Технология селективного лазерного плавления (SLM). Станкомплект представляет: селективное лазерное плавление (3d-печать из металлических порошков) на установках SLM Solutions D-печать для промышленности: подробнейший обзор новейшего оборудования и техноло

3D печать металлом – аддитивное производство металлических изделий, которое по праву является одним из наиболее перспективных и стремительно развивающихся направлений в трехмерной печати как таковой. Сама технология берет свое начало еще с обычного спекания материалов, применяемого в порошковой металлургии. Но сейчас она стала более совершенной, точной и быстрой. И сегодня компания SPRINT3D предлагает вам печать металлом на 3 D принтере на действительно выгодных условиях. Но для начала – немного информации о самом производственном процессе и его возможностях.

Технология селективного лазерного сплавления

SLM или технология селективного сплавления – это тип прямой печати металлом, при котором достигается плотность 99,5%. Разница особенно ощутима, если сравнивать с моделями, полученными обычным литьем. Достигается такой показатель благодаря внедрению новейших технологий именно в аппаратной части:

  • Применение специальных роликов для утрамбовки порошков и, как следствие, возможность использования порошков с размером частиц от 5 мкм.
  • Повышение насыпной плотности, способствующее уплотнению конечных изделий.
  • Создание разреженной атмосферы инертных газов, при которой достигается максимальная чистота материала, отсутствует окисление и исключаются риски попадания сторонних химических соединений в состав.

Но самое главное – современный 3 D принтер для печати металлом позволяет легко подобрать индивидуальную конфигурацию для печати конкретным металлическим порошком. Таким образом даже с недорогим материалом можно получить первоклассный результат. Но только при условии использовании качественного современного оборудования. И здесь мы тоже готовы вас удивить!

3D-печать металлом В SPRINT 3D

Установки для 3 D печати металлом, которые мы используем

Качество производства – ключевое требование, которое мы ставим перед собой. Поэтому в работе используем только профессиональное оборудование, обладающие широкими возможностями для печати металлом. Рассмотрим подробнее каждую из производственных установок.

Производственная установка SLM 280HL

SLM 280HL – разработка германской компании SLM Solutions GmbH, использующая технологию послойного лазерного плавления порошковых металлических материалов. Установка оснащена большой рабочей камерой и позволяет создавать 3D объекты размерами 280х280х350 мм. Среди главных преимуществ печати данной установкой можно выделить:

  • Малую минимальную толщину наносимого слоя – 20 мкм.
  • Заполнение рабочей камеры инертным газом, что позволяет работать с различными реактивными металлами.
  • Скорость печати составляет до 35 см/час.
  • Толщина слоя построения – 30 и 50 мкм.
  • Мощность – 400 Вт.

Отдельно отметим запатентованную систему подачи порошкового материала, благодаря которой скорость печати значительно выше, чем на большинстве производственных установок в той же ценовой категории. В производстве мы используем следующие материалы:

  • Нержавеющая сталь (отечественная 07Х18Н12М2 (Полема) и импортная 316L).
  • Инструментальная сталь (импортная 1.2709).
  • Жаропрочные сплавы 08ХН53БМТЮ (аналог Inconel 718, про-во Полема) и ЭП 741 (производства ВИЛС).
  • Кобальт-Хром (COCR)

3D-принтер SLM 280HL может использоваться для создания разного рода металлических компонентов, прототипов и конечных изделий. При необходимости мы можем обеспечить мелкосерийное производство.

Производственная установка ProX 100

ProX 100 – компактная установка для 3 D печати металлом, разработанная американской компанией 3D Systems. Она работает по технологии прямого лазерного спекания, благодаря чему обеспечивает высокую скорость и точность производства. Среди основных характеристик стоит выделить:

  • Размер рабочей камеры – 100х100х80 мм.
  • Толщина слоя построения – 20 и 30 мкм.
  • Мощность – 50 Вт.

ProX 100 позволяет создавать прототипы, которые невозможно разработать стандартными методами, обеспечивает короткие сроки изготовления, гарантирует отсутствие пористости материала и высокую плотность деталей. Кроме того, отметим стандартизированное качество всех изделий вне зависимости от их структуры. На данный момент модель активно используется в стоматологии при создании высокоточных протезов, но нашла широкое применение и в других отраслях:

  • Производство двигателей и отдельных их деталей.
  • Разработка медтехники.
  • Печать ювелирных изделий и даже предметов современного искусства.

В печати мы используем сплав кобальт-хром КХ28М6 (производство Полема), изначально разработанный для аддитивных технологий при создании эндопротезов.

3D печать металлом – применение в настоящее время

Многие специалисты утверждают, что 3D печать как таковая еще полностью не раскрыла свой потенциал. К примеру, Илон Маск планирует использовать технологию в колонизации Марса для строительства административных и жилых зданий, оборудования и техники прямо на месте. И это вполне реально, ведь уже сейчас технология трехмерной печати металлом активно применяется в различных отраслях:

  • В медицине: изготовление медицинских имплантов, протезов, коронок, постов и т.д. Высокая точность производства и относительно доступная цена сделали 3D печать очень актуальной в данной отрасли.
  • В ювелирном деле: многие из ювелирных компаний используют технологию 3D печати для изготовления форм и восковок, а также непосредственно создания ювелирной продукции. К примеру, печать титаном позволяет создавать изделия, которые ранее представлялись невозможными.
  • В машинной и даже аэрокосмической отраслях: BMW, Audi, FCA и другие компании не первый год используют 3 D печать металлом в прототипировании и всерьез рассматривают ее использование в серийном производстве. А итальянская компания Ge-AvioAero уже сейчас печатает компоненты для реактивных двигателей LEAP на 3D принтерах.

