Чему равняется е. Число и сферическая симметрия пространства

ЧИСЛО e . Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках. Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e –kt , где k – число, характеризующее скорость распада данного вещества. Обратная величина 1/k называется средним временем жизни атома данного вещества, так как в среднем атом прежде, чем распасться, существует в течение времени 1/k . Величина 0,693/k называется периодом полураспада радиоактивного вещества, т.е. временем, за которое распадается половина исходного количества вещества; число 0,693 приближенно равно log e 2, т.е. логарифму числа 2 по основанию e . Аналогично, если бактерии в питательной среде размножаются со скоростью, пропорциональной их числу в настоящий момент, то по истечении времени t начальное количество бактерий N превращается в Ne kt . Затухание электрического тока I в простом контуре с последовательным соединением, сопротивлением R и индуктивностью L происходит по закону I = I 0 e –kt , где k = R/L , I 0 – сила тока в момент времени t = 0. Аналогичные формулы описывают релаксацию напряжений в вязкой жидкости и затухание магнитного поля. Число 1/k часто называют временем релаксации. В статистике величина e –kt встречается как вероятность того, что за время t не произошло событий, наступающих случайно со средней частотой k событий в единицу времени. Если S – сумма денег, вложенных под r процентов с непрерывным начислением вместо начисления через дискретные промежутки времени, то к моменту времени t первоначальная сумма возрастет до Se tr /100.

Причина «вездесущности» числа e заключается в том, что формулы математического анализа, содержащие экспоненциальные функции или логарифмы, записываются проще, если логарифмы брать по основанию e , а не 10 или какому-либо другому основанию. Например, производная от log 10 x равна (1/x )log 10 e , тогда как производная от log e x равна просто 1/x . Аналогично, производная от 2 x равна 2 x log e 2, тогда как производная от e х равна просто e x . Это означает, что число e можно определить как основание b , при котором график функции y = log b x имеет в точке x = 1 касательную с угловым коэффициентом, равным 1, или при котором кривая y = b x имеет в x = 0 касательную с угловым коэффициентом, равным 1. Логарифмы по основанию e называются «натуральными» и обозначаются ln x . Иногда их также называют «неперовыми», что неверно, так как в действительности Дж.Непер (1550–1617) изобрел логарифмы с другим основанием: неперов логарифм числа x равен 10 7 log 1/e (x /10 7) .

Различные комбинации степеней e встречаются в математике так часто, что имеют специальные названия. Таковы, например, гиперболические функции

График функции y = ch x называется цепной линией; такую форму имеет подвешенная за концы тяжелая нерастяжимая нить или цепь. Формулы Эйлера

где i 2 = –1, связывают число e с тригонометрией. Частный случай x = p приводит к знаменитому соотношению e ip + 1 = 0, связывающему 5 наиболее известных в математике чисел.

И , а также во многих других разделах .

Поскольку функция интегрируется и дифференцируется «в саму себя», логарифмы именно по основанию e принимаются как .


- - - - - - - - - e - -

Система счисления

Оценка числа

10,101101111110000101010001011001…

2,7182818284590452353602874713527…

2,B7E151628AED2A6A…

2; 43 05 48 52 29 48 35 …

8 / 3 ; 11 / 4 ; 19 / 7 ; 87 / 32 ; 106 / 39 ; 193 / 71 ; 1264 / 465 ; 2721 / 1001 ; 23225 / 8544

(перечислено в порядке увеличения точности)

(Эта непрерывная дробь не . Записана в линейной нотации)

2,7182818284 5904523536 0287471352 6624977572 4709369995 9574966967 6277240766 3035354759 4571382178 5251664274 2746639193 2003059921 8174135966 2904357290 0334295260 5956307381 3232862794 3490763233 8298807531 9525101901 1573834187 9307021540 8914993488 4167509244 7614606680 8226480016 8477411853 7423454424 3710753907 7744992069 5517027618 3860626133 1384583000 7520449338 2656029760 6737113200 7093287091 2744374704 7230696977 2093101416 9283681902 5515108657 4637721112 5238978442 5056953696 7707854499 6996794686 4454905987 9316368892 3009879312 7736178215 4249992295 7635148220 8269895193 6680331825 2886939849 6465105820 9392398294 8879332036 2509443117 3012381970 6841614039 7019837679 3206832823 7646480429 5311802328 7825098194 5581530175 6717361332 0698112509 9618188159 3041690351 5988885193 4580727386 6738589422 8792284998 9208680582 5749279610 4841984443 6346324496 8487560233 6248270419 7862320900 2160990235 3043699418 4914631409 3431738143 6405462531 5209618369 0888707016 7683964243 7814059271 4563549061 3031072085 1038375051 0115747704 1718986106 8739696552 1267154688 9570350354

Первые 1000 знаков после запятой числа e

(последовательность в )

Способы определения

Число e может быть определено несколькими способами.

