25 качественные реакции органических и неорганических соединений. Качественные реакции на ионы и вещества

В школьном курсе химии знакомст­во учащихся с индикаторами сводится в основном к лакмусу, метиловому оранжевому и фенолфталеину. Между тем химических индикаторов гораздо больше.

Приведем одно из наиболее общих определений индикатора: индикатор - это вещество, указывающее на состоя­ние системы или на момент, в который система достигает требуемого равнове­сия. Для химиков важно, что индика­тор своим состоянием показывает на­личие достаточной концентрации опре­деляемого вещества.

Чтобы индикатором можно было пользоваться на практике, изменение его состояния должно легко фиксиро­ваться . Как правило, индикаторы под воздействием определяемого вещества меняют цвет, иногда - агрегатное со­стояние, флуоресцируют. Существуют индикаторы кислотно-основные (рН-индикаторы), окислительно-восстанови­тельные (редокс-индикаторы), а также индикаторы на какое-либо определен­ное вещество или группу веществ. Ос­новной принцип работы индикатора - взаимодействие с определяемым веще­ством с образованием формы, имеющей другие свойства, чем исходная.

В частности, pH-индикаторы представ­ляют собой органические кислоты, ос­нования или соли. Например, метиловый оранжевый - это органическое основа­ние Льюиса желтого цвета, которое под действием кислоты (ионов Н +) превра­щается в соль красного цвета:

Реакция обратима: при добавлении щелочи к соли ионы Н + , связанные с атомами азота, будут взаимодействовать с ионами ОН — с образованием молекул воды и равновесие сдвинется в сторо­ну основания. Поэтому при подщелачи­вании метиловый оранжевый снова станет желтым.

Принцип действия фенолфталеина примерно такой же. Фенолфталеин - бесцветный лактон, образующий под действием основания малиновый ани­он кислоты:


Ниже приведены различные индикаторы, однако для школьного курса химии достаточно знать такие индикаторы как лакмус, метиловый оранжевый и фенофталеин:

Качественные реакции на неорганические вещества и ионы. Катионы

Качественный анализ – раздел аналитической химии, посвященный установлению качественного состава веществ, то есть обнаружению элементов и образуемых ими ионов, входящих в состав и простых, и сложных веществ. Делают это с помощью химических реакций, характерных для данного катиона или аниона, позволяющих обнаружить их как в индивидуальных веществах, так и в смесях.

Задачей качественного анализа является изучение методов, с помощью которых устанавливают, какие химические элементы входят в состав анализируемой пробы.

Химические методы анализа основаны на применении характерных химических реакций для открытия составных частей вещества. Применяемые для этих реакции вещества называются реактивами.

Согласно теории электролитической диссоциации реакции протекают между ионами электролитов, образующимися в водных растворах. Происходящие при этом химические процессы называются аналитическими реакциями.

Они сопровождаются характерными внешними признаками , легко воспринимаемыми нашими органами чувств:

· выделение газа

· изменение окраски раствора

· выпадение осадка

· растворение осадка

· образование кристаллов характерной формы

В первых четырех случаях за протеканием реакции наблюдают визуально, кристаллы рассматривают под микроскопом

Для получения правильных результатов необходимы реакции, выполнению которых не мешают другие присутствующие ионы. Для этого нужны специфические (взаимодействующие только с определяемым ионом) или хотя бы селективные (избирательные) реагенты.

Примером реакции с участием специфического реагента является выделение газообразного NH 3 при действии сильных оснований (KOH или NaOH) на вещество, содержащее ион NH 4 + . Ни один катион не помешает обнаружению иона NH 4 + , потому что только он реагирует со щелочами с выделением NH 3 .

Диметилглиоксим (реагент Чугаева) служит примером селективного реагента: в щелочной среде он реагирует с ионами Ni 2+ , Co 2+ , Fe 2+ , а в кислой – только с ионами Pd 2+ .

К сожалению, селективных, тем более специфических реагентов очень мало, поэтому при анализе сложной смеси приходится прибегать к маскированию мешающих ионов, переводя их в реакционно инертную форму, или, чаще, к разделению смеси катионов или анионов на составные части, называемые аналитическими группами. Делают это с помощью специальных (групповых) реагентов, которые с рядом ионов, реагируя в одних и тех же условиях, образуют соединения с близкими свойствами – малорастворимые осадки или устойчивые растворимые комплексы. Это и позволяет разделить сложную смесь на более простые составные части.

Существует несколько схeм деления катионов на аналитические группы с помощью групповых реагентов. Одна из них основана на использовании различий в растворимости хлоридов, сульфатов и гидроксидов. Действуя на смесь катионов в строго определенном порядке растворами HCl, H 2 SO 4 , NH 3 и NaOH (групповые реагенты), можно разделить содержащиеся в смеси катионы на 6 аналитических групп. Эту схему называют кислотно-щелочной по именам используемых в ней групповых реагентов.

Смотрите качественные реакции на катионы в таблице ниже:

Качественные реакции на анионы

Анионы не имеют общеустановленного разделения на группы, число которых значительно варьирует в разных схемах анализа. Обычно анионы классифицируют по признаку растворимости солей и по признаку окислительной-восстановительной активности.

Групповые реагенты в анализе анионов служат только для их обнаружения (в отличие от катионов, где такие реактивы служат и для разделения).

Смотрите качественные реакции на анионы в таблице ниже:

Идентификация органических соединений

Органическая химия, как вы знаете, это химия углеводородов и их производных.

В состав углеводородов входят элементы углерод и водород. В составе производных углеводородов кроме углерода и водорода могут содержаться кислород, азот, сера, галогены и другие элементы.