Аддитивная установка SLM 280 2.0 с периферийной станцией PSV – главная новинка SLM Solutions 2017 года

– Что нового предлагает SLM Solutions пользователям 3D-печати?

– В 2017 году компания проделала большую работу. Нововведения коснулись главным образом дизайна аддитивных установок, но также были обновлены программное обеспечение, пользовательские решения и системы контроля качества процесса.

Главное достижение – это система SLM 280 2.0 в новом корпусе и с новым дизайном интерфейса управляющей программы. Машина оснащена «вечным» фильтром – принципиально новым механизмом фильтрации частиц – и оптимизированной системой мониторинга мощности лазера и зоны расплава. Это решение реализовано специально для мультилазерных систем.

Установка SLM 280 2.0, фильтр и пользовательский интерфейс будут доступны для заказа ориентировочно в третьем квартале 2018 года.

: как происходит селективное лазерное плавление

– Расскажите, пожалуйста, о программном обеспечении от SLM Solutions. Как оно называется?

– SLM Additive Designer. Да, новинка очень интересная, стоит рассказать о ней поподробнее. Это собственная разработка компании SLM Solutions для работы с 3D-файлами и подготовки их к печати, которая является альтернативой популярному ПО Materialise Magics и другим имеющимся на рынке решениям. «Изюминка» нашего продукта в том, что оно совместимо не только с STL-файлами, но и с файлами формата CAD (STEP, IGES), которые могут содержать и другую информацию помимо 3D-графики.

Уже прорабатываются варианты сотрудничества с производителями программного обеспечения CAD для внедрения SLM Additive Designer в их интерфейс с целью обеспечить сквозное проектирование детали. Этот процесс охватывает этапы от проектирования и топологической оптимизации до получения изделия на 3D-принтере с помощью этого программного решения – назовем его постпроцессор (или предпостпроцессор) подготовки детали к печати.

– Раньше компания не выпускала своего ПО?

– Так называемый Build Processor, который разрабатывался совместно с Materialise и был имплементирован в Magics , не являлся отдельным программным обеспечением. А сейчас у SLM Solutions есть законченный программный продукт, который может работать с CAD-, STL-файлами и обеспечивает полный цикл от расположения детали на платформе, генерации поддержек и заканчивая созданием файла, который передается на 3D-принтер.

Вообще, у компании большие планы по развитию ПО. Будут разрабатываться новые программные продукты с включением в них технологий облачных серверов и big data для большой производственной цепочки 3D-принтеров . То есть мы говорим о решениях не для одной машины, а для Фабрики будущего – концепции, с которой сейчас работают все ведущие производители аддитивных установок.

– Решением для Фабрики будущего стала автоматизированная производственная система SLM 800, еще одна громкая новинка прошлого года.

– SLM 800 была представлена на выставке Formnext во Франкфурте-на-Майне. Компания официально заявила о продаже двадцати машин в Китай. На данный момент существует только одна собранная установка. Это, скажем так, работающий опытно-выставочный экземпляр, в конструкции и функционале которого, вполне возможно, что-то изменится. Во всяком случае, это большая заявка, потому что возможность обеспечить автоматизированный процесс при высоте построения 800 мм говорит о высокой стабильности работы системы.


– Коснулись ли изменения периферийного оборудования 3D-принтеров?

– Да, уже сейчас доступна новая система PSV (Powder Sieving Vacuum) – периферийная станция, которая предназначена для выполнения следующих функций:

  1. непрерывное просеивание порошка (возврат порошка обратно в установку для непрерывной циркуляции во время работы);
  2. хранение порошка во время работы машины в баке емкостью 90 литров, который находится не в установке, а именно в системе PSV.

Станция PSV также оснащена (если мы говорим об установке SLM 280) рукавом для работы в камере построения в инертной среде для того, чтобы убирать излишки порошка во время очистки детали. Станция обеспечивает высокую производительность очистки и переработки материала, компактна и универсальна: ее можно подключить и к 280-й, и к 500-й машине. Работает PSV на основе разности давлений и вакуумирования системы и движения порошка с помощью вакуумного транспорта.

Как и предыдущая система PSH , которая служила примерно для тех же нужд, PSV наиболее эффективна, когда мы работаем с одним порошком на одной машине. При частой смене материалов лучше использовать ручную станцию просеивания PSM , которая уже почти десять лет является стабильным периферийным оборудованием, простым и удобным в использовании.

– Что такое «вечный» фильтр и как он позволит повысить безопасность на производстве?

– С его помощью фильтрация будет происходить на других принципах. Это так называемая сухая фильтрация: частицы материала (титанового или алюминиевого сплава) задерживаются частицами ингибитора в фильтре и мгновенно деактивируются. Удаляя смесь ингибитора и частиц в сухом состоянии, мы уменьшаем риск негативных воздействий с точки зрения выделения горючих газов, улучшаем чистоту процесса, повышаем пожаро- и взрывобезопасность. В установках SLM замкнутый цикл работы с порошком.

