Каким плоскостям принадлежит точка м. Каким плоскостям принадлежит точка

Признаки принадлежности хорошо известны из курса планиметрии. Наша задача рассмотреть их применительно к проекциям геометрических объектов.

Точка принадлежит плоскости, если она принадлежит прямой, лежащей в этой плоскости.

Принадлежность прямой плоскости определяется по одному из двух признаков:

а) прямая проходит через две точки, лежащие в этой плоскости;

б) прямая проходит через точку и параллельна прямой, лежащим в этой плоскости.

Используя эти свойства, решим в качестве примера задачу. Пусть плоскость задана треугольником АВС . Требуется построить недостающую проекцию D 1 точки D , принадлежащей этой плоскости. Последовательность построений следующая (рис. 2.5).

Через точку D 2 проводим проекцию прямой d , лежащей в плоскости DАВС , пересекающую одну из сторон треугольника и точку А 2 . Тогда точка 1 2 принадлежит прямым А 2 D 2 и C 2 В 2 . Следовательно, можно получить ее горизонтальную проекцию 1 1 на C 1 В 1 по линии связи. Соединив точки 1 1 и А 1 , получаем горизонтальную проекцию d 1 . Ясно, что точка D 1 принадлежит ей и лежит на линии проекционной связи с точкой D 2 .

Достаточно просто решаются задачи на определение принадлежности точки или прямой плоскости. На рис. 2.6 показан ход решения таких задач. Для наглядности изложения задачи плоскость задаем треугольником.

Рис. 2.6. Задачи на определение принадлежности точки и прямой плоскости.

Для того, чтобы определить принадлежит ли точка Е плоскости DАВС , проведем через ее фронтальную проекцию Е 2 прямую а 2 . Считая, что прямая а принадлежит плоскости DАВС , построим ее горизонтальную проекцию а 1 по точкам пересечения 1 и 2. Как видим (рис. 2.6, а), прямая а 1 не проходит через точку Е 1 . Следовательно, точка Е ÏDАВС .

В задаче на принадлежность прямой в плоскости треугольника АВС (рис. 2.6, б), достаточно по одной из проекций прямой в 2 построить другую в 1 * считая, что вÌDАВС . Как видим, в 1 * и в 1 не совпадают. Следовательно, прямая в Ë DАВС .

Линии уровня в плоскости

Определение линий уровня было дано ранее. Линии уровня, принадлежащие данной плоскости, называются главными . Эти линии (прямые) играют существенную роль при решении ряда задач начертательной геометрии.

Рассмотрим построение линий уровня в плоскости, заданной треугольником (рис. 2.7).

Рис. 2.7. Построение главных линий плоскости, заданной треугольником

Горизонталь плоскости DАВС начинаем с вычерчивания ее фронтальной проекции h 2 , которая, как известно, параллельна оси ОХ . Поскольку эта горизонталь принадлежит данной плоскости, то она проходит через две точки плоскости DАВС , а именно, точки А и 1. Имея их фронтальные проекции А 2 и 1 2 , по линии связи получим горизонтальные проекции (А 1 уже есть) 1 1 . Соединив точки А 1 и 1 1 , имеем горизонтальную проекцию h 1 горизонтали плоскости DАВС . Профильная проекция h 3 горизонтали плоскости DАВС будет параллельна оси ОХ по определению.

Фронталь плоскости DАВС строится аналогично (рис. 2.7) с той лишь разницей, что ее вычерчивание начинается с горизонтальной проекции f 1 , так как известно, что она параллельна оси ОХ. Профильная проекция f 3 фронтали должна быть параллельна оси ОZ и пройти через проекции С 3 , 2 3 тех же точек С и 2.

Профильная линия плоскости DАВС имеет горизонтальную р 1 и фронтальную р 2 проекции, параллельные осям OY и OZ , а профильную проекцию р 3 можно получить по фронтальной, используя точки пересечения В и 3 с D АВС .