    Через предел:

(второй ).

(формула Стирлинга).

    Как :

или .

    Как единственное число a , для которого выполняется

    Как единственное положительное число a , для которого верно

Свойства

Доказательство иррациональности

Предположим, что рационально. Тогда , где - целое, а - натуральное.

Следовательно

Умножая обе части уравнения на , получаем

Переносим в левую часть:

Все слагаемые правой части целые, следовательно, и сумма в левой части - целая. Но эта сумма и положительна, значит, она не меньше 1.

С другой стороны,

Суммируя геометрическую прогрессию в правой части, получаем:

Поскольку ,

Получаем противоречие.

    предел

    Для любого z верны следующие равенства:

    Число e разлагается в бесконечную следующим образом:

То есть

    Или эквивалентным ему:

    Для быстрого вычисления большого числа знаков удобнее использовать другое разложение:

    Представление через :

    Через

История

Данное число иногда называют неперовым в честь шотландского учёного , автора работы «Описание удивительной таблицы логарифмов» (). Однако это название не совсем корректно, так как у него логарифм числа x был равен .

Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в . Негласно, потому что там содержится только таблица натуральных логарифмов, определённых из кинематических соображений, сама же константа не присутствует.

Саму же константу впервые вычислил швейцарский математик в ходе решения задачи о предельной величине . Он обнаружил, что если исходная сумма $1 и начисляется 100 % годовых один раз в конце года, то итоговая сумма будет $2. Но если те же самые проценты начислять два раза в год, то $1 умножается на 1.5 дважды, получая $1.00×1.5² = $2.25. Начисления процентов раз в квартал приводит к $1.00×1.25 4 = $2.44140625, и так далее. Бернулли показал, что если частоту начисления процентов бесконечно увеличивать, то процентный доход в случае имеет : и этот предел равен 2,71828…

$1.00×(1+1/12) 12 = $2.613035…

$1.00×(1+1/365) 365 = $2.714568…

Таким образом, константа e означает максимально возможную годовую прибыль при 100 % годовых и максимальной частоте .

Первое известное использование этой константы, где она обозначалась буквой b , встречается в письмах , - .

Букву e начал использовать Эйлер в , впервые она встречается в письме Эйлера немецкому математику от 25 ноября 1731 года, а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически», . Соответственно, e обычно называют числом Эйлера . Хотя впоследствии некоторые учёные использовали букву c , буква e применялась чаще и в наши дни является стандартным обозначением.

Почему была выбрана именно буква e , точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы a , b , c и d уже довольно широко использовались в иных целях, и e была первой «свободной» буквой. Также примечательно, что буква e является первой в фамилии Эйлер (Euler).

Приближения

    Число можно запомнить как 2, 7 и повторяющиеся 18, 28, 18, 28.

    Мнемоническое правило: два и семь, далее два раза год рождения (), затем углы равнобедренного (45, 90 и 45 градусов). Стихотворная мнемофраза, иллюстрирующая часть этого правила: «Экспоненту помнить способ есть простой: два и семь десятых, дважды Лев Толстой»

    Мнемоническое стихотворение, позволяющее запомнить первые 12 знаков после запятой (длины слов кодируют цифры числа e): Мы порхали и блистали, / Но застряли в перевале: / Не признали наши крали / Авторалли .

    Правила e связывается с президентом : 2 - столько раз избирался, 7 - он был седьмым президентом США, - год его избрания, повторяется дважды, поскольку Джексон дважды избирался. Затем - равнобедренный прямоугольный треугольник.

    С точностью до трёх знаков после запятой через « »: нужно разделить 666 на число, составленное из цифр 6−4, 6−2, 6−1 (три шестёрки, из которых в обратном порядке удаляются три первые степени двойки): .

    Запоминание e как (с точностью менее 0.001).