Для обнаружения в составе органического соединения тех или иных элементов требуется разрушение его молекулы и перевод составляющих его элементов в простейшие соединения.

Анализ элементного состава может проводиться как качественное определение элементов, входящих в состав органических соединений (С, Н, О, N, S, Cl), так и количественное, показывающее процентное содержание каждого элемента в анализируемом органическом соединении.

Присутствие тех или иных элементов в органическом соединении может быть обнаружено различными методами качественного анализа.

Галогены, например, можно обнаружить качественной пробой Бейльштейна по изменению окраски пламени при внесении медной проволоки с пробой анализируемого вещества в пламя газовой горелки, что объясняется образованием летучих при высокой температуре галогенидов меди. Эта проба чувствительна даже на присутствие следов галогена в органических соединениях.

Проба на окрашивание пламени

Ряд элементов окрашивает пламя в характерный цвет, если под воздействием тепла в пламени появляются отдельные атомы этих элементов. У некоторых элементов атомы отделяются уже при первом погружении в пламя, у иных для этого требуется обработка кислотой. Если в определителе нет других специальных указаний, то обломок минерала надо смочить каплей разбавленной соляной кислоты, которая наносится с помощью стеклянной палочки или пипетки, а затем прокалить.

При совершении электроном квантового скачка с одной разрешенной орбитали на другую атом испускает свет. А поскольку энергетические уровни атомов двух элементов различны, свет, испускаемый атомом одного элемента, будет отличаться от света, испускаемого атомом другого. Это положение лежит в основе науки, которую мы называем спектроскопией.

На этом же положении (что атомы разных элементов испускают свет разной длины волны) основана проба на окрашивание пламени в химии. При нагревании в пламени газовой горелки раствора, содержащего ионы одного из щелочных металлов (то есть одного из элементов первой колонки периодической системы Менделеева), пламя окрасится в определенный цвет в зависимости от того, какой металл присутствует в растворе. К примеру, ярко-желтый цвет пламени выдает присутствие натрия, фиолетовый - калия, а карминно-красный - лития. Происходит это окрашивание пламени так: столкновение с горячими газами пламени переводит электроны в возбужденное состояние, из которого они возвращаются в исходное, одновременно испуская свет характерной длины волны.

Это свойство атомов объясняет, почему лес, прибитый к океанскому берегу, так высоко ценится для топки каминов. Долгое время находясь в море, бревна адсорбируют большое количество разных веществ, и при горении бревен эти вещества окрашивают пламя во множество разных цветов.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Чтобы определить катион серебра, нужно провести реакцию с каким-нибудь хлоридом. Взаимодействие Ag(+) и Cl(-) дает в итоге белый осадок AgCl↓. Катионы бария Ba2+ обнаруживаются в реакции с сульфатами: Ba(2+)+SO4(2-)=BaSO4↓ (белый осадок). Столь же верно и обратное: чтобы обнаружить в растворе хлорид-ионы или сульфат-ионы, нужно провести реакцию, соответственно, с солями серебра и бария.


Для определения катионов Fe(2+) используют гексацианоферрат (III) калия K3, а точнее, комплексный ион (3-). Образующийся темно-синий осадок Fe32 называется «турнбуллевой синью». Для выявления катионов железа (III) берут уже гексацианоферрат (II) калия K4, дающий при взаимодействии с Fe(3+) темно-синий осадок Fe43 – «берлинскую лазурь». Обнаружить Fe(3+) можно также в реакции с роданидом аммония NH4CNS. В результате образуется малодиссоциирующий роданид железа (III) – Fe(CNS)3 – и раствор приобретает кроваво-красный цвет.


Избыток катионов водорода H+ создает кислую среду, в которой соответственно меняются окраски индикаторов: оранжевый и фиолетовый лакмус становятся красными. В избытке же гидроксид-ионов OH- (щелочной среде) лакмус становится синим, метилоранж – желтым, а бесцветный в нейтральной и кислой средах фенолфталеин приобретает малиновое окрашивание.


Чтобы понять, есть ли в растворе катион аммония NH4+, нужно добавить щелочь. При обратимом взаимодействии с гидроксид-ионами NH4+ дает аммиак NH3 и воду. Аммиак имеет характерный запах, а влажная лакмусовая бумажка в таком растворе посинеет.


В качественной реакции на аммиак используется HCl. В процессе образования из аммиака и хлороводорода хлорида аммония HN4Cl можно наблюдать белый дым.


Карбонат- и гидрокарбонат-ионы CO3(2-) и HCO3(-) можно обнаружить при добавлении кислоты. В результате взаимодействия этих ионов с катионами водорода выделяется углекислый газ и образуется вода. При пропускании полученного газа через известковую воду Ca(OH) , поскольку образуется нерастворимое соединение – карбонат кальция CaCO3↓. При дальнейшем пропускании углекислого газа образуется кислая соль – растворимый уже Ca(HCO3)2.


Реагент для обнаружения сульфид-ионов S(2-) – растворимые соли свинца, дающие в реакции с S(2-) черный осадок PbS↓.

Обнаружение ионов при помощи горелки

Соли некоторых металлов при внесении в пламя горелки окрашивают его. Это свойство используется в качественном анализе для обнаружения катионов этих элементов. Так, Ca(2+) окрашивает пламя в кирпично-красный цвет, Ba(2+) - в желто-зеленый. Горение солей калия сопровождается фиолетовым пламенем, лития – ярко-красным, натрия – желтым, стронция – карминово-красным.

