Ферментативных реакций кинетика. От чего зависит активность ферментов? Скорость ферментативной реакции

Введение

Одним из характерных проявлений жизни является способность живых организмов кинетически регулировать химические реакции, подавляя стремление к достижению термодинамического равновесия. Ферментативная кинетика занимается исследованием закономерностей влияния химической природы реагирующих веществ (ферментов, субстратов) и условий их взаимодействия (концентрация, рН среды, температуры, присутствие активаторов или ингибиторов) на скорость ферментативной реакции. Главной целью изучения кинетики ферментативных реакций является получение информации, которая может способствовать выяснению молекулярного механизма действия фермента.

Зависимость скорости ферментативной реакции от концентрации субстрата

фермент субстрат биохимический ингибитор

Общие принципы кинетики химических реакций применимы и к ферментативным реакциям. Известно, что любая химическая реакция характеризуется константой термодинамического равновесия. Она выражает состояние химического равновесия, достигаемого системой, и обозначается Кр. Так, для реакции:

константа равновесия равна произведению концентраций образующихся веществ, деленному на произведение концентрации исходных веществ. Значение константы равновесия обычно находят из соотношения констант скоростей прямой (k+1) и обратной (k-1) реакций, т.е.

В состоянии равновесия скорость прямой реакции:

v+1 = k+1[А]*[B]

равна скорости обратной реакции:

v-1 = k-1[С]*[D],

т.е. v+1 = v-1

соответственно k+1[А]*[B] = k-1[С]*[D],

Рис. 1.

реакции от концентрации субстрата при постоянной концентрации

фермента

а - реакция первого порядка (при [S]<Кm скорость реакции пропорциональна концентрации субстрата); б - реакция смешанного порядка; в - реакция нулевого порядка, когда v = Vmaxi скорость реакции не зависит от концентрации субстрата.

Таким образом, константа равновесия равна отношению констант скоростей прямой и обратной реакций. Величину, обратную константе равновесия, принято называть субстратной константой, или, в случае ферментативной реакции, константой диссоциации фермент-субстратного комплекса, и обозначать символом KS. Так, в реакции

т.е. KS равна отношению произведения концентрации фермента и субстрата к концентрации фермент-субстратного комплекса или отношению констант скоростей обратной и прямой реакций. Следует отметить, что константа KS зависит от химической природы субстрата и фермента и определяет степень их сродства. Чем ниже значение KS, тем выше сродство фермента к субстрату.

При изучении кинетики ферментативных реакций следует учитывать одну важную особенность этих реакций (не свойственную обычным химическим реакциям), связанную с явлением насыщения фермента субстратом. При низкой концентрации субстрата зависимость скорости реакции от концентрации субстрата (рис. 1) является почти линейной и подчиняется кинетике первого порядка. Это означает, что скорость реакции S -> Р прямо пропорциональна концентрации субстрата S и в любой момент времени t определяется следующим кинетическим уравнением:

где [S] - молярная концентрация субстрата S; -d[S]/dt - скорость убыли субстрата; k" - константа скорости реакции, которая в данном случае имеет размерность, обратную единице времени (мин-1 или с-1).

При высокой концентрации субстрата скорость реакции максимальна, становится постоянной и не зависящей от концентрации субстрата [S]. В этом случае реакция подчиняется кинетике нулевого порядка v=k" (при полном насыщении фермента субстратом) и целиком определяется концентрацией фермента. Различают, кроме того, реакции второго порядка, скорость которых пропорциональна произведению концентраций двух реагирующих веществ. В определенных условиях при нарушении пропорциональности говорят иногда о реакциях смешанного порядка (см. рис. 1).

Изучая явление насыщения, Л. Михаэлис и М. Ментен разработали общую теорию ферментативной кинетики. Они исходили из предположения, что ферментативный процесс протекает в виде следующей химической реакции:

т.е. фермент Е вступает во взаимодействие с субстратом S с образованием промежуточного комплекса ES, который далее распадается на свободный фермент и продукт реакции Р. Математическая обработка на основе закона действующих масс дала возможность вывести уравнение, названное в честь авторов уравнением Михаэлиса-Ментен, выражающее количественное соотношение между концентрацией субстрата и скоростью ферментативной реакции:

где v - наблюдаемая скорость реакции при данной концентрации субстрата [S]; KS- константа диссоциации фермент-субстратного комплекса, моль/л; Vmax - максимальная скорость реакции при полном насыщении фермента субстратом.

Из уравнения Михаэлиса-Ментен следует, что при высокой концентрации субстрата и низком значении KS скорость реакции является максимальной, т.е. v=Vmax (реакция нулевого порядка, см. рис. 1). При низкой концентрации субстрата, напротив, скорость реакции оказывается пропорциональной концентрации субстрата в каждый данный момент (реакция первого порядка). Следует указать, что уравнение Михаэлиса-Ментен в его классическом виде не учитывает влияние на скорость ферментативного процесса продуктов реакции, например в реакции

и носит несколько ограниченный характер. Поэтому были предприняты попытки усовершенствовать его. Так, было предложено уравнение Бриггса-Холдейна:

где Кm представляет собой константу Михаэлиса, являющуюся экспериментально определяемой величиной. Она может быть представлена следующим уравнением:

Рис. 2. - Кривая уравнения Михаэлиса-Ментен: гиперболическая

зависимость начальных скоростей катализируемой ферментом реакции

от концентрации субстрата

В числителе представлены константы скоростей распада комплекса ES в двух направлениях (в сторону исходных Е и S и в сторону конечных продуктов реакции Е и Р). Отношение k-1/ k+1 представляет собой константу диссоциации фермент-субстратного комплекса KS, тогда:

Отсюда вытекает важное следствие: константа Михаэлиса всегда больше константы диссоциации фермент-субстратного комплекса KS на величину k+2/k+1.

