В чем заключается основной закон динамики. Динамика вращательного движения

Для выяснения назначения приведенных выше понятий рассмотрим систему из двух материальных точек (частиц) и затем обобщим результат на систему из произвольного числа частиц (т.е. на твердое тело). Пусть на частицы с массами m 1 , m 2 , импульсы которых p 1 и p 2 , действуют внешние силы F 1 и F 2 . Частицы также взаимодействуют друг с другом внутренними силами f 12 и f 21 .

Запишем второй закон Ньютона для каждой из частиц, а также вытекающую из третьего закона Ньютона связь между внутренними силами:

, (1)

, (2)

. (3)

Умножим векторно уравнение (1) на r 1 , а уравнение (2) – на r 2 и сложим полученные выражения:

Преобразуем левые части уравнения (4), учитывая что

, i=1, 2.

Векторы и
параллельны и их векторное произведение равно нулю, поэтому можно записать

. (5)

Первые два слагаемых справа в (4) равны нулю, т.е.

поскольку f 21 =- f 12 , а векторr 1 -r 2 направлен по одной и той же прямой, что и вектор f 12 .

Учитывая (5)и (6) из (4) получим

или

, (7)

где L = L 1 + L 2 ; M = M 1 + M 2 . Обобщая результат на систему из n частиц, мы можем записать L = L 1 + L 2 +…+L n = M = M 1 + M 2 + M n =

Уравнение (7) является математической записью основного закона динамики вращательного движения: скорость изменения момента импульса системы равна сумме действующих на нее моментов внешних сил. Этот закон справедлив относительно любой неподвижной или движущейся с постоянной скоростью точки в инерциальной системе отсчета. Отсюда же следует закон сохранения момента импульса : если момент внешних сил M равен нулю, то момент импульса системы сохраняется (L =const).

Момент импульса абсолютно твердого тела относительно неподвижной оси.

Рассмотрим вращение абсолютно твердого тела вокруг неподвижной оси z. Твердое тело можно представить как систему из n материальных точек (частиц). При вращении некоторая рассматриваемая точка тела (обозначим ее индексом i, причем i=1…n) движется по окружности постоянного радиуса R i с линейной скоростью v i вокруг оси z (рис.4).


Ее скорость v i и импульс m i v i перпендикулярны радиусу R i . Поэтому модуль момента импульса частицы тела относительно точки О, расположенной на оси вращения:

,

где r i – радиус- вектор, проведенный от точки О к частице.

Используя связь между линейной и угловой скоростью v i =R i , где R i –расстояние частицы от оси вращения, получим

.

Проекция этого вектора на ось вращения z, т.е. момент импульса частицы тела относительно оси z будет равна:

Момент импульса твердого тела относительно оси есть сумма моментов импульсов всех частей тела:

.

Величина I z , равная сумме произведений масс частиц тела на квадраты их расстояний до оси z, называется моментом инерции тела относительно данной оси:

. (8)

Из выражения (8) следует, что момент импульса тела не зависит от положения точки О на оси вращения, поэтому говорят о моменте импульса тела относительно некоторой оси вращения, а не относительно точки

Между формулировками основного закона вращательного движения, определениями момента импульса, силы существует схожесть с формулировками второго закона Ньютона и определениями импульса для поступательного движения.

Момент инерции относительно оси вращения

Момент инерции материальной точки , (1.8) где – масса точки, – расстояние её от оси вращения.

1. Момент инерции дискретного твердого тела , (1.9) где – элемент массы твердого тела; – расстояние этого элемента от оси вращения; – число элементов тела.

2. Момент инерции в случае непрерывного распределения массы (сплошного твердого тела) . (1.10) Если тело однородно, т.е. его плотность одинакова по всему объему, то используется выражение (1.11), где и объем тела.

3. Теорема Штейнера. Момент инерции тела любой оси вращения равен моменту его инерции относительно параллельной оси, проходящей через центр масс тела, сложенному с произведением массы тела на квадрат расстояния между ними . (1.12)

1. , (1.13) где – момент силы, – момент инерции тела, – угловая скорость, – момент импульса.

2. В случае постоянного момента инерции тела – , (1.14) где угловое ускорение.