Главный вопрос не в том, купить аддитивную установку или нет, а в том, как ее интегрировать в производственную цепочку.

– Каковы ближайшие планы SLM Solutions?

– На международной выставке «Металлообработка-2018» , которая пройдет в Москве с 14 по 18 мая, у компании будет большой стенд. Планируется приезд специалистов сервисного отдела из Германии, рассматривается вариант доставки машины SLM 280. Летом или осенью у SLM Solutions откроется новая крупная площадка, которая обеспечит выполнение возросшего количества заказов на изготовление машин 3D-печати металлом . Разместится она в Любеке, там же, где находится штаб-квартира и основное производство компании.

– Как для Вашей компании складывается ситуация на российском рынке?

– Интерес к продукции SLM Solutions есть, и большой, но пока в основном на уровне запросов, попыток проработки экономики владения машиной, заявок на тестовую печать. Скорее всего, это общая экономическая ситуация, потому что у многих наших европейских коллег, работающих в сфере производства металлических 3D-принтеров , схожие проблемы в России.

Оборудование дорогостоящее, а как им владеть, как с его помощью получать экономическую выгоду – в России мало кто представляет. Обосновать необходимость покупки достаточно сложно. Плюс, у нас очень не хватает специалистов с объемом знаний, необходимым для правильного обеспечения и самого процесса, и отработки технологических параметров.

Специалист, работающий на аддитивной машине, в идеале должен быть одновременно и конструктором и, в большей степени, технологом – тем, кто разбирается в физике происходящих процессов и влиянии тех или иных параметров на качество получаемой детали. А таких параметров очень много – 160 как минимум.

К сожалению, у российских специалистов – от руководителей предприятий до рядовых инженеров – в массе нет понимания сложности аддитивного процесса. Многие считают, что 3D-принтер – это некая чудо-машина: загрузил порошок, загрузил модель, нажал кнопку и тут же получил качественную деталь.

Команда SLM Solutions на международной выставке Formnext 2017

– Как убедить людей, что аддитивные технологии несут значительную выгоду?

– Нужна просветительская работа. Специалистам необходимо знакомиться с бòльшим объемом литературы, научных исследований, монографий – не только фундаментальных, но и инженерных, в том числе англо- и немецкоязычных. Руководителям отраслей и предприятий полезно ездить на международные конференции по аддитивному производству.

Моя основная мысль, которую я пытаюсь всем донести, заключается в том, что аддитивные технологии (селективное лазерное плавление в частности) – не панацея, не универсальное решение для производства любых деталей. Это отдельный новый метод, который активно применяется на рынке чуть более десяти лет. А ведь даже по такой старейшей технологии, как литье , до сих пор пишутся монографии.

3D-технологии – системы с огромным количеством параметров, объединяющие множество дисциплин – металлургию, лазеры, механику, программирование и т.д. Это своеобразный «серый ящик» – их еще изучать и изучать. Но если этого не делать, то можно очень сильно отстать.

– Тем не менее, в России в плане разработки и внедрения 3D-технологий происходит какое-то движение.

– Идеи и решения есть, мы их видим на выставках. По моему опыту, уровень понимания за последние четыре-пять лет у людей сильно вырос. Однако отсутствует кураторство на государственном уровне, нет вектора, который бы все это объединял.

Например, в Европе, в Азии есть ассоциации производителей (такие, как AMUG, GARPA), которые регулярно проводят встречи пользователей аддитивных технологий со всего мира. SLM Solutions вместе с конкурентами участвует в таких мероприятиях. Или такой пример: наша компания, как и многие другие производители, сотрудничает с институтом Фраунгофера, разрабатывающим лазерные технологии. Для работы с SLM подписано около шестидесяти ученых. Это хороший пример межпроизводственной кооперации, которой так не хватает в России из-за внутренних экономических моментов.

По моему мнению, нашим руководителям нужно больше ездить, принимать участие в таких проектах, чтобы понимать, какие вопросы ставятся и как определять четкие задачи для проектирования производства. Ведь главный вопрос не в том, купить установку или нет, а в том, как ее интегрировать в производственную цепочку, создать эффективно работающий цех с аддитивными установками и с их помощью получать необходимый продукт.


Лидер в области разработки новейших технологий 3D-печати металлами, выполнила проект по изготовлению титанового изделия для авиакосмической отрасли размером 31 x 22,2 и диаметром 21,9 см.

На сегодняшний день это самая крупная деталь, изготовленная на аддитивной установке SLM 280 с двумя 400-ваттными лазерами. Именно эта машина позволила напечатать изделие такого размера в относительно короткий срок по сравнению с традиционной технологией изготовления.

Стандартный размер платформы построения в 3D-принтерах этого класса составляет 250 мм х 250 мм. Однако SLM 280 имеет увеличенную платформу размером 280 мм х 280 мм, что дает возможность печатать изделия большего размера.