Для определения численного значения Кm обычно находят ту концентрацию субстрата, при которой скорость ферментативной реакции V составляет половину от максимальной Vmax, т.е. если V = 1/2 Vmaх. Подставляя значение V в уравнение Бриггса-Холдейна, получаем:

разделив обе части уравнения на Vmах, получим

Таким образом, константа Михаэлиса численно равна концентрации субстрата (моль/л), при которой скорость данной ферментативной реакции составляет половину от максимальной.

Определение величины Кm имеет важное значение при выяснении механизма действия эффекторов на активность ферментов и т.д. Константу Михаэлиса можно вычислить по графику (рис. 2). Отрезок на абсциссе, соответствующий скорости, равной половине максимальной, будет представлять собой Кm.

Пользоваться графиком, построенным в прямых координатах зависимости начальной скорости реакции v0 от начальной концентрации субстрата , неудобно, поскольку максимальная скорость Vmax является в данном случае асимптотической величиной и определяется недостаточно точно.

Рис. 3.

Для более удобного графического представления экспериментальных данных Г. Лайнуивер и Д. Бэрк преобразовали уравнение Бриггса-Холдейна по методу двойных обратных величин исходя из того принципа, что если существует равенство между двумя какими-либо величинами, то и обратные величины также будут равны. В частности, если

то после преобразования получаем уравнение:

которое получило название уравнения Лайнуивера-Бэрка. Это уравнение прямой линии:

Если теперь в соответствии с этим уравнением построить график в координатах 1/v(y) от l/[S](x), то получим прямую линию (рис. 3), тангенс угла наклона который будет равен величине Km/Vmax; отрезок, отсекаемый прямой от оси ординат, представляет собой l/Vmax (обратная величина максимальной скорости).

Если продолжить прямую линию за ось ординат, тогда на абсциссе отсекается отрезок, соответствующий обратной величине константы Михаэлиса - 1/Кm (см. рис. 3). Таким образом, величину Кm можно вычислить из данных наклона прямой и длины отрезка, отсекаемого от оси ординат, или из длины отрезка, отсекаемого от оси абсцисс в области отрицательных значений.

Следует подчеркнуть, что значения Vmax, как и величину Кm, более точно, чем по графику, построенному в прямых координатах, можно определить по графику, построенному по методу двойных обратных величин. Поэтому данный метод нашел широкое применение в современной энзимологии. Предложены также аналогичные графические способы определения Кm и Vmaxв координатах зависимости v от v/[S] и [S]/v от [S].

Следует отметить некоторые ограничения применения уравнения Михаэлиса-Ментен, обусловленные множественными формами ферментов и аллостерической природой фермента. В этом случае график зависимости начальной скорости реакции от концентрации субстрата (кинетическая

Рис. 4.

кривая) имеет не гиперболическую форму, а сигмоидный характер (рис. 4) наподобие кривой насыщения гемоглобина кислородом. Это означает, что связывание одной молекулы субстрата в одном каталитическом центре повышает связывание субстрата с другим центром, т.е. имеет место кооперативное взаимодействие, как и в случае присоединения кислорода к 4 субъединицам гемоглобина. Для оценки концентрации субстрата, при которой скорость реакции составляет половину максимальной, в условиях сигмоидного характера кинетической кривой обычно применяют преобразованное уравнение Хилла:

где К" - константа ассоциации; n - число субстрат связывающих центров.

Кинетика ферментативных реакций рассматривается в работах Ментен и Михаэлиса. Подробно ученые описали данный вопрос в уравнении фермент-субстратного комплекса.

Определение

Особенности кинетики ферментативных реакций рассматриваются в науке о ферментах, которая изучает зависимость скорости такого процесса от химических особенностей субстрата, среды, инородных факторов, воздействующих на ход химической реакции.

При существенной концентрации субстрата, она не будет оказывать влияния на скорость процесса.

Специфика протекания

Анализ активности ферментов осуществляется при значительных концентрациях субстратов (нулевом порядке химического процесса). В подобных условиях на изменение скорости процесса будет влиять лишь количество фермента.

Кинетика ферментативных реакций в живых клетках имеет некоторые отличительные характеристики. Ферменты в них применяют не во всю силу. При избыточном количестве субстрата, что возможно в условиях эксперимента, скорость реакции будет пропорциональная количеству фермента. При существенном увеличении этого показателя, наблюдается нарушение подобной пропорциональности.

Действие модуляторов на ферменты

Кинетика ферментативных реакций объясняет линейное возрастание скорости процесса с повышением содержания субстрата. При чрезмерном росте его концентрации наблюдается уменьшение субстрата, снижается быстрота протекания химического процесса.

Кинетика ферментативных реакций подтверждает зависимость активности ферментов от рН среды, специфики фермента, его количества. Вещества, которые влияют на ход подобной реакции, именуют модуляторами либо эффекторами. Их принято подразделять на ингибиторы и активаторы, способствующие замедлению либо ускорению определенного процесса.

Основы кинетики ферментативных реакций дают возможность в полной мере понимать суть воздействия этих веществ. Часть из них считается натуральными регуляторами процесса метаболизма. Есть разные типы модуляторов активности ферментов, которые отличаются друг от друга по механизму воздействия и строению.

