - изменения осуществляются в течение 10 -19 – 10 -21 с., при слабом распад в течение 10 -10 с.).

Все взаимодействия необходимы и достаточны для построения сложного и разнообразного материального мира, из них по мнению ученых можно получить суперсилу (при очень высоких температурах или энергиях все четыре взаимодействия объединяются в одно ).