Точка принадлежит плоскости, если она принадлежит какой-либо прямой этой плоскости.

Прямая принадлежит плоскости, если две ее точки принадлежат плоскости.

Эти два вполне очевидных предложения часто называют условиями принадлежности точки и прямой плоскости.

На рис. 3.6 плоскость общего положения задана треугольником АВС. Точки А, В, С принадлежат этой плоскости, так как являются вершинами треугольника из этой плоскости. Прямые (АВ), (ВС), (АС) принадлежат плоскости, так как по две их точки принадлежат плоскости. Точка N принадлежит (AC), D принадлежит (AB), E принадлежит (CD) и, значит, точки N и E принадлежат плоскости (DABC), тогда прямая (NE) принадлежит плоскости (DABC).

Если задана одна проекция точки L, например L 2 , и известно, что точка L принадлежит плоскости (DABC), то для нахождения второй проекции L 1 последовательно находим (A 2 L 2), K 2 , (A 1 K 1), L 1 .

Если условие принадлежности точки плоскости нарушено, то точка не принадлежит плоскости. На рис. 3.6 точка R не принадлежит плоскости (DABC), так как R 2 принадлежит (F 2 K 2), а R 1 не принадлежит (A 1 K 1).

На рис. 3.7 приведен комплексный чертеж горизонтально проецирующей плоскости (DCDE). Точки K и P принадлежат этой плоскости, так как P 1 и K 1 принадлежат прямой (D 1 C 1), являющейся горизонтальной проекцией плоскости (DCDE). Точка N не принадлежит плоскости, так как N 1 не принадлежит (D 1 C 1).

Все точки плоскости (DCDE) проецируются на П 1 в прямую (D 1 C 1). Это следует из того, что плоскость (DCDE) ^ П 1 . В этом же можно убедиться, если проделать для точки P (или любой другой точки) построения, которые были сделаны для точки L (рис. 3.6). Точка P 1 попадет на прямую (D 1 C 1). Таким образом, для того, чтобы определить принадлежность точки горизонтально проецирующей плоскости, фронтальная проекция (DC 2 D 2 E 2) не нужна. Поэтому в дальнейшем проецирующие плоскости будут задаваться только одной проекцией (прямой линией). На рис. 3.7 показана фронтально проецирующая плоскость S, заданная фронтальной проекцией S 2 , а также точки A Î S и B Ï S.

Взаимное положение точки и плоскости сводится к принадлежности или не принадлежности точки плоскости.

При решении многих задач приходится строить линии уровня, принадлежащие плоскостям общего и частного положения. На рис. 3.8 показаны горизонталь h и фронталь f, принадлежащие плоскости общего положения (DABC). Фронтальная проекция h 2 параллельна оси x, поэтому прямая h – горизонталь. Точки 1 и 2 прямой h принадлежат плоскости, поэтому прямая h принадлежит плоскости. Таким образом, прямая h – это горизонталь плоскости (DABC). Обычно порядок построения такой: h 2 ; 1 2 , 2 2 ; 1 1 , 2 1 ; (1 1 2 1) = h 1 . Фронталь f проведена через точку A. Порядок построения: f 1 // x, A 1 Î f 1 ; 3 1 , 3 2 ; (A 2 3 2) = f 2 .



На рис. 3.9 показаны проекции горизонтали и фронтали для фронтально проецирующей плоскости S и горизонтально проецирующей плоскости Г. В плоскости S горизонталь является фронтально проецирующей прямой и проходит через точку A (попытайтесь представить горизонталь как линию пересечения S и плоскости, проходящей через точку A параллельно П 1). Фронталь проходит через точку С. В плоскости Г горизонталь и фронталь проведены через одну точку D. Фронталь является горизонтально проецирующей прямой.

Из рассмотренных выше построений следует, что линию уровня в плоскости можно провести через любую точку этой плоскости.