Варианты активаторов

Чем характеризуется кинетика ферментативных реакций? Биохимия рассматривает в качестве активаторов желчные кислоты, ионы металлов, анионы. Бывают такие ситуации, когда одно вещество в отношении одного фермента будет выступать активатором, а в ином случае является ингибитором. Специфическими активаторами для выявления ферментов выступают ионы металлов.

Они могут стимулировать процесс присоединения к ферменту субстрата, участвуют в образовании его третичной структуры либо могут выступать в качестве части активного центра.

Какова кинетика ферментативных реакций? Кратко можно отметить, что катионы многих металлов - это обязательные компоненты, необходимые для полноценной работы многих ферментов. Для некоторых из них требуется сразу несколько разных ионов. К примеру, для АТФазы, которая производит транспорт ионов через плазматическую мембрану, требуются ионы магния, натрия, калия.

Металлы могут находиться в составе простетической группы ферментов. К примеру, железо считается важным компонентом каталазы в составе порфириновых соединений. Кобальт есть в составе простетической группы метилмалонилизомеразы и гомоцистеинтрансметилазы, а марганец необходим для активации изоцитратдегидрогеназы. Есть группа ферментов, которая активируется с помощью цАМФ. Подобные ферменты именуются протеинкиназы. Она состоит из двух субъединиц:

  • каталитической, которая содержит активный центр;
  • регуляторная, где располагается центр связывания цАМФ.

Только при взаимодействии регуляторного центра фермента и ц-АМФ, он приобретает активность.

Кинетика ферментативных реакций: константа Михаэлиса, условия протекания, все это подробно рассматривается в физической химии.

Особенности ферментов

Они являются компактными молекулами, имеют относительную молекулярную массу от 104, диаметр от 20А. Ферменты, которые входят в состав глобулярных белков, образуются при определенном соединении пептидными связями 20 аминокислотных остатков.

Внутреннее строение ферментов в биохимии характеризуется четырьмя типами структур:

  • первичная связана с генетическим кодом;
  • вторичная структура характеризует спирализацию цепи;
  • третичная определяет пространственное укладывание спирали полипептидной цепи;
  • четверичная связана с объединением глобул в активный олигомерный фермент.

Специфика процессов с одним субстратом

Кинетика ферментативных реакций уравнения Михаэлиса - Ментен объясняет связь между скоростью и концентрациями субстрата.

В 1903 году Л. Анри допустил, что фермент с субстратом образует некое промежуточное соединение. Если сам фермент считать Е, субстрат S, в таком случае интермедиат будет иметь вид ES.
Л. Михаэлис взял для анализа кинетики данного процесса механизм, который включает в себя две стадии: обратимую, необратимую.

Кинетические уравнения двух этих процессов имеют достаточно сложный вид. Для их решения используют стационарные концентрации. Скорость получения промежуточного соединения описывается законом действующих масс, связывает между собой начальные концентрации субстрата и фермента, текущие показатели, а также концентрации промежуточного вещества и продукта взаимодействия.

Особенности решения

Каковы основные кинетики ферментативных реакций? Таблица, используемая в физической химии, позволяет решать систему уравнений в следующих случаях:

  • при уменьшении концентрации исходных веществ;
  • при превышении количества продукта в сравнении с промежуточным комплексом.

Для ферментативных процессов выполняется соотношение скоростей, при котором вторая константа существенно превышает величину первой. Причина в неустойчивости промежуточного соединения, его несущественной концентрации.

По решению ИЮПАК константа, позволяющая описывать кинетику химического процесса, была названа константой Михаэлиса.

Экспериментальным путем была подтверждена линейная зависимость начальной скорости от концентрации субстрата.

Физический смысл константы Михаэлиса

Для того чтобы ответить на этот вопрос, принимают концентрацию субстрата, при которой фермент проявляет половину своей активности. Константа Михаэлиса имеет такую же размерность, что и первоначальная концентрация субстрата: моль\л.

Численные параметры данной постоянной величины располагаются в пределах 10 -2-10-8 М. В ходе экспериментальных исследований было установлено, что константа Михаэлиса является функцией температуры. Она зависит от наличия иных веществ, которые выполняют в процессе роль активатора либо ингибитора.

Частный случай

Если в ходе процесса достигается состояние, при котором наблюдается равенство констант, в системе устанавливается равновесие. Это дает возможность применять в ходе анализа ферментативных процессов приближение квазиравновесных концентраций.

В итоге существенно упрощается выражение для константы Михаэлиса, она характеризует сродство фермента к используемому субстрату.

Ингибирование ферментативных процессов

В качестве таких веществ выступают реактивы, которые при введении их в реакционную систему, существенно уменьшают скорость взаимодействия. Для ферментативного катализа требуется предварительна адсорбция субстрата, его четкое ориентирование относительно активных групп каталитического центра, а для ингибирования можно ограничиться только обычного связывания ингибитора с некоторыми фрагментами адсорбционного участка.

Проявлять свойства ингибиторов соединения могут из-за образования прочных комплексов (цианиды), а также при действии на карбонильную группу с денатурацией белков.

Типы ингибирования

Эффект замедления химического взаимодействия наблюдается по нескольким причинам:

  • Ингибитор конкурирует за активный центр с субстратом, создавая с ферментом неактивный центр. В случае роста концентрации субстрата, восстанавливается активность в растворе самого фермента.
  • Ингибитор присоединяется к иной части молекулы белка, формируя при этом неактивный комплекс. Фермент восстанавливает свою первоначальную активность под воздействием иных веществ, не затрагивая субстрата.