Качественные реакции в органической химии

Соединения с двойными и тройными связями (алкены, алкадиены, алкины) обесцвечивают красно-бурую бромную воду Br2 и розовый раствор перманганата калия KMnO4. Вещества с двумя или более гидроксогруппами -OH (многоатомные спирты, моносахариды, дисахариды) растворяют в щелочной среде свежеприготовленный голубой осадок Cu(OH)2, образуя раствор ярко-синего цвета. С гидроксидом меди (II) реагируют также альдегиды, альдозы и восстанавливающие дисахариды (альдегидная группа), но здесь выпадает уже осадок Cu2O↓ кирпично-красного цвета.


Фенол в растворе хлорида железа (III) образует комплексное соединение с FeCl3 и дает фиолетовое окрашивание. Вещества, содержащие альдегидную группу, дают реакции «серебряного зеркала» с аммиачным раствором оксида серебра. Раствор йода при внесении в него крахмала становится фиолетовым, а пептидные связи белков обнаруживаются в реакции с насыщенным раствором сульфата меди и концентрированным едким натром.

Источники:

  • § Качественные реакции в химии

Кислота – это сложное вещество, которое может быть как органическим, так и неорганическим. Общим является то, что они имеют в своем составе атомы водорода и кислотный остаток. Именно последний придает специфические свойства каждой кислоте, а также по нему проводится качественный анализ. Любая растворимая в воде кислота диссоциирует (распадается) на частицы – положительно заряженные ионы водорода, которые и обуславливают кислые свойства, и на отрицательно заряженные ионы кислотного остатка.

Вам понадобится

  • - штатив;
  • - пробирки;
  • - растворы индикаторов;
  • - нитрат серебра;
  • - растворы кислот;
  • - нитрат бария;
  • - медные стружки.

Инструкция

Чтобы определить, что в растворе находится именно , воспользуйтесь индикатором (бумажным или в растворе). Добавьте в емкость к исследуемому раствору лакмус, который в кислой среде становится красным. Для достоверности прилейте другой индикатор – метиловый оранжевый, который изменит окраску на розовую или розово- . Третий индикатор, а именно фенолфталеин в кислой среде не меняется, оставаясь при этом прозрачным. Эти опыты доказывают наличие кислоты, но не специфичность каждой из них.

Для того чтобы определить конкретно, находится в склянке, нужно провести качественную реакцию на остаток. Серная кислота имеет в своем составе сульфат-ион, реагентом на который является ион бария. Добавьте к вещество, содержащее этот ион, например нитрат бария. Моментально выпадет осадок белого цвета, представляющий собой сульфат бария.

1. Качественные реакции на катионы.
1.1. Качественные реакции на катионы щелочных металлов (Li + , Na + , K + , Rb + , Cs +).
Обнаружить катионы щелочных металлов можно при внесении небольшого количества соли в пламя горелки. Тот или иной катион окрашивает пламя в соответствующий цвет:
Li + - темно-розовый.
Na + - желтый.
K + - фиолетовый.
Rb + - красный.
Cs + - голубой.
Катионы так же можно обнаружить и с помощью химических реакций. При сливании раствора соли лития с фосфатами образуется нерастворимый в воде, но растворимый в конц. азотной кислоте, фосфат лития:
3Li + + PO4 3- = Li 3 PO 4 ↓
Li 3 PO 4 + 3HNO 3 = 3LiNO 3 + H 3 PO 4

Катионы K + и Rb + можно выявить добавлением к растворам их солей кремнефтористой кислоты H 2 или ее солей - гексафторсиликатов:
2Me + + 2- = Me 2 ↓ (Me = K, Rb)

Они же и Cs + осаждаются из растворов при добавлении перхлорат-анионов:
Me + + ClO 4 - = MeClO 4 ↓ (Me = K, Rb, Cs).

1.2. Качественные реакции на катионы щелочно-земельных металлов (Ca 2+ , Sr 2+ , Ba 2+).
Катионы щелочно-земельных металлов можно выявить двумя способами: в растворе и по окраске пламени. Кстати, к щелочно-земельным относятся кальций, стронций, барий.
Окраска пламени:
Ca 2+ - кирпично-красный.
Sr 2+ - карминово-красный.
Ba 2+ - желтовато-зеленый.

Реакции в растворах. Катионы рассматриваемых металлов имеют общую особенность: их карбонаты и сульфаты нерастворимы. Катион Ca 2+ предпочитают выявлять карбонат-анионом CO 3 2- :
Ca 2+ + CO 3 2- = CaCO 3 ↓
Который легко растворяется в азотной кислоте с выделением углекислого газа:
2H + + CO 3 2- = H 2 O + CO 2
Катионы Ba 2+ , Sr 2+ предпочитают выявлять сульфат-анионом с образованием сульфатов, нерастворимых в кислотах:
Sr 2+ + SO 4 2- = SrSO 4 ↓
Ba 2+ + SO 4 2- = BaSO 4 ↓

1.3. Качественные реакции на катионы свинца (II) Pb 2+ , серебра (I) Ag + , ртути (I) Hg + , ртути (II) Hg 2+ . Рассмотрим их на примере свинца и серебра.
Эта группу катионов объединяет одна общая особенность: они образуют нерастворимые хлориды. Но катионы свинца и серебра можно выявить и другими галогенидами.