3. В случае постоянных момента силы и момента инерции изменение момента импульса вращающегося тела, равно произведению среднего момента сил, действующего на тело на время действия этого момента . (1.15)

Если ось вращения не проходит через центр масс тела, то момент инерции тела относительно этой оси можно определить по теореме Штейнера: момент инерции тела относительно произвольной оси равен сумме моментов инерции этого тела относительно оси вращения О 1 О 2, проходящей через центр масс тела С параллельно оси , и произведения массы тела на квадрат расстояния между этими осями (см. Рис. 1), т.е. .

Момент инерции системы отдельных тел равен (например, момент инерции физического маятника равен , где момент инерции стержня, на котором крепится диск с моментом инерции ).

Таблица аналогий

Поступательное движение Вращательное движение
элементарное перемещение элементарный заметённый угол
линейная скорость угловая скорость
ускорение угловое ускорение
масса т момент инерции J
сила момент силы
основное уравнение динамики поступательного движения основное уравнение динамики вращательного движения
импульс момент импульса
закон изменения импульса закон изменения момента импульса
работа работа
кинетическая энергия кинетическая энергия

Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение. Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, не лежащей на линии движения, оно также обладает моментом импульса. Наибольшую, пожалуй, роль момент импульса играет при описании собственно вращательного движения, момент импульса относительно точки - это псевдовектор, а момент импульса относительно оси - псевдоскаляр.



Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему, равна нулю.

1)Еще линейными характеристиками: путь S, скорость,тангенциальноеи нормальное ускорения.

2)При вращении тела вокруг неподвижной оси вектор углового ускорения ε направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор ε сонаправлен вектору ω (рис. 3), при замедленном - противонаправлен ему.

4) Момент инерции - скалярная величина, характеризующая распределение масс в теле. Момент инерции является мерой инертности тела при вращении (физический смысл).

Ускорение характеризует быстроту изменения скорости.

5) Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент) - векторная физическая величина, равная векторному произведению радиус-вектора (проведённого от оси вращения к точке приложения силы - по определению), на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

6) Если груз подвешан и находится в покое,то сила упругости \натяжения\ нити по модулю равна силе тяжести.

В инерциальной системе отсчёта угловое ускорение , приобретаемое телом, вращающимся относительно неподвижной оси, пропорционально суммарному моменту всех внешних сил , действующих на тело, и обратно пропорционально моменту инерции тела относительно данной оси:

Можно дать и более простую формулировку основному закону динамики вращательного движения (его ещё называют вторым законом Ньютона для вращательного движения ) : вращающий момент равен произведению момента инерции на угловое ускорение :

Моментом импульса (моментом количества движения , угловым моментом ) тела называется произведение его момента инерции на угловую скорость :

Момент импульса – векторная величина. Его направление совпадает с направлением вектора угловой скорости.

Изменение момента импульса определяется следующим образом:

. (I.112)

Изменение момента импульса (при неизменном моменте инерции тела) может произойти, только вследствие изменения угловой скорости и всегда обусловлено действием момента силы .

Согласно формуле , а также формулам (I.110) и (I.112) изменение момента импульса можно представить в виде:

. (I.113)

Произведение в формуле (I.113) называется импульсом момента силы или движущим моментом . Он равен изменению момента импульса.

Формула (I.113) справедлива при условии, что момент силы не меняется с течением времени . Если же момент силы зависит от времени, т.е. , то

. (I.114)

Формула (I.114) показывает, что: изменение момента импульса равно интегралу по времени от момента силы . Кроме того, если эту формулу представить в виде: , то из неё будет следовать определение момента силы : мгновенный момент силы представляет собой первую производную момента импульса по времени ,

Выражение (I.115) является ещё одной формой основного уравнения (закона ) динамики вращательного движения твёрдого тела относительно неподвижной оси: производная момента импульса твёрдого тела относительно оси равна моменту сил относительно той же оси .

Вопрос 15

Момент инерции



Моментом инерции системы (тела) относительно данной оси называется физическая величина, равная сумме произведений масс n материальных точек системы на квадраты их расстоянии до рассматриваемой оси:

J=

Суммирование производится по всем элементарным массам m(i), на которые разбивается тело

В случае непрерывного распределения масс эта сумма сводится к интегралу

где интегрирование производится по всему объему тела. Величина г в этом случае есть функция положения точки с координатами х, у, z.