Скорость процесса связана со скоростью формирования конечного продукта через концентрации, константу Михаэлиса. Последнюю величину можно определять графически, а также выражать математическим путем из формулы. При неактивном комплексе ингибитор не мешает реакции между ферментом и субстратом, но существенно снижает скорость процесса.

При статистической обработке экспериментальных данных удалось для неконкурентного ингибирования выявить основные параметры, доказать связь между величиной скорости и показателями концентраций.

Кинетика химических процессов предполагает описание особенностей всех стадий используя постоянные величины, уравнение Михаэлиса-Ментен. В ходе экспериментальных исследований была выявлена зависимость между скоростью ферментативного процесса и изменением концентрации продукта взаимодействия или исходного субстрата.

Кроме того, установлена связь скорости с природой фермента. Именно от его особенностей напрямую зависит активность, особенности поведения в ходе взаимодействия. Мерой активности фермента считается одна стандартная единиц, характеризующая количество фермента, катализирующее превращение к мкмоль исходного субстрата за минуту.

Ферменты широко применяются в современной медицине, от их активности напрямую зависит быстрота определения проблемы, а также качество постановки медицинского диагноза пациенту.

Скорость ферментативной реакции

Мерой скорости ферментативной реакции служит количество субстрата, подвергшегося превращению в единицу времени, или количество образовавшегося продукта. Скорость определяют по углу наклона касательной к кривой на начальной стадии реакции.

Рис. 2 Скорость ферментативной реакции.

Чем круче наклон, тем больше скорость. Со временем скорость реакции обычно снижается, по большей части в результате снижения концентрации субстрата.

Факторы, влияющие на ферментативную активность

Действие Ф. зависит от ряда факторов: температуры, реакции среды (pH), концентрации фермента, концентрации субстрата, от присутствия специфических активаторов и неспецифических или специфических ингибиторов.

Концентрация фермента

При высокой концентрации субстрата и при постоянстве других факторов скорость ферментативной реакции пропорциональна концентрации фермента.

Рис. 3 Зависимость скорости ферментативной реакции от концентрации фермента.

Катализ осуществляется всегда в условиях, когда концентрация фермента гораздо ниже концентрации субстрата. Поэтому с возрастанием концентрации фермента растет и скорость ферментативной реакции.

Температура

Влияние температуры на скорость ферментативной реакции может быть выражено через температурный коэффициент Q 10: Q 10 = (скорость реакции при (х + 10)°C) / (скорость реакции при х °C)

В пределах 0-40°C Q 10 ферментативной реакции равен 2. Иными словами, при каждом повышении температуры на 10°C скорость ферментативной реакции удваивается.

Рис. 4 Влияние температуры на активность такого фермента, как амилаза слюны.

С повышением температуры движение молекул ускоряется, и у молекул реагирующих веществ больше шансов столкнуться друг с другом. Увеличивается, следовательно, и вероятность того, что реакция между ними произойдет. Температура, обеспечивающая наибольшую активность, называется оптимальной. За пределами этого уровня скорость ферментативной реакции снижается, несмотря на увеличение частоты столкновений. Происходит это вследствие разрушения вторичной и третичной структур фермента, иными словами, вследствие того, что фермент претерпевает денатурацию.

Рис. 5 Ход ферментативной реакции при разных температурах.

Когда температура приближается к точке замерзания или оказывается ниже ее, ферменты инактивируются, но денатурации при этом не происходит. С повышением температуры их каталитическая активность вновь восстанавливается.

Поскольку белки в сухом состоянии денатурируются значительно медленнее, чем белки оводненные (в виде белкового геля или раствора), инактивирование Ф. в сухом состоянии происходит гораздо медленнее, чем в присутствии влаги. Поэтому сухие споры бактерий или сухие семена могут выдержать нагревание до гораздо более высоких температур, чем те же споры или семена в увлажненном состоянии.

Концентрация субстрата

При данной концентрации фермента скорость ферментативной реакции возрастает с увеличением концентрации субстрата.

Рис. 6 Зависимость скорости ферментативной реакции от концентрации субстрата.

Теоретическая максимальная скорость реакции V max никогда не достигается, но наступает момент, когда дальнейшее увеличение концентрации субстрата уже не влечет за собой сколько-нибудь заметного изменения скорости реакции. Это следует объяснить тем, что при высоких концентрациях субстрата активные центры молекул Ф. в любой данный момент оказываются практически насыщенными. Таким образом, сколько бы ни было в наличии избыточного субстрата, он может соединиться с Ф. лишь после того, как образовавшийся ранее фермент-субстратный комплекс диссоциирует на продукт и свободный Ф. Поэтому при высоких концентрациях субстрата скорость ферментативной реакции лимитируется и концентрацией субстрата, и временем, которое требуется для диссоциации фермент-субстратного комплекса.

При постоянной температуре любой Ф. работает наиболее эффективно в узких пределах pH. Оптимальным считается то значение pH, при котором реакция протекает с максимальной скоростью.

Рис. 7 Зависимость активности фермента от pH.

При более высоких и более низких pH активность Ф. снижается. Сдвиг pH меняет заряд ионизированных кислотных и основных групп, от которого зависит специфичная форма молекул Ф. В результате изменяется форма молекул Ф., и в первую очередь форма его активного центра. При слишком резких сдвигах pH Ф. денатурирует. Свойственный данному Ф. оптимум pH не всегда совпадает с pH его непосредственного внутриклеточного окружения. Это позволяет предположить, что среда, в которой находится Ф., в какой-то мере регулирует его активность.