    Грубое (с до 0,001) приближение полагает e равным . Совсем грубое (с точностью 0,01) приближение даётся выражением .

e - математическая константа, основание натурального логарифма, иррациональное и трансцендентное число.e = 2,718281828459045… Иногда числоe называютчислом Эйлера илинеперовым числом . Играет важную роль в дифференциальном и интегральном исчислении.

Способы определения

Число e может быть определено несколькими способами.

Свойства

История

Данное число иногда называют неперовым в честь шотландского учёного Джона Непера, автора работы «Описание удивительной таблицы логарифмов» (1614 г.). Однако это название не совсем корректно, т. к. у него логарифм числаx был равен.

Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 г. Негласно, потому что там содержится только таблица натуральных логарифмов, сама же константа не определена. Предполагается, что автором таблицы был английский математик Вильям Отред. Саму же константу впервые вывел швейцарский математик Якоб Бернулли при попытке вычислить значение следующего предела:

Первое известное использование этой константы, где она обозначалась буквой b , встречается в письмах Готфрида Лейбница Кристиану Гюйгенсу, 1690 и 1691 гг. Буквуe начал использовать Леонард Эйлер в 1727 г., а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 г. Соответственно,e иногда называютчислом Эйлера . Хотя впоследствии некоторые учёные использовали буквуc , букваe применялась чаще и в наши дни является стандартным обозначением.

Почему была выбрана именно буква e , точно неизвестно. Возможно, это связано с тем, что с неё начинается словоexponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквыa ,b ,c иd уже довольно широко использовались в иных целях, иe была первой «свободной» буквой. Неправдоподобно предположение, что Эйлер выбралe как первую букву в своей фамилии (нем.Euler ), поскольку он был очень скромным человеком и всегда старался подчеркнуть значимость труда других людей.

Способы запоминания

Число e можно запомнить по следующему мнемоническому правилу: два и семь, далее два раза год рождения Льва Толстого (1828), затем углы равнобедренного прямоугольного треугольника (45 ,90 и45 градусов).

В другом варианте правила e связывается с президентом США Эндрю Джексоном: 2 - столько раз избирался, 7 - он был седьмым президентом США, 1828 - год его избрания, повторяется дважды, поскольку Джексон дважды избирался. Затем - опять-таки равнобедренный прямоугольный треугольник.

В ещё одном небезынтересном способе предлагается запомнить число e с точностью до трёх знаков после запятой через «число дьявола»: нужно разделить 666 на число, составленное из цифр 6 − 4, 6 − 2, 6 − 1 (три шестёрки, из которых в обратном порядке удаляются три первые степени двойки):.

В четвёртом способе предлагается запомнить e как.

Грубое (с точностью до 0,001), но красивое приближение полагает e равным. Совсем грубое (с точностью 0,01) приближение даётся выражением.

«Правило Боинга»: даёт неплохую точность 0,0005.

«Стих»: Мы порхали и блистали, но застряли в перевале; не признали наши крали авторалли.

e = 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274 27466 39193 20030 59921 81741 35966 29043 57290 03342 95260 59563 07381 32328 62794 34907 63233 82988 07531 95251 01901 15738 34187 93070 21540 89149 93488 41675 09244 76146 06680 82264 80016 84774 11853 74234 54424 37107 53907 77449 92069 55170 27618 38606 26133 13845 83000 75204 49338 26560 29760 67371 13200 70932 87091 27443 74704 72306 96977 20931 01416 92836 81902 55151 08657 46377 21112 52389 78442 50569 53696 77078 54499 69967 94686 44549 05987 93163 68892 30098 79312 77361 78215 42499 92295 76351 48220 82698 95193 66803 31825 28869 39849 64651 05820 93923 98294 88793 32036 25094 43117 30123 81970 68416 14039 70198 37679 32068 32823 76464 80429 53118 02328 78250 98194 55815 30175 67173 61332 06981 12509 96181 88159 30416 90351 59888 85193 45807 27386 67385 89422 87922 84998 92086 80582 57492 79610 48419 84443 63463 24496 84875 60233 62482 70419 78623 20900 21609 90235 30436 99418 49146 31409 34317 38143 64054 62531 52096 18369 08887 07016 76839 64243 78140 59271 45635 49061 30310 72085 10383 75051 01157 47704 17189 86106 87396 96552 12671 54688 95703 50354 02123 40784 98193 34321 06817 01210 05627 88023 51920