В качестве примера найдем момент инерции однородного сплошного цилиндра высотой h и радиусом R относительно его геометрической оси. Разобьем цилиндр на отдельные полые концентрические цилиндры бесконечно малой толщины dr с внутренним радиусом г и внешним г + dr. Момент инерции каждого полого цилиндра d,/ = r^2 dm (так как dr≤r то считаем, что расстояние всех точек цилиндра от оси равно г), где dm - масса всего элементарного цилиндра; его объем 2πr hrdr . Если р - плотность материала, то dm = 2πhpr^3dr . Тогда момент инерции сплошного цилиндра

но так как πR^3h - объем цилиндра, то его масса m= πR^2hp , а момент инерции

Теорема Штейнера

Момент инерции тела J относительно произвольной оси равен моменту его инерции относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы тела на квадрат расстояния а между осями:

J= + ma^2

1. Момент инерции однородного прямого тонкого цилиндрического стержня длины и массы относительно оси проходящей через его середину и перпендикулярной к его длине:

2. Момент инерции однородного сплошного цилиндра (или диска ) радиуса и массы относительно оси симметрии перпендикулярной к его плоскости и проходящей через его центр:

3. Момент инерции цилиндра радиуса , массы и высоты относительно оси, перпендикулярной к его высоте и проходящей через её середину:

4. Момент инерции шара (тонкостенной сферы ) радиуса и массы относительно его диаметра (или оси проходящей через центр сферы):

5. Момент инерции стержня длины и массы , относительно оси проходящей через один из его концов и перпендикулярной к его длине:

6. Момент инерции полого тонкостенного цилиндра радиуса и массы , относительно оси цилиндра:

7. Момент инерции цилиндра с отверстием (колесо, муфта):

,

где и - радиусы цилиндра и отверстия в нём. Момент импульса и для незамкнутых систем постоянен, если результирующий момент внешних сил, приложенных к системе, равен нулю.

Гироскоп (пример:юла) – симметричное тело, вращающиеся вокруг своей оси с большой скоростью.

Момент количества движения гироскопа совпадает с его осью вращения.

Электрический заряд – это мера участия тел в электромагнитных взаимодействиях.

Существует два рода электрических зарядов, условно названных положительными и отрицательными.

Закон Кулона:

.

Электрическое поле – это особая форма материи, посредством которой осуществляется взаимодействие между заряженными частицами.

Напряженность электрического поля – векторная физическая величина. Направление вектора напряжённости совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

Силовые линии кулоновских полей положительных и отрицательных точечных зарядов:

Динамика вращательного движения

Основания и фундаменты рассчитывают по 2 предельным состояниям

По несущей способности: N – заданная расчетная нагрузка на основание в наиболее невыгодной комбинации; - несущая способность (предельная нагрузка) основания для данного направления нагрузки N ; - коэффициент условий работы основания (<1); - коэффициент надежности (>1).
По предельным деформациям: - расчетная абсолютная осадка фундамента; - расчетная относительная разность осадок фундаментов; , - предельные величины, соответственно абсолютной и относительной разности осадок фундаментов (СНиП 2.02.01-83*)

Динамика вращательного движения

Предисловие

Обращаю внимание студентов на то, что ЭТОТ материал в школе не рассматривался АБСОЛЮТНО (кроме понятия момента силы).

1. Закон динамики вращательного движения

a. Закон динамики вращательного движения

b. Момент силы

c. Момент пары сил

d. Момент инерции

2. Моменты инерции некоторых тел:

a. Кольцо (тонкостенный цилиндр)

b. Толстостенный цилиндр

c. Сплошной цилиндр

e. Тонкий стержень

3. Теорема Штейнера

4. Момент импульса тела. Изменение момента импульса тела. Импульс момента силы. Закон сохранения момента импульса