Совпадение плоскостей можно трактовать как принадлежность одной плоскости другой. Если три точки одной плоскости принадлежат другой плоскости, то эти плоскости совпадают. Упомянутые три точки не должны лежать на одной прямой. На рис. 3.10 плоскость (DDNE) совпадает с плоскостью S(DABC), так как точки D, N, E принадлежат плоскости S(DABC).

Обратим внимание на то, что плоскость S, заданная DABC, теперь может быть задана DDNE. Любая плоскость может быть задана линиями уровня. Для этого необходимо через точку плоскости S(DABC) (например, через точку А) провести в плоскости горизонталь и фронталь, которые и будут задавать плоскость S (на рис. 3.10 построения не показаны). Последовательность построения горизонтали: h 2 // x (A 2 Î h 2); K 2 = h 2 Ç B 2 C 2 ; K 1 Î B 1 C 1 (K 2 K 1 ^ x); A 1 K 1 = h 1 . Последовательность построения фронтали: f 1 // x (A 1 Î f 1); L 1 = f 1 Ç B 1 C 1 ; L 2 Î B 2 C 2 (L 1 L 2 ^ x); A 2 L 2 = f 2 . Можно записать S(DABC) = S(h, f).

ПРЕОБРАЗОВАНИЕ КОМПЛЕКСНОГО ЧЕРТЕЖА

В курсе начертательной геометрии под преобразованием комплексного чертежа фигуры обычно понимается его изменение, вызванное перемещением фигуры в пространстве, или введением новых плоскостей проекций, или использованием других видов проецирования. Применение различных методов (способов) преобразования комплексного чертежа упрощает решение многих задач.

4.1. Метод замены плоскостей проекций

Метод замены плоскостей проекций состоит в том, что вместо одной из плоскостей проекций вводится новая плоскость, перпендикулярная к другой плоскости проекций. На рис. 4.1 показана пространственная схема получения комплексного чертежа точки А в системе (П 1 П 2). Точки А 1 и А 2 – горизонтальная и фронтальная проекции точки А, АА 1 А x А 2 – прямоугольник, плоскость которого перпендикулярна оси x (рис. 2.3).

Новая плоскость П 4 перпендикулярна П 1 . При проецировании точки А на П 4 получим новую проекцию А 4 , фигура АА 1 А 14 А 4 – прямоугольник, плоскость которого перпендикулярна новой оси x 14 = П 4 Ç П 1 . Для получения комплексного чертежа будем рассматривать фигуры, расположенные в плоскостях проекций. Поворотом вокруг оси x 14 совместим П 4 с П 1 , затем поворотом вокруг оси x совместим П 1 (и П 4) с П 2 (на рис. 4.1 направления движения плоскостей П 4 и П 1 показаны штриховыми линиями со стрелками). Полученный чертеж приведен на рис. 4.2. Прямые углы на рис. 4.1, 4.2 помечены дугой с точкой, равные отрезки помечены двумя штрихами (противоположные стороны прямоугольников на рис. 4.1). От комплексного чертежа точки А в системе (П 1 П 2) перешли к комплексному чертежу точки А в системе (П 1 П 4), заменили плоскость П 2 на плоскость П 4 , заменили А 2 на А 4 .

На основе этих построений сформулируем правило замены плоскостей проекций (правило получения новой проекции). Через незаменяемую проекцию проводим новую линию проекционной связи перпендикулярно новой оси, затем от новой оси по линии проекционной связи откладываем отрезок, длина которого равна расстоянию от заменяемой проекции до старой оси, полученная при этом точка и есть новая проекция. Направление новой оси будем брать произвольно. Новое начало координат указывать не будем.

На рис. 4.3 показан переход от комплексного чертежа в системе (П 1 П 2) к комплексному чертежу в системе (П 2 П 4), а затем еще один переход к комплексному чертежу в системе (П 4 П 5). Вместо плоскости П 1 введена плоскость П 4 , перпендикулярная П 2 , затем вместо П 2 введена плоскость П 5 , перпендикулярная П 4 . Используя правило замены плоскостей проекций, можно выполнить любое количество замен плоскостей проекций.

Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек (а || )

Признак параллельности прямой и плоскости.

Теорема. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.

Выводы.

Случаи взаимного расположения прямой и плоскости:

А) прямая лежит в плоскости;
б) прямая и плоскость имеют только одну общую точку;
в) прямая и плоскость не имеют ни одной общей точки.

Случаи взаимного расположения плоскостей:

Свойства параллельных плоскостей:

Задачи и тесты по теме "Тема 3. "Параллельность прямой и плоскости; параллельность плоскостей"."

  • Параллельность плоскостей

    Уроков: 1 Заданий: 8 Тестов: 1

  • Параллельность прямых, прямой и плоскости - Параллельность прямых и плоскостей 10 класс
  • Признаки параллельности двух прямых. Аксиома параллельных прямых - Параллельные прямые 7 класс

    Уроков: 2 Заданий: 11 Тестов: 1

  • Взаимное расположение прямых в пространстве. Угол между прямыми - Параллельность прямых и плоскостей 10 класс

    Уроков: 1 Заданий: 9 Тестов: 1

  • Перпендикулярность прямой и плоскости - Перпендикулярность прямых и плоскостей 10 класс

    Уроков: 1 Заданий: 10 Тестов: 1

Тема "Аксиомы стереометрии" играет важную роль в развитии пространственных представлений, поэтому старайтесь привлекать больше моделей (картон и спицы), рисунков.

В теме "Параллельность в пространстве" даются знания о параллельности прямых и плоскостей в пространстве. В данном материале обобщаются известные из планиметрии сведения о параллельности прямых. На примере теоремы о существовании и единственности прямой, параллельной данной, Вы получаете представление о необходимости заново доказать известные из планиметрии факты в тех случаях, когда речь идет о точках и прямых пространства, а не о конкретной плоскости.

Задачи на доказательство решаются во многих случаях по аналогии с доказательством теорем. Для решения задач на вычисление длин отрезков необходимо провести повторение курса планиметрии: равенства и подобия треугольников, определений, свойств и признаков прямоугольника, параллелограмма, ромба, квадрата, трапеции.

Как построить на чертеже прямую линию, лежащую в заданной плоскости? Это построение основано на двух положениях, известных из геометрии.

  1. Прямая принадлежит плоскости, если она проходит через две точки, принадлежащие данной плоскости.
  2. Прямая принадлежит плоскости, если она проходит через точку, принадлежащую данной плоскости, и параллельна прямой, находящейся в этой плоскости или параллельной ей.

Положим, что пл.α (рис. 106) определена двумя пересекающимися прямыми АВ и СВ, а пл. β - двумя параллельными - DE и FG. Согласно первому положе

нию прямая, пересекающая прямые, определяющие плоскость, находится в данной плоскости.

Отсюда вытекает, что если плоскость задана следами, то прямая принадлежит плоскости, если следы прямой находятся на одноименных с ними следах плоскости (рис. 107).


Положим, что пл. γ (рис. 106) определяется точкой А и прямой ВС. Согласно второму положению прямая, проведенная через точку А параллельно прямой ВС, принадлежит пл. γ. Отсюда прямая принадлежит плоскости, если она параллельна одному из следов этой плоскости и имеет с другим следом общую точку (рис. 108).

Примеры построений на рис. 107 и 108 не должны быть поняты так, что для построения прямой в плоскости надо предварительно строить следы этой плоскости. Это не требуется.

Например, на рис. 109 выполнено построение прямой AM в плоскости, заданной точкой А и прямой, проходящей через точку L. Положим, что прямая AM должна быть параллельна пл. π 1 . Построение начато с проведения проекции А"М" перпендикулярно к линии связи А"А". По точке М" найдена точка М", и затем проведена проекция А"М". Прямая AM отвечает условию: она параллельна пл. π 1 И лежит в данной плоскости, так как проходит через две точки (А и М), заведомо принадлежащие этой плоскости.