Обычный снос разрядов в числе. Когда записывается 4,47 · 10^8, подразумевается снос плавающей запятой на 8 разрядов вперёд - в данном случае это будет число 447 с 6 нулями впереди, т.е. 447.000.000 . В программировании могут использоваться E-значения, причём e нельзя писать само по себе , но E - можно (но не везде и не всегда, об этом будет отмечено ниже), т.к. предпоследнее может ошибочно принятым за число Эйлера . Если нужно записать огромное число сокращённо, может использоваться стиль 4,47·E8 (альтернативный вариант для производства и мелкошрифтной печати - 4,47×E8), чтобы число читалось более разгружено и разряды указывались более обособленно (между арифметическими знаками ставить пробелы нельзя - в противном случае, это математическое условие, а не число).

3,52E3 - это хорошо для записи без индексов, но читать разрядное смещение будет сложнее. 3,52 · 10^8 - условие, т.к. требует индекса и отсутствует мантисса (последнее существует только у оператора, а это - расширенный множитель). " · 10" - процесс стандартного (основного) операционного умножения, число после ^ - показатель сноса разрядов, поэтому его не нужно делать мелким, если необходимо писать документы в данной форме (соблюдая надстрочное положение), в некоторых случаях, желательно использовать масштаб в районе 100 - 120%, а не стандартные 58%. Используя мелкий масштаб для ключевых элементов условия, снижается визуальное качество цифровой информации - придётся всматриваться (может быть и не нужно, но факт остаётся фактом - «прятать» условия мелким шрифтом не нужно, можно было вообще «закопать» - сокращать масштаб отдельных элементов условия это неприемлемо, особенно на компьютере), чтобы заметить «сюрприз», а это очень вредно даже на бумажном ресурсе.

Если процесс умножения выполняет особые операции, то в таких случаях использование пробелов может быть избыточным, т.к. помимо умножения чисел, множитель может быть связывающим звеном для огромных и мелких чисел, химэлементов и т.д. и т.п., которые нельзя записать десятичной дробью обычных чисел или невозможно записать конечным результатом. Это может не касаться записи с " · 10^y", т.к. любое значение в выражении выполняет роль множителя, а "^y" - степень, указываемая надстрочным способом, т.е. является числовым условием. Но, убрав пробелы вокруг множителя и записав иначе - будет ошибкой, т.к. оператор отсутствует. Сам отрывок записи " · 10" - множитель-оператор + число, а не первый + второй оператор. Здесь и есть основная причина того, почему с 10-кой так нельзя. Если после числового оператора нет особых значений, т.е. нечисловых, но системных, то данный вариант записи не может быть оправдан - если есть системное значение, то такое значение должно подходить под определённые задачи с числовым или практическим сокращением чисел (для определённых действий, например, 1,35f8, где f - какое-либо уравнение, созданное для практических специальных задач, которое выводит действительные числа в результате конкретных практических опытов, 8 - значение, которое подставлено как переменное к оператору f и совпадает с числами при последовательном изменении условий наиболее удобным образом, если эта задача архиважная, то такие данные значения могут быть использованы со знаком без пробелов). Кратко, для подобных арифметических операций, но с другими целями, также можно проделывать с плюсами, минусами и делителями, если в этом есть крайняя необходимость для создания новых или упрощения существующих способов записи данных с сохранением точности на практике и может являться применимым числовым условием для определённых арифметических целей.

Итог: официально утверждённую форму экспоненциальной записи рекомендуется писать с пробелом и масштабом надстрочного шрифта в 58% и смещением в 33% (если изменение масштаба и смещения разрешается другими сторонами уровень в 100 - 120%, то можно установить 100% - это самый оптимальный вариант записи надстрочных значений, оптимальное смещение - ≈ 50%). На компьютере можно использовать 3,74e+2, 4,58E-1, 6,73·E-5, E-11, если последние два формата поддерживаются, на форумах лучше отказаться от e-сокращений по известным причинам, а стиль 3,65·E-5 или 5,67E4 может быть полностью понятным, исключения могут составлять лишь официальные сегменты общественности - там только с " · 10^x ", причём вместо ^x - используется только надстрочная запись степени .

Короче говоря, E является суперсокращением для десятичного антилогарифма, который часто помечают, как antilog либо antilg. Например, 7,947antilg-4 будет равен тому же, что и 7,947E-4. На практике это гораздо практичнее и удобнее, чем тягать «десятку» с надстрочным знаком степени лишний раз. Это можно назвать «экспоненциальным» логарифмическим видом числа как альтернативный вариант менее удобному «экспоненциальному» классическому. Только вместо «antilg», используется «E» либо сразу идёт второе число с пропуском (если число положительное) либо без него (на десятисегментных научных калькуляторах, типа "Citizen CT-207T").