5. Работа при вращательном движении

6. Кинетическая энергия вращения

7. Сопоставление величин и законов для поступательного и вращательного движения

1a. Рассмотрим твердое тело, которое может вращаться вокруг неподвижной оси ОО (рис.3.1). Разобьем это твердое тело на отдельные элементарные массы Δm i . Равнодействующую всех сил, приложенных к Δm i , обозначим через . Достаточно рассмотреть случай, когда сила лежит в плоскости, перпендикулярной оси вращения: составляющие сил, параллельные оси, не могут влиять на вращение тела, так как ось закреплена. Тогда уравнение второго закона Ньютона для касательных составляющих силы и ускорения запишется в виде:

. (3.1)

Нормальная составляющая силы обеспечивает центростремительное ускорение и на угловое ускорение не влияет. Из (1.27): ,где – радиус вращения i -той точки. Тогда

. (3.2)

Умножим обе части (3.2) на :

Заметим, что

где α – угол между вектором силы и радиус-вектором точки (рис.3.1), – перпендикуляр, опущенный на линию действия силы из центра вращения (плечо силы). Введём понятие момента силы .

1b. Моментом силы относительно оси называется вектор, направленный по оси вращения и связанный с направлением силы правилом буравчика, модуль которого равен произведению силы на ее плечо: . Плечо силы l относительно оси вращения – это кратчайшее расстояние от линии действия силы до оси вращения. Размерность момента силы:

В векторной форме момент силы относительно точки:

Вектор момента силы перпендикулярен и силе, и радиус-вектору точки её приложения:

Если вектор силы перпендикулярен оси, то вектор момента силы направлен по оси по правилу правого винта, а величина момента силы относительно этой оси (проекция на ось) определяется формулой (3.4):

Момент силы зависит и от величины силы, и от плеча силы. Если сила параллельна оси, то .

1c. Пара сил – это две равные по величине и противоположные по направлению силы, линии действия которых не совпадают (рис.3.2). Плечо пары сил – это расстояние между линиями действия сил. Найдём суммарный момент пары сил и () в проекции на ось, проходящую через точку О:

То есть момент пары сил равен произведению величины силы на плкчо пары:

. (3.6)

Вернёмся к (3.3). С учётом (3.4) и (3.6):

. (3.7)

1d. Определение: скалярная величина , равная произведению массы материальной точки на квадрат ее расстояния до оси, называется моментом инерции материальной точки относительно оси ОО:

Размерность момента инерции

Векторы и совпадают по направлению с осью вращения, связаны с направлением вращения по правилу буравчика, поэтому равенство (3.9) можно переписать в векторной форме:

. (3.10)

Просуммируем (3.10) по всем элементарным массам, на которые разбито тело:

. (3.11)

Здесь учтено, что угловое ускорение всех точек твердого тела одинаково, и его можно вынести за знак суммы. В левой части равенства стоит сумма моментов всех сил (и внешних, и внутренних), приложенных к каждой точке тела. Но по третьему закону Ньютона, силы, с которыми точки тела взаимодействуют друг с другом (внутренние силы), равны по величине и противоположны по направлению и лежат на одной прямой, поэтому их моменты компенсируют друг друга. Таким образом, в левой части (3.11) остается суммарный момент только внешних сил: .

Сумма произведений элементарных масс на квадрат их расстояний от оси вращения называется моментом инерции твердого тела относительно данной оси:

. (3.12)

Таким образом, ; – это и есть основной закон динамики вращательного движения твёрдого тела (аналог второго закона Ньютона ): угловое ускорение тела прямо пропорционально суммарному моменту внешних сил и обратно пропорционально моменту инерции тела :

. (3.13)

Момент инерции I твердого тела является мерой инертных свойств твердого тела при вращательном движении и аналогичен массе тела во втором законе Ньютона. Он существенно зависит не только от массы тела, но и от ее распределения относительно оси вращения (в направлении, перпендикулярном оси).

В случае непрерывного распределения массы сумма в (3.12) сводится к интегралу по всему объему тела:

2a. Момент инерции тонкого кольца относительно оси, проходящей через его центр перпендикулярно плоскости кольца.

,

поскольку для любого элемента кольца его расстояние до оси одинаково и равно радиусу кольца: .

2b. Толстостенный цилиндр (диск) с внутренним радиусом и внешним радиусом .