Благодаря разработкам в области 3D-печати металлами по технологии селективного лазерного плавления (в том числе титаном) для нужд авиакосмической промышленности, учитывая высокую прочность и малый вес данного металла, SLM Solutions стала одной из ведущих компаний, выполняющих заказы для производителей комплектного оборудования. SLM Solutions сумела преодолеть ограничения, связанные с размером камеры построения, и другие сложности, возникающие при изготовлении крупных изделий из титана, и продолжает совершенствовать свои технологии в этой области.

Процесс 3D-печати из титанового порошка

Как объясняет Майк Хансен, инженер по внедрению североамериканского подразделения SLM Solutions, успехи в области 3D-печати титаном особенно важны: титан – металл очень твердый и подверженный растрескиванию из-за высоких остаточных напряжений, что стало серьезной проблемой. «Геометрия детали была не особенно сложной, однако трудность заключалась в том, чтобы с использованием аддитивной технологии изготовить из титана столь крупное изделие», – отметил инженер.

Эту задачу помогла решить разработанная и запатентованная SLM Solutions система, состоящая из двух лазеров. Обработка изделия в зоне перекрытия одновременно двумя лазерами позволила не только ускорить процесс печати, но и изготовить изделие большего размера. SLM Solutions провела испытания материала в зоне перекрытия, которые подтвердили отсутствие какой-либо разницы в качестве материала между участками, напечатанными одним лазером, и участками в зоне перекрытия, на которую два лазера воздействовали попеременно. Инженеры SLM Solutions выполнили несколько итераций, чтобы подготовить файл и напечатать несколько пробных образцов с целью убедиться, что задача будет выполнена. Клиенту нужен был способ производства данного изделия, обеспечивающий экономию затрат и времени, а также снижение веса .

«Это изделие примечательно своими размерами и тем фактом, что оно было изготовлено из титана за шесть с половиной дней без перерывов в процессе печати, – говорит Хансен. – То, что 3D-принтер SLM способен работать в течение столь длительного времени, не требуя чистки или иного обслуживания, само по себе чрезвычайно важно».

Хотя обычно технология 3D-печати привлекает к себе внимание своей способностью воспроизводить уникальную геометрию, данное изделие для авиакосмической отрасли не было особенно сложным с этой точки зрения. Однако получить титановую деталь такого размера за столь короткое время едва ли было бы возможно с использованием традиционной технологии механической обработки.

Процесс изготовления средствами традиционной механической обработки занял бы несколько недель
«Технология аддитивного производства не связана ограничениями традиционных станков и инструментов, поэтому мы можем создавать более органичные формы, а весь цикл проектирования и разработки критически важных изделий для авиакосмической промышленности значительно сокращается», – пояснил Хансен.

Ричард Гриллс, доктор наук в области металлургии, руководитель отдела внедрения и технический директор SLM Solutions в Северной Америке, дал следующий комментарий: «Учитывая размеры изделия, процесс изготовления средствами традиционной механической обработки занял бы несколько недель; при этом потребовалось бы четыре или пять переналадок. Иными словами, это было бы очень дорогостоящим процессом. На изготовление изделия по технологии литья ушло бы еще больше времени, поскольку потребовалась бы оснастка, а процесс ее изготовления может занять до шести месяцев. Кроме того, традиционная оснастка имеет высокую стоимость. Мы выполнили задачу намного быстрее, хотя стоимость изделия оказалась выше. Тем не менее, учитывая сэкономленное время, такие затраты оправданы для критически важного изделия такого размера».

Лопатка турбины, напечатанная на аддитивной установке SLM 280HL

SLM Solutions добилась впечатляющих результатов с точки зрения скорости изготовления, качества и плотности конечного изделия. Хансен отметил, что «выполнение строгих требований к качеству и технических условий на материалы при использовании титана в жестко регулируемых отраслях, таких как авиакосмическая и автомобильная промышленность, требует многочисленных испытаний материалов и оптимизации параметров, чтобы убедиться, что заказчик получит именно то, что ему нужно».

Требования к контролю качества в авиакосмической отрасли довольно обширны: для проверки изделия на пустоты или пористость, как правило, применяется такой метод неразрушающего контроля, как компьютерная томография, однако клиент может выбрать разрушающий контроль и разрезать изделие. «Мы сперва провели неразрушающий контроль изделия, а затем испытания в условиях, приближенных к реальным, установив изделие на двигатель и выработав ресурс до разрушения», – говорит Хансен.

По мере развития технологий аддитивного производства компания SLM Solutions наблюдает все больший спрос на свои решения. Однако материалы и процессы изготовления совершенствуются настолько быстро, что стандарты не успевают за ними. «К нам все чаще обращаются компании, которые применяют традиционные технологии, но стремятся к увеличению скорости производства при сохранении качества и хотят воспользоваться преимуществами аддитивного производства, – добавил Хансен. - Эта отрасль меняется буквально каждый день и развивается очень быстро, однако мы наблюдаем разрыв между темпами развития технологий аддитивного производства и способностью некоторых отраслей, в частности авиакосмической и автомобильной, столь же быстро сертифицировать новые материалы и технологии».

Размеры изделия: 31 x 22,2 см, диаметр 21,9 см
Материал: Ti64
Продолжительность печати: 6,5 дней
Аддитивная установка: SLM 280 с двумя лазерами по 400 Вт

В этом обзоре я попытался в популярной форме привести основные сведения о производстве металлических изделий методом лазерного аддитивного производства – сравнительно новом и интересном технологическом методе, возникшем в конце 80-х и ставшем в наши дни перспективной технологией для мелкосерийного или единичного производства в области медицины, самолето- и ракетостроения.