Как построить на чертеже точку, лежащую в заданной плоскости? Для того чтобы сделать это, предварительно строят прямую, лежащую в заданной плоскости, и на этой прямой берут точку.


Например, требуется найти фронтальную проекцию точки D, если задана ее горизонтальная проекция D" и известно, что точка D должна лежать в плоскости, определяемой треугольником АВС (рис. 110).

Сначала строят горизонтальную проекцию некоторой прямой так, чтобы точка D могла оказаться на этой прямой, а последняя была бы расположена в данной плоскости. Для этого проводят прямую через точки А" и D" и отмечают точку М", в которой прямая A"D" пересекает отрезок В"С". Построив фронтальную проекцию М" на В"С", получают прямую AM, расположенную в данной плоскости: эта прямая проходит через точки А и М, из которых первая заведомо принадлежит данной плоскости, а вторая в ней построена.

Искомая фронтальная проекция D" точки D должна быть на фронтальной проекции прямой AM.

Другой пример дан на рис. 111. В пл. β, заданной параллельными прямыми АВ и CD, должна находиться точка К, для которой дана лишь горизонтальная проекция - точка К

Через точку К" проведена некоторая прямая, принимаемая в качестве горизонтальной проекции прямой в данной плоскости. По точкам E" и F" строим Е" на А"В" и F" на C"D". Построенная прямая EF принадлежит пл. β, так как проходит через точки Е и F, заведомо принадлежащие плоскости. Если взять точку К" на E"F", го точка К окажется в пл.β

К числу прямых, занимающих особое положение в плоскости, отнесем горизонтали, фронтали 1) и линии наибольшего наклона к плоскостям проекций . Линию наибольшего наклона к пл. π 1 , будем называть линией ската плоскости 2).

Горизонталями плоскости называются прямые, лежащие в пей и параллельные горизонтальной плоскости проекций.

Построим горизонталь плоскости, заданной треугольником АВС. Требуется провести горизонталь через вершину А (рис. 112).

Так как горизонталь плоскости есть прямая, параллельная пл.π 1 , то фронтальную проекцию этой прямой получим, проведя А"К"⊥А"А". Для построения горизонтальной проекции этой горизонтали строим точку К" и проводим прямую через точки А" и К".

Построенная прямая АК действительно является горизонталью данной плоскости: эта прямая лежит в плоскости, так как проходит через две точки, заведомо ей принадлежащие, и параллельна плоскости проекций π 1 .

Теперь рассмотрим построение горизонтали плоскости, заданной следами.

Горизонтальный след плоскости есть одна из ее горизонталей («нулевая» горизонталь). Поэтому построение какой-либо из горизонталей плоскости сводится


к проведению в этой плоскости прямой, параллельной горизонтальному следу плоскости (рис. 108, слева). Горизонтальная проекция горизонтали параллельна горизонтальному следу плоскости; фронтальная проекция горизонтали параллельна оси проекций.

Фронталями плоскости называются прямые, лежащие в ней и параллельные плоскости проекций π 2 .

Пример построения фронтали в плоскости дан на рис. 113. Пост роение выполнено аналогично построению горизонтали (см. рис. 112).

Пусть фронталь проходит через точку А (рис. 113). Начинаем построение с проведения горизонтальной проекции фронтали - прямой А"К", так как направление этой проекции известно: А К"⊥А"А". Затем строим фронтальную проекцию фронтали - прямую А"К".

1)Наряду с горизонталями и фронталями плоскости можно рассматривать также ее профильные прямые - прямые, лежащие в данной плоскости и параллельные пл. π 3 . Для горизонталей, фронталей и профильных прямых встречается общее название - линия уровня. Однако такое название отвечает обычному представлению только о горизонтальности.

2)Для линии ската плоскости распространено название «линия наибольшего ската», но понятие «скат» по отношению к плоскости не требует добавления «наибольший».

