Как проецировать силы на ось. В какую сторону направлена реакция стержня с шарнирным крепление концов? Что будем делать с полученным материалом

С1

Для заданной схемы балки требуется найти опорные реакции, если l=14 м, а=3,8 м, b=5 м, М=11 кН м, F=10 кН.

Решение. Так как горизонтальная нагрузка отсутствует, то опора А имеет только вертикальную реакцию RA. Составляем уравнения равновесия в виде моментов всех сил относительно точек А и В.

откуда находим

Для проверки составим уравнение равновесия на вертикальную ось:

Контрольные вопросы

балка шарнир сила точка

Как находится проекция силы на ось?

Проекция силы на ось - это алгебраическая величина, равная произведению модуля силы на косинус угла между положительным направлением оси и вектором силы (т.е. это отрезок, откладываемый силой на соответствующие оси).

Px= P cos?= P cos90o=0;

Rx= R cos? = -R cos(180o-?).

Проекция силы на ось положительна, рис. 2 а), если 0 ? ? < ?/2.

В каком случае проекция силы на ось равна нулю?

Проекция силы на ось может быть равной нулю, рис. 2 б), если? = ?/2.)

В каком случае проекция силы на ось равна модулю силы?

Проекция силы на ось равна модулю силы, если? =0?.

В каком случае проекция силы на ось отрицательна?

Проекция силы на ось может быть отрицательной, рис. 2 в), если?/2 < ? ? ?.

Сколько уравнений равновесия составляется для плоской сходящейся системы сил?

Силы называют сходящимися, если их линии действия пересекаются в одной точке. Различают плоскую систему сходящихся сил, когда линии действия всех данных сил лежат в одной плоскости.

Равновесие системы сходящихся сил.

Из законов механики следует, что твердое тело, на которое действуют взаимно уравновешенные внешние силы, может не только находиться в покое, но и совершать движение, которое мы назовем движением «по инерции». Таким движением будет, например, поступательное равномерное и прямолинейное движение тела.

Отсюда получаем два важных вывода:

1) Условиям равновесия статики удовлетворяют силы, действующие как на покоящееся тело, так и на тело, движущееся «по инерции».

2) Уравновешенность сил, приложенных к свободному твердому телу, является необходимым, но не достаточным условием равновесия (покоя) самого тела; в покое тело будет при этом находиться лишь в том случае, если оно было в покое и до момента приложения к нему уравновешенных сил.

Для равновесия приложенной к твердому телу системы сходящихся сил необходимо и достаточно, чтобы равнодействующая этих сил была равна нулю. Условия, которым при этом должны удовлетворять сами силы, можно выразить в геометрической или аналитической форме.

1. Геометрическое условие равновесия. Так как равнодействующая сходящихся сил определяется как замыкающая сторона силового многоугольника, построенного из этих сил, то может обратиться в нуль тогда и только тогда, когда конец последней силы в многоугольнике совпадает с началом первой, т. е. когда многоугольник замкнется.

Следовательно, для равновесия системы, сходящихся сил необходимо и достаточно, чтобы силовой многоугольник, построенный из этих сил, был замкнут.

2. Аналитические условия равновесия. Аналитически равнодействующая системы сходящихся сил определяется формулой

Так как под корнем стоит сумма положительных слагаемых, то R обратится в нуль только тогда, когда одновременно

т. е. когда действующие на тело силы будут удовлетворять равенствам:

Равенства выражают условия равновесия в аналитической форме: для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы суммы проекций этих сил на каждую из трех координатных осей были равны нулю.

Если все действующие на тело сходящиеся силы лежат в одной плоскости, то они образуют плоскую систему сходящихся сил. В случае плоской системы сходящихся сил получим, очевидно, только два условия равновесия

Равенства выражают также необходимые условия (или уравнения) равновесия свободного твердого тела, находящегося под действием сходящихся сил.

В какую сторону направлена реакция стержня с шарнирным крепление концов?

Пусть в какой-нибудь конструкции связью является стержень АВ, закрепленный на концах шарнирами (рис.3). Примем, что весом стержня по сравнению с воспринимаемой им нагрузкой можно пренебречь. Тогда на стержень будут действовать только две силы приложенные в шарнирах А и В. Но если стержень АВ находится в равновесии, то приложенные в точках А и В силы должны быть направлены вдоль одной прямой, т. е. вдоль оси стержня. Следовательно, нагруженный на концах стержень, весом которого по сравнению с этими нагрузками можно пренебречь, работает только на растяжение или на сжатие. Если такой стержень является связью, то реакция стержня будет направлена вдоль оси стержня.