Кратко описать принцип работы установки для аддитивного производства с помощью лазерного излучения можно следующим образом. Устройство для нанесения и выравнивания слоя порошка снимает слой порошка с питателя и равномерным слоем распределяет его по поверхности подложки. После чего лазерный луч сканирует поверхность данного слоя порошка и путем оплавления или спекания формирует изделие. По окончанию сканирования порошкового слоя платформа с изготавливаемым изделием опускается на толщину наносимого слоя, а платформа с порошком поднимается, и процесс нанесения слоя порошка и сканирования повторяется. После завершения процесса платформа с изделием поднимается и очищается от неиспользованного порошка.

Одной из основных частей в установках аддитивного производства является лазерная система, в которой используются CO 2 , Nd:YAG, иттербий волоконный или дисковый лазеры. Установлено, что использование лазеров с длиной волны 1-1,1 мкм для нагрева металлов и карбидов предпочтительнее, поскольку они на 25-65% лучше поглощают генерируемое лазером излучение. В тоже время, использование CO 2 лазера с длиной волны 10,64 мкм наиболее лучше подходит для таких материалов, как полимеры и оксидная керамика. Более высокая абсорбционная способность позволяет увеличить глубину проплавления и в более широких пределах варьировать параметрами процесса. Обычно лазеры, используемые в аддитивном производстве, работают в непрерывном режиме. По сравнению с ними применение лазеров работающих в импульсном режиме и в модулированной добротности за счет их большой энергии импульса и короткой продолжительности импульса (наносекунды) даёт возможность улучшить прочность связи между слоями и уменьшить зону термического воздействия. В заключение можно отметить, что характеристики используемых лазерных систем лежат в таких пределах: мощность лазера – 50-500 Вт, скорость сканирования до 2 м/с, скорость позиционирования до 7 м/с, диаметр фокусированного пятна – 35-400 мкм.

Помимо лазера как источник нагрева порошка может быть использован электронно-лучевой нагрев. Этот вариант фирма Arcam предложила и реализовала в своих установках в 1997 г. Установка с электронно-лучевой пушкой характеризуется отсутствием подвижных частей, так как электронный луч фокусируется и направляется с помощью магнитного поля и дефлекторов, а создание в камере вакуума положительно сказывается на качестве изделий.

Одним из важных условий при аддитивном производстве является создание защитной среды предотвращающей окисление порошка. Для выполнения этого условия используют аргон или азот. Однако применение азота как защитного газа ограничено, что связанно с возможностью образования нитридов (например, AlN, TiN при изготовлении изделий из алюминиевых и титановых сплавов), которые приводят к понижению пластичности материала.

Методы лазерного аддитивного производства по особенностям процесса уплотнения материала можно разделить на селективное лазерное спекание (Selective Laser Sintering (SLS)), непрямое лазерное спекание металлов (Indirect Metal Laser Sintering (IMLS)), прямое лазерное спекание металлов (Direct Metal Laser Sintering (DMLS)) и селективное лазерное плавление (Selective Laser Melting (SLM)). В первом варианте уплотнение слоя порошка происходит за счет твердофазного спекания. Во втором – за счет пропитки связкой пористого каркаса ранее сформированного лазерным излучением. В основе прямого лазерного спекания металлов лежит уплотнение по механизму жидкофазного спекания за счет плавления легкоплавкого компонента в порошковой смеси. В последнем варианте уплотнение происходит за счет полного плавления и растекания расплава. Стоит отметить, что эта классификация не является универсальной, поскольку в одном типе процесса аддитивного производства могут проявляться механизмы уплотнения, которые характерны для других процессов. Например, при DMLS и SLM может наблюдаться твердофазное спекание, которое имеет место при SLS, тогда как при SLM может происходить жидкофазное спекание, которое более характерно для DMLS.

Селективное лазерное спекание (SLS)

Твердофазное селективное лазерное спекание не получило широкого распространения, поскольку для более полного протекания объемной и поверхностной диффузии, вязкого течения и других процессов, имеющих место при спекании порошка, требуется относительно длительная выдержка под лазерным излучением. Это приводит к длительной работе лазера и малой производительности процесса, что делает этот процесс экономически не целесообразным. Помимо этого, возникают сложности с поддержанием температуры процесса в интервале между точкой плавления и температурой твердофазного спекания. Преимуществом твердофазного селективного лазерного спекания является возможность использования более широкого круга материалов для изготовления изделий.

Непрямое лазерное спекание металлов (IMLS)

Процесс, получивший название «непрямое лазерное спекание металлов» был разработан компанией DTMcorp of Austin в 1995 г., которая с 2001 г. принадлежит компании 3D Systems. В IMLS процессе используют смесь порошка и полимера или порошок покрытый полимером, где полимер выступает в роли связки и обеспечивает необходимую прочность для проведения дальнейшей термической обработки. На стадии термической обработки проводится отгонка полимера, спекание каркаса и пропитка пористого каркаса металлом-связкой, в результате которой получается готовое изделие.