При t=36-38 0 ферменты обладают наибольшей активностью. Эта температура называется температурный оптимум:

С повышением t 0 до оптимума активность ферментов повышается.

Высокие t вызывают денатурацию ферментов.

Низкие t снижают активность ферментов.

Изменение t 0 приводит к нарушению связей, закрепляющих белковую структуру ферментов (третичную, четвертичную), т.е. вызывает денатурацию.

Обратимая денатурация наблюдается при понижении t 0 . Это позволяет хранить ферменты, биологические жидкости, кровь.

Повышение температуры необратимо нарушает белковую структуру фермента. Это свойство используется при стерилизации материалов, инструментов.

Лихорадка – защитное свойство организма, т.к. происходит денатурация ферментов микроорганизмов и поэтому нецелесообразно применять жаропонижающие средства.

Зависимость скорости реакции от рН

На графике эта зависимость имеет вид колокола. На вершине кривой есть точка оптимума рН, где фермент имеет наибольшую активность. рН оказывает воздействие на степень ионизации кислотных и основных групп. При различных значениях рН активный центр может находиться в частично ионизированной или неионизированной форме, что оказывает влияние на третичную структуру активного центра и на формирование фермент-субстратного комплекса.

Влияние рН.

Ферменты, как и все белки содержат много зараженных положительно и отрицательно групп (-NH 2 ,-COOH), которые входят в состав аминокислот арг, лиз, асп, глу. Общий заряд зависит от соотношения между этими группами. Заряд белка-фермента изменяется в зависимости от концентрации в клетке ионов водорода, которые нейтрализуют (подавляют диссоциацию) карбоксильной группы:

и образуют положительно заряженные группы:

Таким образом увеличение положительного заряда или уменьшение отрицательного заряда на поверхности фермента обусловлено повышением концентрации ионов водорода.

Состояние белковой молекулы, при котором суммарный заряд белка равен 0, называется изоэлектрическим состоянием.

Значение рН, при котором заряд белковой молекулы равен 0, называется изоэлектрической точкой (ИЭТ).

Большинство ферментов отличаются наибольшей активностью и стабильностью в области изоэлектрической точки.

Резкие колебания рН способствуют денатурации белка, т.е. уменьшению ферментативной активности.

Значение рН, при котором фермент проявляет максимальную активность, называется оптимумом рН, который характерен для данного фермента, реагирующего с определенным субстратом.

Внутриклеточные ферменты обычно имеют оптимум рН соответствующий нейтральной среде (рН =7) близкой к нормальному значению рН для жидкостей организма. Есть ферменты оптимум рН которых находится в сильнокислой и сильнощелочной среде

Классификация ферментов.

Выделяют шесть классов ферментов:

1. Гидролазы – ферменты, расщепляющие субстрат при участии молекул воды.

2. Лиазы – ферменты, расщепляющие молекулы субстрата без участия воды, при этом часто образуются низкомолекулярные продукты – СО 2 , NH 3 , Н 2 О.

3. Изомеразы – ферменты, вызывающие в молекуле изомерные превращения.

4. Феразы (трансферазы) – ферменты, переносящие группы от одной молекулы на другую или из одного положения в другое в пределах одной молекулы.

5. Оксидоредуктазы - ферменты, катализирующие перенос протонов и электронов (т.е.окислительно-восстановительные реакции).

6. Лигазы(синтетазы) – ферменты, катализирующие синтез крупных молекул из более мелких.

Номенклатура ферментов.

Рабочее название фермента складывается из названия субстрата, типа катализируемой реакции и окончания –аза.

Систематическое название складывается из названия субстратов, названия типа катализируемого химического превращения и окончания –аза.

Название класса указывает на тип химической реакции, катализируемой ферментами. Классы делятся на подклассы – уточняет действие фермента, так как указывает на природу химической группы субстрата, атакуемой ферментом. Подкласс делится на подподклассы. Подподклассы конкретизируют действие фермента, уточняя природу атакуемой связи субстрата или природу акцептора.

I. Оксидоредуктазы катализируют окислительно-восстановительные реакции. Оксидоредуктазы называют также дегидрогеназами или редуктазами. Оксидоредуктазы переносят протоны и электроны. Оксидоредуктазы делят на подклассы:

1. Аэробные дегидрогеназы – переносят протоны и электроны на кислород.

Коферментами оксидоредуктаз являются:

НАД – никотинамидадениндинуклеотид – содержит витамин В 5 – никотинамид.

НАДФ – никотинамидадениндинуклеотид фосфат, содержит витамин В 5 .

ФАД – флавинадениндинуклеотид, содержит витамин В 2 – рибофлавин.

ФМН – флавинмононуклеотид, содержит витамин В 2 – рибофлавин.

Оксидоредуктазы катализируют реакции дегидрирования, т.е. отщепление водорода.

Оксидоредуктазы окисляют следующие функциональные группы:

ОН, -С=О, -NH 2

Коферменты дегидрогеназ присоединяют протоны и электроны.

НАД-зависимые дегидрогенизы окисляют следующие функциональные группы: спиртовый гидроксил (ОН), альдегидную группу (СОН), аминогруппу (NH 2).