Как находится момент силы относительно точки?

Момент силы относительно точки определяется произведением модуля силы на длину перпендикуляра, опущенного из точки на линию действия силы (рис. 4, а). При закреплении тела в точке О сила стремится вращать его вокруг этой точки. Точка О, относительно которой берется момент, называется центром момента, а длина перпендикуляра а называется плечом силы относительно центра момента.


Измеряются моменты сил в ньютонометрах (Н м) или килограммометрах (кгс м) или в соответствующих кратных и дольных единицах, как и моменты пар.

В каком случае момент силы относительно точки равен нулю?

Когда линия действия силы проходит через данную точку, ее момент относительно этой точки равен нулю, так как в рассматриваемом случае плечо равно нулю: а = 0 (рис. 4, в).

Сколько уравнений равновесия составляется для плоской произвольной системы сил?

Для плоской произвольной системы сил можно составить три уравнения равновесия:

Как направлены реакции в неподвижном шарнире?

Неподвижная шарнирная опора (рис.5, опора В). Реакция такой опоры проходит через ось шарнира и может иметь любое направление в плоскости чертежа. При решении задач будем реакцию изображать ее составляющими и по направлениям осей координат. Если мы, решив задачу, найдем и, то тем самым будет определена и реакция; по модулю

Как направлена реакция в подвижном шарнире?

Подвижная шарнирная опора (рис.6, опора А) препятствует движению тела только в направлении перпендикулярном плоскости скольжения опоры. Реакция такой опоры направлена по нормали к поверхности, на которую опираются катки подвижной опоры.

Теоретический материал

Связь – это тело, препятствующее перемещению другого тела под действием силы.

Реакция связи – сила, возникающая внутри самой связи. Реакция всегда противоположна тому направлению, по которому связь препятствует движению тела. Все тела могут быть свободными и несвободными. Свободное тело не имеет связи. Любое несвободное тело можно представить свободным, если действующие на него связи заменить реакциями.

Виды связей:

а) Гладкая поверхность или плоскость , то есть поверхность не имеющая трения. Реакция этой связи всегда направлена перпендикулярно точке соприкосновения. R – реакция связи

б) Гладкая опора Реакции этой связи направлены перпендикулярно к точке соприкосновения. (Реакция – сила внутри конструкции). Ее величина зависит от материала, размера и внешней силы.

в) Гибкая связь – связь, работающая только на растяжение, которая осуществляется тросом, канатом, цепью. Реакция гибкой связи направлена по самой связи к точке закрепления, то есть противоположно направлению силы.


г) Жесткие стержни . Осуществляется различными балками, двутаврами, швеллерами. Связь работает как на растяжение, так и на сжатие. Если стержень испытывает растяжение, то реакция направлена по стержню к месту закрепления, если на сжатие, то реакция - за стержень.

д) Шарнирная опора . Опоры бывают подвижные и неподвижные. Неподвижная опора имеет две реакции, расположенные перпендикулярно друг к другу. Подвижная опора имеет одну реакцию, перпендикулярно поверхности.

Подвижная опора Неподвижная опора


Задания для выполнения работы

1. Вычертить рисунки своего варианта.

2. Описать рисунок.

3. Определить вид связи и заменить их реакциями.

Вариант 18

1.
2.
3.

Контрольные вопросы:

1. В чем отличие между осью и проекцией?

2. Сколько уравнений равновесия Вы составляли при решении задачи?

3. Методика решения задач ПССС.



4. Дайте определение плоской системе сходящихся сил.

5. Какой величиной является проекция силы на координатную плоскость?

Литература:

1. Вереин Л.И. Техническая механика – М: Академия, 2006.

2. Мовнин М.С. Основы технической механики – СПБ: Политехника, 2003.

3. Молчанова Е.В., Шурыгина Г.Н. Статика и сопротивление материалов - Томск, 2008.

Практическая работа №2

Тема урока: Определение реакций связи плоской системы сходящихся сил.

Тип урока: закрепление полученных знаний.

Цель урока: Научиться определять реакции связи плоской системы сходящихся сил

Обеспечивающие средства:

1. методическое руководство по выполнению работы;

2. индивидуальное задание;

3. тетрадь для практических работ;

7. калькулятор.

Технология работы:

1.Внимательно изучите методические указания, предложенный теоретический материал.

2.В соответствие с вариантом, выполнить задание по методике представленной ниже.