Для IMLS можно использовать порошки, как металлов, так и керамики или их смесей. Приготовление смеси порошка с полимером проводят механическим смешиванием, при этом содержание полимера составляет около 2-3% (по массе), а в случае использования порошка покрытым полимером, толщина слоя на поверхности частицы составляет около 5 мкм. В качестве связки используют эпоксидные смолы, жидкое стекло, полиамиды и другие полимеры. Температура отгонки полимера определяется температурой его плавления и разложения и в среднем составляет 400-650 o С. После отгонки полимера пористость изделия перед пропиткой составляет около 40%. При пропитке печь нагревают на 100-200 0 С выше точки плавления пропитывающего материала, поскольку с повышением температуры уменьшается краевой угол смачивания и понижается вязкость расплава, что благоприятно влияет на процесс пропитки. Обычно пропитку будущих изделий проводят в засыпке из оксида алюминия, которая играет роль поддерживающего каркаса, поскольку в период от отгонки полимера до образования прочных межчастичных контактов существует опасность разрушения или деформации изделия. Защиту от окисления организуют с помощью создания в печи инертной или восстановительной сред. Для пропитки можно использовать довольно разнообразные металлы и сплавы, которые удовлетворяют следующим условиям. Материал для пропитки должен характеризоваться полным отсутствием или незначительным межфазным взаимодействием, малым краевым углом смачивания и иметь температуру плавления ниже, чем у основы. Например, в случае если компоненты взаимодействую между собой, то в процессе пропитки могут происходить нежелательные процессы, такие как образование более тугоплавких соединений или твердых растворов, что может привести к остановке процесса пропитки или негативно сказаться на свойствах и размерах изделия. Обычно для пропитки металлического каркаса используют бронзу, при этом усадка изделия составляет 2-5%.

Одним из недостатков IMLS является отсутствие возможности регулировать в широких пределах содержание тугоплавкой фазы (материала основы). Поскольку её процентное содержание в готовом изделии определяется насыпной плотностью порошка, которая в зависимости от характеристик порошка может быть в три и более раза меньше теоретической плотности материала порошка.

Материалы и их свойства, используемые для IMLS

Прямое лазерное спекание металлов (DMLS)

Процесс прямого лазерного спекания металлов подобен IMLS, однако отличается тем, что вместо полимера используются сплавы или соединения с низкой температурой плавления, а также отсутствует такая технологическая операция, как пропитка. В основе создания концепции DMLS стояла немецкая компания EOS GmbH, которая в 1995 году создала коммерческую установку для прямого лазерного спекания порошковой системы сталь-никелевая бронза. Получение различных изделий методом DMLS основано на затекании образовавшегося расплава-связки в пустоты между частицами под действием капиллярных сил. При этом для успешного выполнения процесса в порошковую смесь добавляют соединения с фосфором, которые снижают поверхностное натяжение, вязкость и степень окисления расплава, тем самым улучшая смачиваемость. Порошок, используемый в качестве связки, обычно имеет меньший размер, чем порошок основы, поскольку это позволяет увеличить насыпную плотность порошковой смеси и ускорить процесс образования расплава.

Материалы и их свойства, используемые для DMLS компанией EOS GmbH

Селективное лазерное плавление (SLM)

Дальнейшее усовершенствование установок для аддитивного производства связано с появлением возможности использования более мощного лазера, меньшего диаметра фокусировочного пятна и нанесения более тонкого слоя порошка, что позволило использовать SLM для изготовления изделий из различных металлов и сплавов. Обычно полученные этим методом изделия имеют пористость 0-3%.
Как и в выше рассмотренных методах (IMLS, DMLS), большую роль в процессе изготовления изделий играет смачиваемость, поверхностное натяжение и вязкость расплава. Одним из факторов сдерживающим использование различных металлов и сплавов для SLM является эффект «образования шариков» или сфероидизация, который проявляется в виде формирования лежащих отдельно друг от друга капель, а не сплошной дорожки расплава. Причиной этого является поверхностное натяжение под действием, которого расплав стремится уменьшить свободную поверхностную энергию путем образования формы с минимальной площадью поверхности, т.е. шара. При этом в полоске расплава наблюдается эффект Марангони, который проявляется в виде конвективных потоков из-за градиента поверхностного натяжения как функции от температуры, и если конвективные потоки достаточно сильные, то полоска расплава разделяется на отдельные капли. Также капля расплава под действием поверхностного натяжения затягивает в себя близлежащие частицы порошка, что приводит к образованию ямки вокруг капли и, в конечном счете, к увеличению пористости.


Сфероидизация стали M3/2 при неоптимальных режимах SLM

Эффекту сфероидизации также способствует наличие кислорода, который растворяясь в металле, повышает вязкость расплава, что приводит к ухудшению растекания и смачиваемости расплавом ниже лежащего слоя. По выше перечисленным причинам не удается получить изделия из таких металлов как олово, медь, цинк, свинец.

Стоит отметить, что формирование качественной полоски расплава связано с поиском оптимальной области параметров процесса (мощности лазерного излучения и скорости сканирования), которая обычно достаточно узкая.