Вычислим момент инерции однородного диска плотностью ρ , высотой h, внутренним радиусом и внешним радиусом (рис.3.3) относительно оси, проходящей через центр масс перпендикулярно плоскости диска. Разобьем диск на тонкие кольца толщиной и высотой так, что внутренний радиус кольца равен , внешний – . Объем такого кольца , где – площадь основания тонкого кольца. Его масса:

Подставим в (3.14) и проинтегрируем по r ():



Масса диска , тогда окончательно:

. (3.17)

2c. Сплошной цилиндр (диск).

В частном случае сплошного диска или цилиндра радиусом R подставим в (3.17) R 1 =0, R 2 =R и получим:

. (3.18)

Момент инерции шара радиуса R и массой относительно оси, проходящей через его центр (рис.3.4), равен (без доказательства):


2e. Момент инерции тонкого стержня массой и длиной относительно оси, проходящей через его конец перпендикулярно стержню (рис.3.5).

Стержень разобьём на бесконечно малые участки длиной . Масса такого участка . Подставим в (3.14) и проинтегрируем от 0 до :

Если ось проходит через центр стержня перпендикулярно ему, можно рассчитать момент инерции половины стержня по (3.20) и затем удвоить:

. (3.21)

3. Если ось вращения не проходит через центр масс тела (рис.3.6), вычисления по формуле (3.14) могут быть довольно сложными. В этом случае расчет момента инерции облегчается применением теоремы Штейнера : момент инерции тела относительно произвольной оси равен сумме момента инерции I c тела относительно оси, проходящей через центр масс тела параллельно данной оси, и произведения массы тела на квадрат расстояния между осями:

. (3.22)

Посмотрим, как работает теорема Штейнера, если применить её к стержню:

Нетрудно убедиться, что получилось тождество, поскольку в этом случае расстояние между осями равно половине длины стержня .

4. Момент импульса тела. Изменение момента импульса тела. Импульс момента силы. Закон сохранения момента импульса.

Из закона динамики вращательного движения и определения углового ускорения следует:

.

Если , то . Введём момент импульса твёрдого тела как

Соотношение (3.24) – это основной закон динамики твёрдого тела для вращательного движения. Его можно переписать так:

и тогда это будет аналог второго закона Ньютона для поступательного движения в импульсной форме (2.5)

Выражение (3.24) можно проинтегрировать:

и сформулировать закон изменения момента импульса: изменение момента импульса тела равно импульсу суммарного момента внешних сил . Величина называется импульсом момента силы и аналогична импульсу силы в формулировке второго закона Ньютона для поступательного движения (2.2) ; момент импульса является аналогом импульса .

Размерность момента импульса

Момент импульса твёрдого тела относительно его оси вращения – это вектор, направленный по оси вращения по правилу буравчика.

Момент импульса материальной точки относительно точки О (рис.3.6) – это:

где – радиус-вектор материальной точки, – её импульс. Вектор момента импульса направлен по правилу буравчика перпендикулярно плоскости, в которой лежат векторы и : на рис.3.7 – к нам из-за рисунка. Величина момента импульса

Твёрдое тело, вращающееся относительно оси, разобьём на элементарные массы и просуммируем по всему телу моменты импульса каждой массы (то же самое можно записать в виде интеграла; это непринципиально):

.

Поскольку угловая скорость всех точек одинакова и направлена по оси вращения, то можно записать в векторной форме:

Таким образом, доказана эквивалентность определений (3.23) и (3.26).

Если суммарный момент внешних сил равен нулю, то момент импульса системы не изменяется (см.3.25):

. Это закон сохранения момента импульса . Это возможно, когда:

а) система замкнута (или );

б) у внешних сил нет касательных составляющих (вектор силы проходит через ось/центр вращения);

в) внешние силы параллельны закреплённой оси вращения.

Примеры использования/действия закона сохранения момента импульса:

1. гироскоп;

2. скамья Жуковского;

3. фигуристка на льду.

5. Работа при вращательном движении.

Пусть тело повернулось на угол под действием силы и угол между перемещением и силой равен ; – радиус-вектор точки приложения силы (рис.3.8), тогда работа силы равна.