НАД-зависимые дегидрогеназы катализируют следующие типы реакций:

1. Дегидрирование гидроксильных групп

| лактатдегидрогеназа |

COOH НАД + НАДН +Н + СН 3

Лактат пируват

Молочная кислота

2. Дегидрирование альдегидных групп (дегидрирование глицеральдегид – 3 – фосфата)

| + НАД + + Н 3 РО 4 | + НАДН + Н +

CH 2 OPO 3 H 2 CH 2 OPO 3 H 2

Глицеральдегид-3-фосфат 1,3-бифосфоглицериновая кислота

3. Дегидрирование аминогрупп

СООН СООН

СН 2 +НАД СН 2

| | + НАДН + Н +

СН 2 глутаматдегидрогеназа СН 2

Глутаминовая кислота

ФАД – зависимые дегидрогеназы окисляют (дегидрируют) следующие функциональные группы: отщепление водорода от групп –СН 2 - СН 2 - с образованием двойной связи.

СООН СООН

| ФАД ФАДН 2 |

СН 2 сукцинатдегидрогеназа СН

СООН СООН

Сукцинат фумарат

2. Анаэробные дегидрогеназы переносят протоны и электроны не на кислород, а на какой-то другой субстрат. Эти ферменты называют также оксигеназами.

II. Трансферазы – ферменты, катализирующие реакции переноса различных групп от одного субстрата к другому.

Подклассы трансфераз:

1. Аминотрансферазы осуществляют перенос аминогруппы с аминокислоты на кетокислоту. Катализируют реакцию трансаминирования.

2. Метилтрансферазы катализируют перенос метильных групп (СН 3 -).

3. Фосфотрансферазы катализируют перенос остатка фосфорной кислоты. В подкласс фосфотрансфераз входят киназы, которые используют АТФ в качестве донора фосфатного остатка.

III. Лиазы – ферменты, катализирующие разрыв С-О, С-С, С-N и других связей, а также обратимые реакции отщепления различных групп, без участия воды.

1. Карбоксилазы – присоединение карбоксильной группы (СО 2).

2. Дегидратазы – отнятие молекулы воды от субстрата.

3. Альдолазы – расщепляют связь С-С.

4. Гидратазы – ферменты воды по двойной связи.

IV. Изомеразы – ферменты, катализирующие превращение в пределах одной молекулы.

Катализируют реакции изомеризации. Подклассы: мутазы, таутомеразы, рацемазы, эпимеразы, изомеразы.

V. Гидралазы – ферменты, катализирующие разрыв связей в присутствии воды.

VI. Лигазы (синтетазы) – ферменты, катализирующие соединение двух молекул с использованием энергии фосфатной связи АТФ.

Влияние низкомолекулярных веществ на активность фенрментов.

Низкомолекулярные вещества, изменяющие скорость ферментативных реакций делят на 2 группы:

1. Активаторы – ускоряющие протекание ферментативной реакции.

2. Ингибиторы – замедляют протекание ферментативных реакций.

Активаторы делят на 2 группы:

1. В качестве активатора могут выступать коферменты или простетическая группа (в основном витамины).

Для этой группы характерны те же закономерности, что описаны для взаимодействия фермента и субстрата F+S и A+Ko подчиняются одним закономерностям

K m определяет сколько вводить Ko.

2. Активаторы, являющиеся связующим звеном между F и S (ориентирование фермента и субстрата) и обеспечивающим взаимодействие фермента и субстрата (F A S), взаимодействие апофермента и кофактора Апоф А Ко

Часто это ионы Ме – Со, Mn, Mg, Zn.

Значение ингибирования активности ферментов.

1. Ингибирование лежит в основе действия лекарственных веществ и токсических агентов.

2. Ингибирование – один из подходов к изучению ферментативного действия (например, структуры активного центра).

Ингибирование бывает 2-х видов:

1. Необратимое

2. Обратимое

Необратимое ингибирование имеет место тогда, когда присоединение ингибитора к ферменту носит необратимый характер.

Например: это действие алкилирующих агентов (подацетамид) необратимо действующих на тиогруппу ферментов. Необратимость связана с тем, что равновесие смещено вправо, в сторону образования ковалентного производного фермента:

F-S-H + J-CH 2 CONH 2 F-S-CH 2 -CONH 2 + HJ

Необратимым является действие токстческих фосфоорганических соединений, которые называют нервно-паралитическими ядами, они ингибируют ацетилхолинэстеразу, участвующую в передаче нервных импульсов.

Необратимое ингибирование

Многие ингибиторы необратимо связываются с Е или ES, и, поскольку это влияет на V max , такое ингибирование относят к неконкурентному.

Ингибиторы этого типа часто ковалентно связываются с ферментом или с комплексом фермент-субстрат, необратимо изменяя нативную конфигурацию. Это объясняет токсическое действие Hg 2+ , Pb 2+ и соединений мышьяка.

На необратимом ингибировании основано действие пенициллина. Пенициллин ингибирует действие одного из ферментов, участвующих в сборке клеточной стенки бактерий. Клетки, ен имеющие клеточной стенки, легко лизируются.

Действие аспирина основано на ковалентной модификации фермента. Аспирин снижает скорость синтеза простагландинов, выступая в роли ингибитора циклооксигеназного компонента эндопероксид-синтетазы. Считается, что возникновение болей, воспалений, температуры связано с простагландинами.

При интоксикации связывание яда или его вытеснение из комплекса фермент-ингибитор возможно с помощью реактиваторов, или противоядий. К ним относятся все SH – содержащие комплексоны (цистеин, димеркаптопропанол), лимонная кислота.

Обратимое ингибирование бывает 2-х видов:

1. Конкурентное

2. Неконкурентное

Обратимое конкурентное ингибирование – активность фермента восстанавливается после удаления ингибитора путем увеличения концентрации субстрата.