Влияние параметров SLM золота на качество формируемых слоев

Еще одним фактором, влияющим на качество изделий, является появление внутренних напряжений, наличие и величина которых зависит от геометрии изделия, скорости нагрева и охлаждения, коэффициента термического расширения, фазовых и структурных изменений в металле. Значительные внутренние напряжения могут приводить к деформации изделий, образованию микро- и макротрещин.

Частично уменьшить негативное влияние выше упомянутых факторов можно путем использования нагревательных элементов, которые обычно располагаются внутри установки вокруг подложки или питателя с порошком. Нагрев порошка также позволяет удалить адсорбированную влагу с поверхности частиц и тем самым уменьшить степень окисления.

При селективном лазерном плавлении таких металлов как алюминий, медь, золото не маловажным вопросом является их большая отражательная способность, что обуславливает необходимость использования мощной лазерной системы. Но повышение мощности лазерного луча может негативно сказаться на точности размеров изделия, поскольку при чрезмерном нагреве порошок будет плавиться и спекаться за пределами лазерного пятна за счет теплообмена. Большая мощность лазера также может привести к изменению химического состава в результате испарения металла, что особенного характерно для сплавов содержащих легкоплавкие компоненты и имеющих большую упругость паров.

Механические свойства материалов полученных методом SLM (компания EOS GmbH)

Если изделие, полученное одним из выше рассмотренных методов, имеет остаточную пористость, то в случае необходимости применяют дополнительные технологические операции для повышения его плотности. Для этой цели используют методы порошковой металлургии – спекание или горячее изостатическое прессование (ГИП). Спекание позволяет устранить остаточную пористость и повысить физико-механические свойства материала. При этом следует подчеркнуть, что формируемые свойства материала в процессе спекания определяются составом и природой материала, размером и количеством пор, наличием дефектов и другими многочисленными факторами. ГИП представляет собой процесс, в котором заготовка, помещенная в газостат, уплотняется под действием высокой температуры и всестороннего сжатия инертным газом. Рабочее давление и максимальная температура, достигаемая газостатом, зависит от его конструкции и объёма. Например, газостат, имеющий размеры рабочей камеры 900х1800 мм, способен развить температуру 1500 o С и давление 200 МПа. Использование ГИП для устранения пористости без применения герметичной оболочки возможно, если пористость составляет не более 8%, поскольку при большем её значении газ через поры будет попадать внутрь изделия, препятствуя тем самым уплотнению. Исключить проникновение внутрь изделия газа можно путём изготовления стальной герметичной оболочки повторяющую форму поверхности изделия. Однако изделия, получаемые аддитивным производством, в основном имеют сложную форму, что делает невозможным изготовление такой оболочки. В таком случае для уплотнения можно использовать вакуумированный герметичный контейнер, в котором изделие помещено в сыпучую среду (Al 2 O 3 , BN гекс, графит), передающей давление на стенки изделия.

После аддитивного производства методом SLM материалы характеризуются анизотропией свойств, повышенной прочностью и пониженной пластичностью из-за наличия остаточных напряжений. Для снятия остаточных напряжений, получения более равновесной структуры, повышения вязкости и пластичности материала проводят отжиг.

Согласно ниже приведенным данным, можно отметить, что изделия, полученные селективным лазерным плавлением, в некоторых случаях прочнее литых на 2-12%. Это можно объяснить малым размером зерен и микроструктурных составляющих, которые образуются в результате быстрого охлаждения расплава. Быстрое переохлаждение расплава значительно увеличивает число зародышей твердой фазы и уменьшает их критический размер. При этом быстро растущие на зародышах кристаллы, соприкасаясь друг с другом, начинают препятствовать своему дальнейшему росту, тем самым формируя мелкозернистую структуру. Зародышами кристаллизации обычно являются неметаллические включения, пузырьки газов или выделившиеся из расплава частицы при их ограниченной растворимости в жидкой фазе. И в общем случае, согласно соотношению Холла-Петча, с уменьшением размера зерна увеличивается прочность металла благодаря развитой сети границ зерен, которая является эффективным барьером для движения дислокаций. Следует отметить, что в силу различного химического состава сплавов и их свойств, условий проведения SLM, выше упомянутые явления, имеющие место при остывании расплава, проявляются с различной интенсивностью.

Механические свойства материалов, полученных SLM и литьем

Конечно, это не значит, что изделия, полученные селективным лазерным плавлением лучше изделий полученных традиционными способами. Благодаря большой гибкости традиционных способов получения изделий можно в широких пределах варьировать свойствами изделия. Например, используя такие методы как изменение температурных условий кристаллизации, легирование и введение в расплав модификаторов, термоциклирование, порошковой металлургии, термомеханическая обработка и др., можно добиться значительного повышения прочностных свойств металлов и сплавов.