Качественная реакция на катион свинца - образование хлорида свинца (осадок белого цвета), либо образование иодида свинца (осадок ярко - желтого цвета):
Pb 2+ + 2I - = PbI 2 ↓

Качественная реакция на катион серебра - образование белого творожистого осадка хлорида серебра, желтовато-белого осадка бромида серебра, образование желтого осадка иодида серебра:
Ag + + Cl - = AgCl↓
Ag + + Br - = AgBr↓
Ag + + I - = AgI↓
Как видно из выше изложенных реакций, галогениды серебра (кроме фторида) нерастворимы, а бромид и иодид имеют окраску. Но отличительная черта их не в этом. Данные соединения разлагаются под действием света на серебро и соответствующий галоген, что также помогает их идентифицировать. Поэтому часто емкости с этими солями испускают запахи. Также при добавлении к данным осадкам тиосульфата натрия происходит растворение:
AgHal + 2Na 2 S 2 O 3 = Na 3 + NaHal, (Hal = Cl, Br, I).
То же самое произойдет при добавлении жидкого аммиака или его конц. раствора. Растворяется только AgCl. AgBr и AgI в аммиаке практически нерастворимы :
AgCl + 2NH 3 = Cl

Существует также еще одна качественная реакция на катион серебра - образование оксида серебра черного цвета при добавлении щелочи:
2Ag + + 2OH - = Ag 2 O↓ + H 2 O
Это связано с тем, что гидроксид серебра при нормальных условиях не существует и сразу же распадается на оксид и воду.

1.4. Качественная реакция на катионы алюминия Al 3+ , хрома (III) Cr 3+ , цинка Zn 2+ , олова (II) Sn 2+ . Данные катионы объединены образованием нерастворимых оснований, легко переводимых в комплексные соединения. Групповой реагент - щелочь.
Al 3+ + 3OH - = Al(OH) 3 ↓ + 3OH - = 3-
Cr 3+ + 3OH - = Cr(OH) 3 ↓ + 3OH - = 3-
Zn 2+ + 2OH - = Zn(OH) 2 ↓ + 2OH- = 2-
Sn 2+ + 2OH- = Sn(OH) 2 ↓ + 2OH - = 2-
Не стоит забывать, что основания катионов Al 3+ , Cr 3+ и Sn 2+ не переводятся в комплексное соединение гидратом аммиака. Этим пользуются, чтобы полностью осадить катионы. Zn 2+ при добавлении конц. раствора аммиака сначала образует Zn(OH) 2 , а при избытке аммиак способствует растворению осадка:
Zn(OH) 2 + 4NH 3 = (OH) 2

1.5. Качественная реакция на катионы железа (II) и (III) Fe 2+ , Fe 3+ . Данные катионы также образуют нерастворимые основания. Иону Fe 2+ отвечает гидроксид железа (II) Fe(OH) 2 - осадок белого цвета. На воздухе сразу покрывается зеленым налетом, поэтому чистый Fe(OH) 2 получают в атмосфере инертых газов либо азота N 2 .
Катиону Fe 3+ отвечает метагидроксид железа (III) FeO(OH) бурого цвета. Примечание: соединения состава Fe(OH) 3 неизвестно (не получено). Но все же большинство придерживаются записи Fe(OH) 3 .
Качественная реакция на Fe 2+ :
Fe 2+ + 2OH - = Fe(OH) 2 ↓
Fe(OH) 2 будучи соединением двухвалентного железа на воздухе неустойчиво и постепенно переходит в гидроксид железа (III):
4Fe(OH) 2 + O 2 + 2H 2 O = 4Fe(OH) 3

Качественная реакция на Fe 3+ :
Fe 3+ + 3OH - = Fe(OH) 3 ↓
Еще одной качественной реакцией на Fe 3+ является взаимодействие с роданид-анионом SCN - , при этом образуется роданид железа (III) Fe(SCN) 3 , окрашивающий раствор в темно-красный цвет (эффект «крови»):
Fe 3+ + 3SCN - = Fe(SCN) 3
Роданид железа (III) легко «разрушается» при добавлении фторидов щелочных металлов:
6NaF + Fe(SCN) 3 = Na 3 + 3NaSCN
Раствор становится бесцветным.
Очень чувствительная реакция на Fe 3+ , помогает обнаружить даже очень незначительные следы данного катиона.

1.6. Качественная реакция на катион марганца (II) Mn 2+ . Данная реакция основана на жестком окислении марганца в кислой среде с изменением степени окисления с +2 до +7. При этом раствор окрашивается в темно-фиолетовый цвет из-за появления перманганат-аниона. Рассмотрим на примере нитрата марганца:
2Mn(NO 3) 2 + 5PbO 2 + 6HNO 3 = 2HMnO 4 + 5Pb(NO 3) 2 + 2H 2 O

1.7. Качественная реакция на катионы меди (II) Cu 2+ , кобальта (II) Co 2+ и никеля (II) Ni 2+ . Особенность этих катионов в образовании с молекулами аммиака комплексных солей - аммиакатов:
Cu 2+ + 4NH 3 = 2+
Аммиакаты окрашивают растворы в яркие цвета. К примеру, аммиакат меди окрашивает раствор в ярко-синий цвет.

NH ; Na + ; K + ; Mg 2+ ; Ba 2+ ; Ca 2+ ; Fe 2+ ; Fe 3+ ; Mn 2+ ; Co 2+ ; Ni 2+ ; Zn 2+ ;

Al 3+ ; Cr 3+ ; Ag + ; Pb 2+ ; Cu 2+ ; Cd 2+ .

Реакция на ион Na +

Ионы натрия образуют с дигидроантимонатом калия в нейтральной или слабощелочной среде белый кристаллический осадок дигидроантимоната натрия:

2NaCl + K 2 H 2 SbO 4 = Na 2 H 2 SbO 4 ↓ + 2KCl

2Na + + H 2 SbO = Na 2 H 2 SbO 4 ↓

Потирание изнутри стенок пробирки стеклянной палочкой и охлаждение пробирки под холодной струей воды ускоряет осаждение.