3.Сделайте выводы о проделанной работе.

4.Ответить на контрольные вопросы.

Теоретический материал

Условия и уравнения равновесия плоской системы произвольно- расположенных сил.

При приведении системы сил к точке получается R гл и М гл.

Если система сил находится в равновесии, то R гл = 0, М гл = 0.

Запишем три вида уравнений равновесия для данной системы.

Первый вид

а аналитическим условием равновесия, которое основано на методе проекций.

Проекцией силы на ось называется отрезок оси, заключенный между двумя перпендикулярами, опущенными на ось из начала и конца вектора силы.

Пусть даны координатные оси х, у, сила Р, приложенная в точке А и расположенная в плоскости координатных осей (рис. 2.3).

Проекциями силы Р на оси будут отрезки аЬ и а"Ь". Обозначим этн проекции соответственно Р„и Р„. Тогда

Р„= Р со я а; Р„= Р я п а.

Проекция силы на ось есть величина алгебраическая, которая может быть положительной или отрицательной, что устанавливается по направлению проекции. За направление проекции примем направление от проекции начала к проекции конца вектора силы.

Установим следующее правило знаков:

если направление проекции силы на ось совпадает с положительным направление.м оси, то эта проекция считается положительной, и наоборот.

Если вектор силы параллелен оси, то он проецируется на эту ось в натуральную величину (рис. 2.3, сила Г).

Если вектор силы перпендикулярен оси, то его проекция на эту ось равна нулю (рис. 2.3, сила Я).

Зная две проекции Р„и Р„, из треугольника АВС определяем модуль и направление вектора силы Р по следующим формулам:

модуль силы

направляющий тангенс угла между вектором силы

Р и осью х

Отметим, что силу Р можно представить как равнодействующую двух составляющих сил Р„и Р., параллельных осям координат (рис. 2.3). Составляющие Р„и Р„и проекции Р„ и Рх принципиально отличны друг от друга, так как составляющая есть величина векторная, а проекция величина алгебраическая; но проекции силы на две взаимно перпендикулярные оси х и у и модули составляющих той же силы соответственно численно равны, когда сила разлагается по двум взаимно перпендикулярным направлениям, параллельным осям х и у.

$2.4. Аналитический способ определения

равнодействующей плоской системы сходящихся сил

Пусть дана плоская система п сходящихся сил

Равнодействующая этой системы

В плоскости действия данной системы выберем ось координат и спроецируем данные силы и их равнодействующую на эту ось.

Из математики известно свойство проекции векторной суммы, на основании которого можно утверждать, что проекция равнодействующей на ось равна алгебраической сумме проекций составляющих сил на ту же ось, т. е.

Правую часть этого равенства записываем упрощенно,

а именно:

Для того чтобы определить равнодействующую любой плоской системы сходящихся сил, спроецируем их на оси координат х и у, алгебраически сложим проекции всех сил и найдем, таким образом, проекции равнодействующей.

Часто геометрическое сложение векторов сил требует сложных и громоздких построений. В таких случаях прибегают к другому методу, где геометрическое построе­ние заменен о вычислениями скалярных величин. Дости­гается это проектированием заданных сил на оси прямо­угольной системы координат.

Как известнее из математики, осью называют неограни­ченную прямую линию , которой приписано определенное направление . Проекция вектора на ось является скаляр­ной величиной, которая определяется отрезком оси , отсе­каемым перпендикулярами , опущенными из начала и конца вектора на ось.

Проекция вектора считается положительной (+ ), если направление от начала проекции к ее концу совпадает с положительным направлением оси. Проекция вектора считается отрицательной (- ), если направление от на­чала проекции к ее концу противоположно положитель­ному направлению оси.

Рассмотрим ряд случаев проектирования сил на ось .

  1. Дана сила Р (рис.а ), она лежит в одной пло­скости с осью х . Вектор силы составляет с положительным направлением оси острый угол α .

Чтобы найти величину проекции , из начала и конца вектора силы опускаем перпендикуляры на ось х, полу­чаем

Р х = ab = Р cos α .

Проекция вектора в данном случае положительна .

2. Дана сила Q (рис. б ), которая лежит в одной плоскости с осью х , но ее вектор составляет с положи­тельным направлением оси тупой угол α .

Проекция силы Q на ось х

Q х = ab = Q cos α,

cos a = - cos β .

Так как α > 90° , то cos cos α - отрицательная величина. Выразив cos α через cos β (β - острый угол), оконча­тельно получим

Q х = - Q cos β

В этом случае проекция силы отрицательна .