Особый интерес представляет использование углеродистой стали для аддитивного производства, как дешевого и обладающего высоким комплексом механических свойств материала. Известно, что с повышением содержания углерода в стали улучшается её жидкотекучесть и смачиваемость. Благодаря этому возможно получение простых изделий содержащих 0,6-1% C с плотностью 94-99%, при этом в случае использования чистого железа плотность составляет около 83%. В процессе селективного лазерного плавления углеродистой стали дорожка расплава при быстром охлаждении подвергается закалке и отпуску на структуру троостита или сорбита. При этом, из-за термических напряжений и структурных превращений, в металле могут возникать значительные напряжения, которые приводят к поводке изделия или к образованию трещин. Также важное значение имеет геометрия изделия, поскольку резкие переходы по сечению, малые радиусы закругления и острые кромки являются причиной образования трещин. Если после «печати» сталь не обладает заданным уровнем механических свойств и её необходимо подвергнуть дополнительной термообработке, то при этом необходимо будет считаться с ранее отмеченными ограничениями по форме изделия, чтобы избежать появления дефектов закалки. Это в некоторой степени снижает перспективность использования SLM для углеродистых сталей.
При получении изделий традиционными способами одним из путей избежать трещин и поводки при закалке изделий сложной формы является использование легированных сталей, в которых присутствующие легирующие элементы помимо повышения механических и физико-химических свойств, задерживают превращение аустенита при охлаждении, в результате чего уменьшается критическая скорость закалки и увеличивается прокаливаемость легированной стали. Благодаря малой критической скорости закалки, сталь можно калить в масле или на воздухе, что снижает уровень внутренних напряжений. Однако по причине быстрого отвода тепла, невозможности регулирования скорости охлаждения и наличия углерода в легированной стали этот прием не позволяет избежать появления значительных внутренних напряжений при селективном лазерном плавлении.

В связи с выше отмеченными особенностями, для SLM используются мартенситно-страющие стали (MS 1, GP 1, PH 1), в которых упрочнение и повышение твердости достигается за счет выделения дисперсных интерметаллидных фаз при термообработке. Эти стали содержат малое количество углерода (сотые проценты), в результате чего образовавшаяся при быстром охлаждении решетка мартенсита характеризуется малой степенью искаженности и следственно имеет низкую твердость. Малая твердость и высокая пластичность мартенсита обеспечивает релаксацию внутренних напряжений при закалке, а высокое содержание легирующих элементов позволяет прокаливать сталь на большую глубину почти при любых скоростях охлаждения. Благодаря этому с помощью SLM можно изготавливать и подвергать термообработке сложные изделия без опасения образования трещин или коробления. Кроме мартенситно-стареющих сталей могут использоваться некоторые аустенитные нержавеющие стали, например, 316L.

В заключение можно отметить, что сейчас усилия ученых и инженеров направлены на более детальное изучение влияния параметров процесса на структуру, механизм и особенности уплотнения различных материалов под действием лазерного излучения с целью улучшения механических свойств и увеличения номенклатуры материалов пригодных для лазерного аддитивного производства.

Похожа на SLS, их иногда даже путают, но все же есть кардинальные отличия. В то время как в SLS частицы порошка спекаются друг с другом, то здесь металлические частицы доводятся до состояния расплавления и свариваются друг с другом, образуя жесткий каркас.

Метод берет свои корни из Института Лазерных Технологий Фраунгофера, Германия (Fraunhofer-InstitutfürLasertechnik). В 1995 году там родился исследовательский проект, который возглавляли Вильгельм Майнерс и Курт Виссенбах. Позже эти ученые объединили свои усилия с Диетором Шварцем и Маттиасом Фокеле из компании F&S StereolithographietechnikGmbH, после чего метод был официально запатентован. В начале 2000-х годов F&S стала сотрудничать с другой немецкой компанией, MCP HEK Gmbh. В конце концов, упомянутые выше ученые возглавили компании SLM SolutionsGmbh и RealizerGmbh, унаследовавшие все предыдущие наработки.

Построение модели начинается с подготовки уже известного нам stl файла. Программа рассчитывает 2D модель каждого слоя с шагом обычно от 20 до 100 микрон, добавляя при необходимости структуры поддержки. Возведение каждого слоя начинается с равномерного распределения металлического порошка по всей площади подложки, на которой будет “расти” модель. Эту работу выполняет либо валик, либо щетка, похожая на автомобильный стеклоочиститель. Каждому слою соответствует 2D схема. Весь процесс происходит в специальной герметичной камере, наполненной инертным газом, например, аргоном, либо азотом со сверхмалыми примесями кислорода. Система фокусировки направляет высокомощный лазер на металлические частицы, расплавляя и сваривая их между собой. По контурам сечения проходит сплошная сварка, а внутренности стенок объекта могут свариваться в соответствии с паттерном заполнения. Кстати, остатки порошка, оставшегося от изготовления детали, могут повторно использоваться для печати следующей модели.

Применяемые материалы включают в себя нержавеющую сталь, инструментальную сталь, сплавы хрома и кобальта, титан, алюминий. Могут применяться и другие сплавы - главное, чтобы они, будучи измельченными до состояния частиц, имели определенные характеристики сыпучести.

3D моделирование методом SLM прочно вошло в нашу жизнь. Оно в разы сократило время, которое требуется на изготовление детали по сравнению с традиционными способами. Некоторые области авиастроения, нефтедобычи и медицины нуждаются в таких сложных компонентах, которые просто невозможно изготовить по-другому. Особенно это касается объектов с большой площадью поверхности и одновременно малым объемом. Представьте себе радиатор какой-либо системы охлаждения.

Выборочная лазерная плавка незаменима в аэрокосмической отрасли , где идет борьба за каждый грамм - деталь должна выполнять свои функции и быть прочной, но вместе с тем иметь материал только в тех местах, где без него не обойтись.