Реакция на ион K +

1. Гидротартрат натрия образует с раствором солей калия белый кристаллический осадок гидротартрата калия:

KCl + NaHC 4 H 4 O 6 = KHC 4 H 4 O 6 ↓ +NaCl

K + +HC 4 H 4 O 6 - = KHC 4 H 4 O 6 ↓

Осадок выпадает при потирании стеклянной палочкой внутренней стенки пробирки и охлаждение пробирки под струей холодной воды.

2. Кобальтинитрит натрия образует с растворами солей калия желтый осадок - кобальтинитрит калия:

2KCl + Na 3 = K 2 Na↓ + 2 NaCl

2K + + Na + + 3- = K 2 Na↓

Реакция на ион NH

1. Едкие щелочи KOH и NaOH при нагревании вытесняют из растворов солей аммония аммиак:

NH 4 Cl +KOH = KCl + NH 3 ­ + H 2 O

NH + OH - = NH 3 ­ + H 2 O

Выделяющийся аммиак можно обнаружить по запаху или по влажной индикаторной ленте (щелочная реакция).

2. Реактив Неслера (щелочной раствор комплексной соли K 2 ) образует с раствором соли аммония осадок оранжево-бурого цвета:

NH 4 Cl + 2K 2 +2KOH = J↓ +5KJ +KCl 2H 2 O

NH + 2 2- + 2OH - = NH 2 Hg 2 J 3 ¯+ 5J - + 2H 2 O

В присутствии очень малых количеств раствор окрашивается или в желтый или в бурый цвет.

Реакция на ион Mg 2+

Гидрофосфат натрия образует с солями магния в присутствие NH 4 OH и NH 4 Cl белый кристаллический осадок.

Поместите в пробирку по 2-3 капли растворов MgCl 2 и NH 4 Cl, прибавьте к полученной смеси 2-3 капли раствора Na 2 HPO 4 . Тщательно перемешайте содержимое пробирки стеклянной палочкой и затем добавьте к раствору NH 4 OH:

MgCl 2 + NH 4 Cl + NH 4 OH + Na 2 HPO 4 = MgNH 4 PO 4 ↓ + 2NaCl + NH 4 Cl + H 2 O

Mg 2+ + HPO +NH 4 OH = MgNH 4 PO 4 ↓ + H 2 O

Реакция на ион Ba 2+

1. Дихромат–ион образует с ионами бария осадок желтого цвета (хромат бария):

2BaCl 2 + K 2 Cr 2 O 7 + H 2 O = 2BaCrO 4 ↓ + 2KCl + 2HCl

2Ba 2+ + Cr 2 O + H 2 O = 2BaCrO 4 ↓+ 2H + .

2. Сульфат – ион образует с ионами бария осадок белого цвета (сульфат бария), не растворимый в кислотах:

BaCl 2 + H 2 SO 4 = BaSO 4 ↓ + 2HCl

Ba 2+ + SO = BaSO 4 ↓

3. Оксалат – ион образует с ионами бария осадок белого цвета (оксалат бария):

BaCl 2 + (NH 4)C 2 O 4 = NH 4 Cl + BaC 2 O 4 ↓

Ba 2+ + C 2 O = BaC 2 O 4 ↓

Реакция на ион Ca 2+

Оксалат-ион образует с ионами кальция белый кристаллический осадок:

CaCl 2 + (NH 4) 2 C 2 O 4 = CaC 2 O 4 ↓ + 2NH 4 Cl

Ca 2+ + C 2 O = CaC 2 O 4 ¯

Проведению реакции могут мешать ионы бария.

Реакция на ион Fe 2+

Растворы двухвалентного железа окрашены в бледно-зеленный цвет.

Гексацианоферрат (III) калия с двухвалентным железом образует синий осадок, называемый турнбулевой синью:

3FeCl 2 + 2K 3 = Fe 3 2 ↓ + 6KCl

3Fe 2+ + 2 3- = Fe 3 2 ↓

Реакция на ион Fe 3+

Растворы трехвалентного железа имеют желтую или красно-бурую окраску.

1. Ионы трехвалентного железа с роданид-ионом образуют соединение, окрашивающее раствор в кроваво-красный цвет:

FeCl 3 + 3NH 4 CNS = Fe (CNS) 3 + 3NH 4 Cl

Fe 3+ + 3CNS - = Fe (CNS) 3

Fe 3+ + 6CNS - = 3-

2. Гексацианоферрат (II) калия с трехвалентным железом образует темно-синий осадок, называемый берлинской лазурью:

4FeCl 3 + 3K 4 = Fe 4 3 ↓ + 12KCl

4Fe 3+ + 3 4- = Fe 4 3 ↓

3. Ионы трехвалентного железа со фторидом натрия в растворе образуют бесцветное комплексное соединение:

FeCl 3 + 6NaF =Na 3 + 3NaCl

Fe 3+ + 6NaF = 3- + 6Na +

Реакция на ион Mn 2+

Концентрированные растворы солей марганца имеют бледно-розовый цвет, разбавленные растворы – бесцветны.

Ионы двухвалентного марганца в кислой среде окисляются (в данном случае висмутатом натрия) до перманганат–ионов красно-фиолетового цвета:

2Mn(NO 3) 2 + 5NaBiO 3 + 14HNO 3 = 2NaMnO 4 + 5Bi(NO 3) 3 + 3NaNO 3 +7H 2 O

2Mn 2+ +5BiO + 14H + = 2MnO + 5Bi 3+ +7H 2 O

Реакция на ион Cr 3+

Растворы солей хрома имеют зеленую или фиолетовую окраску.