Отличительный признак конкурентного ингибитора – конкурентный ингибитор по структуре близок субстрату. Конкурентный ингибитор конкурирует с субстратом за активный центр фермента.

Пример: сукцинатдегидрогеназа катализирует превращение сукцината в фумарат. Конкурентным ингибитором сукцинатдегидрогеназы является малоновая кислота, которая содержит на одну группу СН 2 меньше, чем сукцинат.

СООН СООН COOH

СН 2 СН CH 2

СН 2 СН COOH

| | малоновая кислота

СООН СООН

Сукцинат и малоновая кислота являются структурными аналогами и конкурируют за активный центр фермента. (Это является подтверждением тому, что активный центр не является жестким образованием, подходящим субстрату, как «ключ-замок».)

При конкурентном ингибировании степень ингибирования фермента не зависит от абсолютной концентрации ингибитора, а от соотношения ингибитора и субстрата, если это соотношение J:S=1:50, то активность фермента ингибируется на 50%.

Действие конкурентного ингибитора снимается повышением концентрации субстрата, так как сродство фермента и субстрата выше, чем сродство фермента и ингибитора.

Кm F и S и Km F и J различны и это узнают путем построения графиков Михаэлиса-Ментен и Лайнуэвера-Бэрка

V max – одинакова

K m с ингибитором увеличивается.

Действие многих химиотерапевтических средств основано на конкурентном ингибировании. Например, сулфаниламидные препараты, используемые для лечения болезней, вызываемых микробными инфекциями. Сульфаниламидные препараты по структуре сходны с п-аминобензойной кислотой. ПАБК является предшественником в микробиологическом синтезе фолиевой кислоты, из которой кофермент, необходимый для синтеза нуклииновых кислот микроорганизмов. При введении сульфаниламидных препаратов наблюдается угнетение фермента и гибель микроорганизмов.

На конкурентном ингибировании основано применение и фторурацила, который используется при лечения рака.

Неконкурентное, обратимое ингибирование.

Действие неконкурентного ингибитора не может быть устранено увеличением концентрации субстрата.

Неконкурентный ингибитор не связывается с активным центром, он может связываться со свободным ферментом , либо с комплексом FS , либо с тем и другим, но обе формы JF и JFS – не активны.

K m - не изменяется, т.к. нет связывания с активным центром.

V max – уменьшается.

Наиболее общий тип неконкурентного ингибирования имеет место при действии реагентов, обратимо связывающих SH-группы цис, входящего в каталитический центр или близко от него. Это ионы Cu 2+ , Hg 2+ , Ag + и их производные с образованием меркаптидов:

Ферменты, для активации которых необходимы ионы Ме ингибируются по такому способу агентами связывающими эти ионы:

ферро или ферроцианид.

Регуляция активности ферментов.

Использование ферментов в фармации, медицине.

Виды регуляции активности ферментов:

1. Аллостерическая модификация.

2. Активация зимогенов.

3. Регуляция путем химической модификации.

Конец работы -

Эта тема принадлежит разделу:

Структура, свойства и функции белков

Выяснение структуры белков является одной из главных проблем современной биохимии.. Белковые молекулы представляют собой высокомолекулярные соединения.. Большинство белков имеют уровня организации структуры белковой молекулы..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Практически все биохимические реакции являются ферментативными. Ферменты (биокатализаторы) - это вещества белковой природы, активированные катионами металлов. Известно около 2000 различных ферментов, а примерно 150 из них выделены, причем некоторые используются в качестве лекарственных препаратов. Трипсин и химотрипсин применяются для лечения бронхитов и пневмонии; пепсин - для лечения гастрита; плазмин - для лечение инфаркта; панкреатин – для лечение поджелудочной железы. Ферменты отличаются от обычных катализаторов: (а) более высокой каталитической активностью; (б) высокой специфичностью, т.е. избирательностью действия.

Механизм односубстратной ферментативной реакции можно представить схемой:

где Е - фермент,

S - субстрат,

ЕS - фермент-субстратный комплекс,

Р - продукт реакции.

Характеристикой первой стадии ферментативной реакции является константа Михаэлиса (К М) . К М является величиной, обратной константе равновесия:

константа Михаэлиса (К М) характеризует устойчивость фермент-субстратного комплекса (ES). Чем меньше константа Михаэлиса (К М), тем устойчивее комплекс.

Скорость ферментативной реакции равна скорости ее лимитирующей стадии:

где k 2 – константа скорости, называемая числом оборотов или молекулярной активностью фермента.

молекулярная активность фермента (k 2) равна числу молекул субстрата, претерпевающих превращения под воздействием одной молекулы фермента за 1 минуту при 25 0 С. Данная константа принимает значения в диапазоне: 1·10 4 < k 2 < 6·10 6 мин‾ 1 .

Для уреазы, ускоряющей гидролиз мочевины, k 2 = 1,85∙10 6 мин‾ 1 ; для аденозинтрифосфатазы, ускоряющей гидролиз АТФ, k 2 = 6,24∙10 6 мин‾ 1 ; для каталазы, ускоряющей разложение Н 2 О 2 , k 2 = 5∙10 6 мин‾ 1 .

Однако кинетическое уравнение ферментативной реакции в той форме, в которой оно приведено выше, практически невозможно использовать из-за невозможности экспериментального определения концентрации фермент-субстратного комплекса (). Выразив через другие величины, легко определяемые экспериментальным путем, получаем кинетическое уравнение ферментативных реакций, называемое уравнением Михаэлиса-Ментен (1913):

,

где произведение k 2 [E] общ является величиной постоянной, которую обозначают (максимальная скорость).