Построенная прямая действительно является фронталью данной плоскости: эта прямая лежит в плоскости, так как проходит через две точки, заведомо ей принадлежащие, и параллельна пл, π 2 .

Построим теперь фронталь плоскости, заданной следами. Рассматривая рис, 108, справа, на котором изображена пл. β и прямая МВ, устанавливаем, что эта прямая - фронталь плоскости. Действительно, она параллельна фронтальному следу («нулевой» фронтали) плоскости, Горизонтальная проекция фронтали параллельна оси х, фронтальная проекция фронтали параллельна фронтальному следу плоскости.

Линиями наибольшего наклона плоскости к плоскостям π 1 , π 2 и π 3 называются прямые, лежащие в ней и перпендикулярные или к горизонталям плоскости, или к ее фронталям, или к ее профильным прямым. В первом случае определяется наклон к пл.π 1 , во втором - к пл. π 2 , в третьем - к пл. π 3 . Для проведения линий наибольшего наклона плоскости можно, конечно, соответственно брать ее следы.

Как было сказано выше, линия наибольшего наклона плоскости к пл. к π 1 , называется линией ската плоскости.

Согласно правилам проецирования прямого угла (см, § 15) горизонтальная проекция линии ската плоскости перпендикулярна к горизонтальной проекции горизонтали этой плоскости или к ее горизонтальному следу. Фронтальная проекция линии ската строится после горизонтальной и может занимать различные положения в зависимости от задания плоскости. На рис, 114 изображена линия ската Пл. α: ВК⊥h" 0α . Так как В"К также перпендикулярна к h" 0α , то ∠ВКВ" есть линейный угол


двугранного, образованного плоскостями α и π 1 Следовательно, линия ската плоскости может служить для определения угла наклона этой плоскости к плоскости проекций π 1 .

Аналогично, линия наибольшего наклона плоскости к пл, π 2 служит для определения угла между этой плоскостью и пл, π 2 , а линия наибольшего наклона к пл.π 3 - для определения угла.с пл. π 3 .

На рис, 115 построены линии ската в заданных плоскостях. Угол пл, α с пл.π 1 выражен проекциями - фронтальной в виде угла В"К"В" и горизонтальной в виде отрезка К"В". Определить величину этого угла можно, построив прямоугольный треугольник по катетам, равным К"В" и В"В".

Очевидно, линия наибольшего наклона плоскости определяет положение этой плоскости. Например, если (рис. 115) задана линия ската КВ, то, проведя перпендикулярную к ней горизонтальную прямую AN или задавшись осью проекций х и проведя h" 0α ⊥ К"В", мы вполне определяем плоскость, для которой КВ является линией ската.

Рассмотренные нами прямые особого положения в плоскости, главным образоии горизонтали и фронтали, весьма часто применяются в различных построениях и при решении задач. Это объясняется значительной простотой построения указанных прямых; их поэтому удобно применять в качестве вспомогательных.

На рис. 116 была задана горизонтальная проекция К" точки К. Требовалось найти фронтальную проекцию К", если точка К должна быть в плоскости, заданной двумя параллельными прямыми, проведенными из точек А и В.

Сначала была проведена некоторая прямая линия, проходящая через точку К и лежащая в заданной плоскости. В качестве такой прямой выбрана фронталь МN: ее горизонтальная проекция проведена через данную проекцию К". Затем построены точки М" и N", определяющие фронтальную проекцию фронтали.

Искомая проекция К" должна находиться на прямой M"N".

На рис. 117 слева по данной фронтальной проекции А" точки А, принадлежащей пл.α, найдена ее горизонтальная проекция (А"); построение произведено при помощи горизонтали ЕК. На рис. 117 справа аналогичная задача решена при помощи фронтали MN.