Ионы трехвалентного хрома окисляются перекисью водорода в щелочной среде до хромат – ионов.

Поместить в пробирку 2-3 капли соли хрома (III), прилить раствор щелочи до растворения осадка. К полученному раствору хромита (изумрудно – зеленого цвета) прилить 2-3 капли перекиси водорода и осторожно нагреть пробирку. Зеленая окраска раствора перейдет в желтую:

CrCl 3 + 4NaOH = NaCrO 2 + 3NaCl + 2H 2 O

Cr 3+ + 4OH - = CrO +2H 2 O

2NaCrO 2 + 3H 2 O 2 + 2NaOH = 2Na 2 CrO 4 + 4H 2 O

2CrO + 3H 2 O 2 + 2OH - = 2CrO + 4H 2 O

Реакция на ион Co 2+

Разбавленные растворы солей кобальта имеют розовую окраску. Роданид-ион с ионами кобальта образуют комплексную соль синего цвета.

Поместите в пробирку 2-3 капли раствора кобальта (II), насыпьте немного сухой соли роданида аммония и прилейте 5-6 капель амилового или изоамилового спирта. Смесь перемешайте. Наблюдайте расслоение жидкостей и окрашивание верхнего слоя в голубой или синий цвет.

CoCl 2 + 4NH 4 CNS = (NH 4) 2 + 2NH 4 Cl

Co 2+ + 4CNS - = 2-

Этой реакции мешают ионы железы (III), которые образуют с роданидом соединение кроваво – красного цвета. Поэтому ионы железа (III) предварительно связывают в бесцветный комплекс фторидом натрия или фторидом аммония.

Реакция на ион Ni 2+

Растворы солей никеля имеют зеленую окраску.

Ионы никеля в аммиачной среде образуют с диметилглиоксимом осадок комплексной соли ало-красного цвета.

Этой реакции мешают ионы трехвалентного и двухвалентного железа:

Реакция на ион Zn 2+

Растворы солей цинка бесцветны.

С гексацианоферратом (II) калия ионы цинка образуют аморфный осадок салатного цвета:

3ZnCl 2 +2K 4 2 = K 2 Zn 3 2 ↓ + 6KCl

2K + + 3Zn 2+ + 2 4- = K 2 Zn 3 2 ↓

Реакция на ион Al 3+

Растворы солей алюминия бесцветны.

При осторожном добавлении щелочей (по каплям) образуется осадок белого цвета в виде белых студенистых хлопьев, часто всплывающих на поверхность раствора:

AlCl 3 + 3NaOH = Al (OH) 3 ↓ + 3NaCl

Al 3+ + 3OH - = Al(OH) 3 ↓

Гидроксид алюминия обладает амфотерными свойствами: при действии на Al (OH) 3 раствором кислоты или щелочи происходит растворение осадка:

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O

Al(OH) 3 + 3H + = Al 3+ + 3H 2 O

Al(OH) 3 + 3NaOH = Na 3

Al(OH) 3 + 3OH - = 3-

Реакция на ион Ag +

1. Хлорид – ион осаждает ионы серебра из раствора в виде белого творожистого осадка:

AgNO 3 + HCl = AgCl↓ + HNO 3

Ag + + Cl - = AgCl↓

Хлорид серебра нерастворим в азотной кислоте, но растворим в гидроксиде аммония:

AgCl + 2NH 4 OH = Cl + 2H 2 O

Если на полученный раствор Cl подействовать раствором азотной кислоты, то AgCl снова выпадает в виде творожистого белого осадка:

Cl + 2HNO 3 = AgCl↓ + 2NH 4 NO 3

2. Иодид – ион с ионами серебра образует осадок желтого цвета:

AgNO 3 + KJ = AgJ↓ + KNO 3

Ag + + J - = AgJ↓

Реакция на ион Pb 2+

1. Хлорид – ион осаждает ионы свинца в виде белого творожистого осадка:

Pb(NO 3) 2 + 2HCl = PbCl 2 ↓ + 2HNO 3

Pb 2+ + 2Cl - = PbCl 2 ↓

Хлорид свинца нерастворим в гидроксиде аммония:

PbCl 2 + NH 4 OH = реакция не идет.

2. Иодид – ион осаждает ионы свинца в виде осадка желтого цвета:

Pb (NO 3) 2 + 2KJ = PbJ 2 ↓ + 2KNO 3

Pb 2+ + 2J - = PbJ 2 ↓

Часть осадка растворите в 5-6 каплях уксусной кислоты при нагревании, а затем осторожно охладите под струей холодной воды. Хлорид свинца из раствора выпадает в виде золотистых хлопьев.

Реакция на ион Cu 2+

1. Гидроксид аммония, добавленный в избытке к солям меди, образует растворимое комплексное соединение василькового цвета:

CuSO 4 + 4NH 4 OH = SO 4 + 4H 2 O

Cu 2+ + 4NH 4 OH = 2+ + 4H 2 O

2. Гексацианоферрат калия осаждает ион меди (II) из раствора в виде осадка красно-коричневого цвета:

2CuSO 4 + K 4 = Cu 2 ↓ + 2K 2 SO 4

2Cu 2+ + 4- = Cu 2 ↓

Реакция на ион Cd 2 +

Сульфид – ион в слабокислой среде осаждает ионы кадмия из раствора в виде осадка желтого цвета:

CdCl 2 + Na 2 S = CdS↓ + 2NaCl

Cd 2+ + S 2- = CdS↓

Контрольные вопросы

1. Приведите примеры катионов и анионов, которые могут быть обнаружены с помощью окислительно-восстановительных реакций.