Соответственно:

Рассмотрим частные случаи уравнения Михаэлиса-Ментен.

1) При низкой концентрации субстрата K M >> [S], поэтому

что соответствует кинетическому уравнению реакции первого порядка.

2) При высокой концентрации субстрата К м << [S], поэтому

что соответствует кинетическому уравнению реакции нулевого порядка.

Таким образом, при низкой концентрации субстрата скорость ферментативной реакции возрастает с увеличением содержания субстрата в системе, а при его высокой концентрации – кинетическая кривая выходит на плато (скорость реакции не зависит от концентрации субстрата) (рис. 30).

Рисунок 30. - Кинетическая кривая ферментативной реакции

Если [S] = К М, то

что позволяет графически определять константу Михаэлиса К м (рис. 31).

Рисунок 31. - Графическое определение константы Михаэлиса

На активность ферментов оказывают влияние: (а) температура, (б) кислотность среды, (в) наличие ингибиторов. Влияние температуры на скорость ферментативной реакции рассмотрено в главе 9.3.

Влияние кислотности среды на скорость ферментативной реакции представлено на рисунке 32. Максимальная активность фермента соответствует оптимальному значению водородного показателя (рН опт).

Рисунок 32. - Влияние кислотности растворов на активность ферментов

Для большинства ферментов оптимальные значения рН совпадают с физиологическими значениями (7,3 - 7,4). Однако существуют ферменты, для нормального функционирования которых нужна сильнокислая (пепсин - 1,5- 2,5) или достаточно щелочная среда (аргиназа - 9,5 - 9,9).

Ингибиторы ферментов - это вещества, занимающие часть активных центров молекул фермента, в результате чего скорость ферментативной реакции уменьшается. В роли ингибиторов выступают катионы тяжелых металлов, органические кислоты и другие соединения.

Лекция 11

Строение атома

Существуют два определения понятия «атом».Атом - это мельчайшая частица химического элемента, сохраняющая его химические свойства.

Атом - это электронейтральная микросистема, состоящая из положительно заряженного ядра и отрицательно заряженной электронной оболочки.

Учение об атоме прошло длительный путь развития. К основным этапам развития атомистики относят:

1) натурфилософский этап - период формирования концепции об атомном строении материи, не подтвержденной экспериментом (V век до н.э. - 16 век н.э.);

2) этап формирования гипотезы об атоме как мельчайшей частице химического элемента (XVIII-XIX в.в.);

3) этап создания физических моделей, отражающих сложность строения атома и позволяющих описать его свойства (начало XX в.)

4) современный этап атомистики называется квантово-механическим. Квантовая механика – это раздел физики, изучающий движение элементарных частиц.

ПЛАН

11.1. Строение ядра. Изотопы.

11.2. Квантово-механическая модель электронной оболочки атома.

11.3. Физико-химические характеристики атомов.

Строение ядра. Изотопы

Ядро атома - это положительно заряженная частица, состоящая из протонов, нейтронов и некоторых других элементарных частиц.

Принято считать, что основными элементарными частицами ядра являются протоны и нейтроны. Протон (p) – это элементарная частица, относительная атомная масса которой равна 1 а.е.м, а относительный заряд составляет + 1. Нейтрон (n) – это элементарная частица, не имеющая электрического заряда, масса которой равна массе протона.

В ядре сосредоточено 99,95 % массы атома. Между элементарными частицами действуют особые ядерные силы протяжения, значительно превосходящие силы электростатического отталкивания.

Фундаментальной характеристикой атома является заряд егоядра , равный числу протонов и совпадающий с порядковым номером элемента в периодической системе химических элементов. Совокупность (вид) атомов с одинаковым зарядом ядра называется химическим элементом . В природе найдены элементы с номерами от 1 до 92.

Изотопы - это атомы одного химического элемента, содержащие одинаковое количество протонов и разное количество нейтронов в ядре.

где массовое число (А) – это масса ядра, z – заряд ядра.

Каждый химический элемент представляет собой смесь изотопов. Как правило, название изотопов совпадает с названием химического элемента. Однако для изотопов водорода введены особые названия. Химический элемент водород представлен тремя изотопами:

Число р Число n

Протий Н 1 0

Дейтерий Д 1 1

Тритий Т 1 2

Изотопы химического элемента могут быть как стабильными, так и радиоактивными. Радиоактивные изотопы содержат ядра, самопроизвольно разрушающиеся с выделением частиц и энергии. Стабильность ядра определяется его нейтронно-протонным отношением.

Попадая в организм, радионуклиды нарушают протекание важнейших биохимических процессов, снижают иммунитет, обрекают организм на болезни. Организм защищает себя от воздействия радиации, избирательно поглощая элементы из окружающей среды. Стабильные изотопы имеют приоритет перед радиоактивными изотопами. Другими словами, стабильные изотопы блокируют накопление радиоактивных изотопов в живых организмах (таб. 8).

В книге С.Шеннон «Питание в атомном веке» приводятся следующие данные. Если блокирующую дозу стабильного изотопа йода, равную ~100 мг, принять не позднее чем через 2 часа после попадания I-131в организм, то поглощение радиойода в щитовидной железе снизится на 90%.

Радиоизотопы применяются в медицине

· для диагностики некоторых заболеваний,

· для лечения всех форм онкологических заболеваний,

· для патофизиологических исследований.

Таблица 8 - Блокирующее действие стабильных изотопов