Еще один пример построения недостающей проекции точки, принадлежащей некоторой плоскости, дан на рис. 118. Слева показано задание: линия ската плоскости (АВ) и горизонтальная проекция точки (К"). Справа на рис. 118 показано построение; через точку К" проведена (перпендикулярная к А"В") горизонтальная проекция горизонтали, на которой должна лежать точка К, по точке L" найдена фронтальная проекция этой горизонтали и на ней искомая проекция К".

На рис. 119 дан пример построения второй проекции некоторой плоской кривой, если известна одна проекция (горизонтальная) и пл. α, в которой эта кривая расположена. Взяв на горизонтальной проекции кривой ряд точек, находим при помощи горизонталей точки для построения фронтальной проекции кривой.

Стрелками показан ход построения фронтальной проекции А" по горизонтальной проекции А".

Вопросы к §§ 16-18

  1. Как задаетcя плоскость на чертеже?
  2. Что такое след плоскости на плоскости проекций?
  3. Где располагаются фронтальная проекция горизонтального следа и горизонтальная проекция фронтального следа плоскости?
  4. Как определяется на чертеже, принадлежит ли прямая данной плоскости?
  5. Как построить на чертеже точку, принадлежащую данной плоскости?
  6. Что такое фронталь, горизонталь и линия ската плоскости?
  7. Может ли служить линия ската плоскости для определения угла наклона этой плоскости к плоскости проекций π 1 ?
  8. Определяет ли прямая линия плоскость, для которой эта прямая является, линией ската?

Принадлежность прямой плоскости :

2) прямая принадлежит плоскости, если она проходит через точку, принадлежащую данной плоскости и параллельна какой-нибудь прямой этой плоскости.

Из этих двух признаков принадлежности прямой плоскости можно сделать следующие выводы:

1) если плоскость задана следами, то прямая принадлежит плоскости, если следы прямой лежат на одноименных следах плоскости;

2) прямая принадлежит плоскости, если она с одним следом плоскости имеет общую точку, а другому следу параллельна.

Рассмотрим плоскость Q, общего положения, задана следами (рисунок 17). Прямая NM принадлежит этой плоскости, поскольку ее следы лежат на одноименных следах плоскостей.

На рисунке 18 показана плоскость, заданная пересекающимися прямыми t и n. Чтобы построить прямую, лежащую в этой плоскости, достаточно провести произвольно одну из проекций, например, горизонтальную c1, а затем спроецировать точки пересечения этой прямой с прямыми плоскости на фронтальную плоскость. Фронтальная проекция прямой c2 пройдет через полученные точки.

Рисунок 17 Рисунок 18

Согласно второму положению на рисунке 19 построена прямая h, принадлежащая плоскости Р, - она имеет точку N (N1, N2) общую с плоскостью Р и параллельна прямой, лежащей в плоскости - горизонтальному следу Р1.

Рисунок 19 Рисунок 20

Рассмотрим плоскости частного положения. Если прямая или фигура принадлежит горизонтально-проецирующей плоскости (рисунок 20), то горизонтальные проекции этих геометрических элементов совпадают с горизонтальным следом плоскости.

Если прямая или плоская фигура принадлежит фронтально-проецирующей плоскости, то фронтальные проекции этих геометрических элементов совпадают с фронтальным следом плоскости.

Принадлежность точки плоскости:

Точка принадлежит плоскости, если она принадлежит прямой, лежащей в этой плоскости.

Пример: Дана плоскость Р (a || b). Известна горизонтальная проекция точки В, принадлежащей плоскости Р. Найти фронтальную проекцию точки В (рисунок 21).

На рисунках 22, 23, 24 показано фрагментарно решение этой задачи:

1) проведем через В1 (известную проекцию точки В) любую прямую,

лежащую в плоскости Р, - для этого прямая должна иметь с плоскостью две общие точки. Отметим их на чертеже - М1 и K1;

2) построим фронтальные проекции этих точек по принадлежности точек прямым, т. е. М2 на прямой а, K2 на прямой b. Проведем через фронтальные проекции точек фронтальную проекцию прямой;

Рисунок 21 Рисунок 22