2. Какие ионы образуют окрашенные комплексные соединения: Cu 2+ ; Cu + ; Fe 2+ ; Fe 3+ ; Co 3+ ; Zn 2+ ; Ag + ?

3. Присутствие каких ионов может быть обнаружено по образованию летучих веществ: SO ; SO ; CO ; PO ; Na + ; NH ?

4. Как доказать наличие ионов Сu 2+ и Ag + в одном растворе?


Лабораторная работа № 3 (4 ч.)

Тема: Карбонаты. Жесткость воды (постоянная и временная).

Цель: ознакомиться со способами устранения временной и постоянной жесткости воды.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Присутствие в воде ионов Са 2+ и Мg 2+ обуславливает так называемую жёсткость воды. Жёсткая вода вызывает повышенный расход мыла, по­скольку при взаимодействии солей кальция и магния с мылом образуются нерастворимые осадки:

2С 17 Нз 5 СООNа+ Са(НСО 3) 2 = 2NаНСОз + (С 17 Н 35 СОО) 2 Са¯

На стенках паровых котлов жёсткая вода образует накипь, обладаю­щую плохой теплопроводностью. Кроме того, накипь способствует корро­зии стенок котлов. В жёсткой воде плохо разваривается мясо, овощи, пло­хо заваривается чай. Очень жёсткая вода не пригодна для питья. Условная классификация воды по уровню жёсткости приведена в табл. 3.

1. Качественные реакции на катионы.
1.1.1 Качественные реакции на катионы щелочных металлов (Li + , Na + , K + , Rb + , Cs +).
Катионы щелочных металлов возможно провести только с сухими солями, т.к. практически все соли щелочных металлов растворимы. Обнаружить их можно при внесении небольшого количества соли в пламя горелки. Тот или иной катион окрашивает пламя в соответствующий цвет:
Li + - темно-розовый.
Na + - желтый.
K + - фиолетовый.
Rb + - красный.
Cs + - голубой.
Катионы так же можно обнаружить и с помощью химических реакций. При сливании раствора соли лития с фосфатами образуется нерастворимый в воде, но растворимый в конц. азотной кислоте, фосфат лития:
3Li + + PO4 3- = Li 3 PO 4 ↓
Li 3 PO 4 + 3HNO 3 = 3LiNO 3 + H 3 PO 4

Катион K + можно вывести гидротартрат-анионом HC 4 H 4 O 6 - - анионом винной кислоты:
K + + HC 4 H 4 O 6 - = KHC 4 H 4 O 6 ↓

Катионы K + и Rb + можно выявить добавлением к растворам их солей кремнефтористой кислоты H 2 или ее солей - гексафторсиликатов:
2Me + + 2- = Me 2 ↓ (Me = K, Rb)

Они же и Cs + осаждаются из растворов при добавлении перхлорат-анионов:
Me + + ClO 4 - = MeClO 4 ↓ (Me = K, Rb, Cs).

1.1.2 Качественные реакции на катионы щелочно-земельных металлов (Ca 2+ , Sr 2+ , Ba 2+ , Ra 2+).
Катионы щелочно-земельных металлов можно выявить двумя способами: в растворе и по окраске пламени. Кстати, к щелочно-земельным относятся кальций, стронций, барий и радий. Бериллий и магний нельзя отнести к этой группе, как это любят делать на просторах Интернета.
Окраска пламени:
Ca 2+ - кирпично-красный.
Sr 2+ - карминово-красный.
Ba 2+ - желтовато-зеленый.
Ra 2+ - темно-красный.

Реакции в растворах. Катионы рассматриваемых металлов имеют общую особенность: их карбонаты и сульфаты нерастворимы. Катион Ca 2+ предпочитают выявлять карбонат-анионом CO 3 2- :
Ca 2+ + CO 3 2- = CaCO 3 ↓
Который легко растворяется в азотной кислоте с выделением углекислого газа:
2H + + CO 3 2- = H 2 O + CO 2
Катионы Ba 2+ , Sr 2+ и Ra 2+ предпочитают выявлять сульфат-анионом с образованием сульфатов, нерастворимых в кислотах:
Sr 2+ + SO 4 2- = SrSO 4 ↓
Ba 2+ + SO 4 2- = BaSO 4 ↓
Ra 2+ + SO 4 2- = RaSO 4 ↓

1.1.3. Качественные реакции на катионы свинца (II) Pb 2+ , серебра (I) Ag + , ртути (I) Hg 2 + , ртути (II) Hg 2+ . Рассмотрим их на примере свинца и серебра.
Эта группу катионов объединяет одна общая особенность: они образуют нерастворимые хлориды. Но катионы свинца и серебра можно выявить и другими галогенидами.

Качественная реакция на катион свинца - образование хлорида свинца (осадок белого цвета), либо образование иодида свинца (осадок ярко желтого цвета):
Pb 2+ + 2I - = PbI 2 ↓

Качественная реакция на катион серебра - образование белого творожистого осадка хлорида серебра, желтовато-белого осадка бромида серебра, образование желтого осадка иодида серебра:
Ag + + Cl - = AgCl↓
Ag + + Br - = AgBr↓
Ag + + I - = AgI↓
Как видно из выше изложенных реакций, галогениды серебра (кроме фторида) нерастворимы, а бромид и иодид даже имеют окраску. Но отличительная черта их не в этом. Данные соединения разлагаются под действием света на серебро и соответствующий галоген, что также помогает их идентифицировать. Поэтому часто емкости с этими солями испускают запахи. Также при добавлении к данным осадкам тиосульфата натрия происходит растворение:
AgHal + 2Na 2 S 2 O 3 = Na 3 + NaHal, (Hal = Cl, Br, I).
То же самое произойдет при добавлении жидкого аммиака или его конц. раствора. Растворяется только AgCl. AgBr и AgI в аммиаке практически нерастворимы :
AgCl + 2NH 3 = Cl

Существует также еще одна качественная реакция на катион серебра - образование оксида серебра черного цвета при добавлении щелочи:
2Ag + + 2OH - = Ag 2 O↓ + H 2 O
Это связано с тем, что гидроксид серебра при нормальных условиях не существует и сразу же распадается на оксид и воду.