Итак, проекция силы на ось координат равна произве­дению модуля силы на косинус угла между вектором силы и положительным направлением оси .

При определении проекции вектора силы на ось поль­зуются обычно косинусом острого угла, независимо от того, с каким направлением оси - положительным или отрицательным - он образо­ван. Знак проекции легче устанавливать непосредствен­но по чертежу.

Силу, расположенную на плоскости хОу , можно спроек­тировать на две координатные оси Ох и Оу . Рассмотрим рисунок.

На нем изображена сила Р и ее проекции Р х и Р у . Ввиду того что проекции образуют между собой прямой угол, из прямоугольного треугольника ABC следует:


Пусть линия действия силы F лежит в плоскости OXY (рис. 1.25).

По правилу параллелограмма разложим эту силу на составляющие силы F ОХ, F OY по координатным осям OX и OY. Силы F OX , F OY называют компонентами силы F по координатным осям OX и OY. Очевидно векторное равенство

F = F OX + F OY .

Спроецируем компоненты F OX , F OY силы F на координатные оси и получим скалярные величины F OX , F OY , которые называют проекциями силы на оси OX и OY .

Компоненты силы и её проекции на координатные оси связаны равенствами: F OX = i ×F OX ; F OY = j ×F OY .

Проекция силы на ось скалярная величина, равная взятой со знаком плюс или минус длине отрезка, заключённого между проекциями на ось начала и конца силы.

Из определения следует, что проекции данной силы на любые параллельные оси равны друг другу: F OX = F O 1 X 1 , F OY = F O 1 Y 1 , где F O 1 X 1 , F O 1 Y 1 – проекции силы F на координатные оси системы отсчёта O 1 X 1 Y 1 .


Пусть в пространстве в системе отсчёта OXYZ задана сила F , (рис. 1.26).

Используя правило параллелепипеда, разложим силу F на компоненты F OX , F OY , F OZ . По правилу сложения векторов справедливо равенство

F = F OX + F OY + F OZ .

Компоненты F OX , F OY , F OZ силы F связаны с их проекциями F OX , F OY , F OZ на координатные оси соотношениями: F OX = i ×F OX ; F OY = j ×F OY ; F OZ = k ×F OZ . Следовательно, справедливо равенство

F = i ·F OX + j ·F OY + k ·F OZ .

Последнее равенство представляет собой формулу разложения силы на составляющие силы по координатным осям .

Проекция силы на координатную ось равна произведению модуля силы на косинус угла, составленного направлениями силы и оси.

F OX = F×cos(F , i ); F OY = F×cos(F , j ); F OZ = F×cos(F , k ).

Модуль силы через её проекции определяют по формуле

Направляющие косинусы , используемые для определения направления силы, находят по формулам:

cos(F , i ) = F OX /F; cos(F , j ) = F OY /F; cos(F , k ) = F OZ /F.

Если рассматривается сила, лежащая в плоскости OXY, то применяются формулы:

F = F OX + F OY ;

;

cos(F , i ) = F OX /F; cos(F , j ) = F OY /F.


При определении проекции силы на ось возможны следующие частные случаи (рис. 1.27).

Анализ частных случаев определения проекции силы на ось позволяет сделать следующие выводы: 1) если сила и ось направлены в одну полуплоскость, то проекция силы на ось положительна; 2) если сила и ось направлены в разные полуплоскости, то проекция силы на ось отрицательна; 3) если сила и ось взаимно перпендикулярны, то проекция силы на ось равна нулю; 4) если сила и ось параллельны, то сила проецируется на ось в натуральную величину с соответствующим знаком.


В инженерной практике принято использовать заданный угол и выражать через него проекции силы на оси (рис. 1.28).

Проекцией силы на плоскость OXY называется вектор F OX Y , заключенный между проекциями начала и конца силы F на эту плоскость (рис. 1.29).

Таким образом, в отличие от проекции силы на ось, проекция силы на плоскость есть величина векторная , так как она характеризуется не только модулем, но и направлением по плоскости OXY. По модулю F О X Y = F·cos(g), где g – угол между направлением силы F и её проекцией F OX Y ,


В некоторых случаях для нахождения проекции силы на ось бывает удобнее найти сначала её проекцию на плоскость, в которой эта ось лежит, а затем найденную проекцию силы на плоскость спроецировать на данную ось. Тогда:

F OX = F OXY ·sin(α) = F·cos(g)·sin(α);

F OY = F OXY ·cos(α) = F·cos(g)·cos(α);