Рассмотрим функцию, областью определения которой является множество натуральных чисел: Такая функция называется функцией натурального аргумента или последовательностью. Значения этой функции называются членами последовательности.

Члены последовательности обычно располагаются в порядке возрастания аргумента:

Называется первым членом последовательности, вторым членом, называется или общим членом последовательности. Последовательность кратко обозначают Пример 1. Пусть Выпишем несколько первых членов последовательности:

Пример 2. Пусть Тогда

Пример 3. Пусть . Тогда

Введем теперь понятие предела последовательности.

Определение. Число b называется пределом последовательности если, каково бы ни было , найдется такое натуральное число N, что для всех членов последовательности, номер которых выполняется неравенство (или ).

Если число - предел последовательности, то это записывается так: или

Определение предела последовательности аналогично определению предела функции при Для функции условие выполнялось для всех действительных значений а для последовательности неравенство выпол гнется для всех натуральных чисел

Неравенство равносильно неравенствам

Поэтому, изображая члены последовательности точками плоскости с координатами приходим к следующему геометрическому смыслу предела последовательности: если последовательность имеет пределом число 6, то каково бы ни было найдется такое натуральное число N, что все точки, изображающие члены последовательности с номерами попадут в полосу, ограниченную прямыми (рис. 112).

Все теоремы о пределах функций, доказанные в этом параграфе, остаются справедливыми и для последовательностей.

Рассмотрим пример.

Пример 4. Найти предел последовательности

Решение. Здесь числитель и знаменатель одновременно стремятся к Для отыскания предела преобразуем выразив числитель по формуле суммы арифметической прогрессии:

Пример 5. Рассмотрим последовательность Члены последовательности попеременно принимают значения Эта последовательность, очевидно, не имеет предела.

Пример 6. Рассмотрим последовательность где Покажем, что

Решение. Рели , то при любом . Ясно, что в этом случае

Пусть теперь . Тогда , где . По формуле бинома Ньютона

Так как , то все слагаемые в последней сумме положительны. Отбрасывая все слагаемые, кроме первых двух, получим Отсюда заключаем, что так как при неограниченно растет, то также неограниченно растет, т. е.

Наконец, пусть . Тогда где . На основании выше изложенного поэтому стремится к нулю:

Последовательность называется возрастающей, если с увеличением ее члены увеличиваются, т. е.

Если с увеличением члены последовательности убывают, т. е.

то последовательность называется убывающей.

Последовательность примера 1 возрастающая, а примера 2 - убывающая. Последовательность примера 3 не является ни возрастающей, ни убывающей.

Последовательность называется ограниченной, если существует такое число С, что для всех натуральных чисел выполняется неравенство . Последовательность примера 1 не является ограниченной.

Рассмотрим возрастающую последовательность

Если эта последовательность не является ограниченной, то ее члены будут неограниченно возрастать и, следовательно, такая последовательность не имеет предела. Нели же возрастающая последовательность ограничена, то ее члены, возрастая и не превосходя числа С, должны, очевидно, неограниченно приближаться к некоторому числу (рис. 11.3). Не доказывая этого факта, ограничимся его точной формулировкой.

Теорема (достаточный признак существования предела последовательности). Всякая возрастающая ограниченная последовательность имеет предел

В качестве примера на применение этого признака рассмотрим последовательность, общий член которой Покажем, что эта последовательность возрастает и ограничена.

По формуле бинома Ньютона имеем, полагая (см. сноску на стр. 184):

Замечая, что

С увеличением дроби, уменьшаются, а разности увеличиваются. Поэтому с увеличением и т. д. члены разложения увеличиваются. Кроме того, с увеличением добавляются новые положительные слагаемые. Поэтому с увеличением возрастает. Итак, последовательность - возрастающая. Покажем, что ока ограничена.

Если в разложении для у каждого слагаемого отбросить в скобках дроби то каждое слагаемое увеличится, и мы получим сумму, большую первоначальной:

Сумму найдем формуле суммы членов геометрической прогрессии:.

Решение. Положим . При . Следовательно,

В заключение отметим, что часто приходится рассматривать показательную функцию с основанием