1.1.4. Качественная реакция на катионы алюминия Al 3+ , хрома (III) Cr 3+ , цинка Zn 2+ , олова (II) Sn 2+ . Данные катионы объединены образованием нерастворимых оснований, легко переводимых в комплексные соединения. Групповой реагент - щелочь.
Al 3+ + 3OH - = Al(OH) 3 ↓ + 3OH - = 3-
Cr 3+ + 3OH - = Cr(OH) 3 ↓ + 3OH - = 3-
Zn 2+ + 2OH - = Zn(OH) 2 ↓ + 2OH- = 2-
Sn 2+ + 2OH- = Sn(OH) 2 ↓ + 2OH - = 2-
Не стоит забывать, что основания катионов Al 3+ , Cr 3+ и Sn 2+ не переводятся в комплексное соединение гидратом аммиака. Этим пользуются, чтобы полностью осадить катионы. Zn 2+ при добавлении конц. раствора аммиака сначала образует Zn(OH) 2 , а при избытке аммиак способствует растворению осадка:
Zn(OH) 2 + 4NH 3 = (OH) 2

1.1.5. Качественная реакция на катионы железа (II) и (III) Fe 2+ , Fe 3+ . Данные катионы также образуют нерастворимые основания. Иону Fe 2+ отвечает гидроксид железа (II) Fe(OH) 2 - осадок белого цвета. На воздухе сразу покрывается зеленым налетом, поэтому чистый Fe(OH) 2 получают в атмосфере инертых газов либо азота N 2 .
Катиону Fe 3+ отвечает метагидроксид железа (III) FeO(OH) бурого цвета. Примечание: соединения состава Fe(OH) 3 неизвестно (не получено). Но все же большинство придерживаются записи Fe(OH) 3 .
Качественная реакция на Fe 2+ :
Fe 2+ + 2OH - = Fe(OH) 2 ↓
Fe(OH) 2 будучи соединением двухвалентного железа на воздухе неустойчиво и постепенно переходит в гидроксид железа (III):
4Fe(OH) 2 + O 2 + 2H 2 O = 4Fe(OH) 3

Качественная реакция на Fe 3+ :
Fe 3+ + 3OH - = Fe(OH) 3 ↓
Еще одной качественной реакцией на Fe 3+ является взаимодействие с роданид-анионом SCN - , при этом образуется роданид железа (III) Fe(SCN) 3 , окрашивающий раствор в темно-красный цвет (эффект «крови»):
Fe 3+ + 3SCN - = Fe(SCN) 3
Роданид железа (III) легко «разрушается» при добавлении фторидов щелочных металлов:
6NaF + Fe(SCN) 3 = Na 3 + 3NaSCN
Раствор становится бесцветным.
Очень чувствительная реакция на Fe 3+ , помогает обнаружить даже очень незначительные следы данного катиона.

1.1.6. Качественная реакция на катион марганца (II) Mn 2+ . Данная реакция основана на жестком окислении марганца в кислой среде с изменением степени окисления с +2 до +7. При этом раствор окрашивается в темно-фиолетовый цвет из-за появления перманганат-аниона. Рассмотрим на примере нитрата марганца:
2Mn(NO 3) 2 + 5PbO 2 + 6HNO 3 = 2HMnO 4 + 5Pb(NO 3) 2 + 2H 2 O

1.1.7. Качественная реакция на катионы меди (II) Cu 2+ , кобальта (II) Co 2+ и никеля (II) Ni 2+ . Особенность этих катионов в образовании с молекулами аммиака комплексных солей - аммиакатов:
Cu 2+ + 4NH 3 = 2+
Аммиакаты окрашивают растворы в яркие цвета. К примеру, аммиакат меди окрашивает раствор в ярко-синий цвет.

1.1.8. Качественные реакции на катион аммония NH 4 + . Взаимодействие солей аммония со щелочами при кипячении:
NH 4 + + OH - =t= NH 3 + H 2 O
При поднесении влажная лакмусовая бумажка окрасится в синий цвет.

1.1.9. Качественная реакция на катион церия (III) Ce 3+ . Взаимодействие солей церия (III) с щелочным раствором пероксида водорода:
Ce 3+ + 3OH - = Ce(OH) 3 ↓
2Ce(OH) 3 + 3H 2 O 2 = 2Ce(OH) 3 (OOH)↓ + 2H 2 O
Пероксогидроксид церия (IV) имеет красно-бурый цвет.

1.2.1. Качественная реакция на катион висмута (III) Bi 3+ . Образование ярко-желтого раствора тетраиодовисмутата (III) калия K при действии на раствор, содержащий Bi 3+ , избытком KI:
Bi(NO 3) 3 + 4KI = K + 3KNO 3
Связано это с тем, что сначала образуется нерастворимый BiI 3 , который затем связывается с помощью I - в комплекс.
На этом я закончу описание выявления катионов. Теперь рассмотрим качественные реакции на некоторые анионы.