Численное интегрирование функции. Методы численного интегрирования

Идея численного интегрирования предельно проста и вытекает из геометрического смысла определенного интеграла – значение определенного интеграла численно равно площади криволинейной трапеции, ограниченной графиком функции y=f(x) , осью абсцисс и прямыми х=а, х=b . Находя приближенно площадь криволинейной трапеции, мы получаем значение интеграла. Формально процедура численного интегрирования заключается в том, что отрезок [а, b] разбивается на n частичных отрезков, а затем подинтегральная функция заменяется на нем легко интегрируемой функцией, по определенной зависимости интерполирующей значения подинтегральной функции в точках разбиения. Рассмотрим теперь простейшие из численных методов интегрирования.

Итак, функция у=f(x) интегрируема на сегменте и требуется вычислить ее интеграл . Составим интегральную сумму для f(x) на сегменте . Для этого разобьем сегмент на n равных между собой частей с помощью точек: x 1 , x 2 , … , x k , … , x n-1 .

Если длину каждой части мы обозначим через х , так что , то для каждой точки x k будем иметь: (k=0, 1, 2, …, n).

Обозначим теперь через y k значение подынтегральной функции f(x) при то есть положим (k=0, 1, …, n).

Тогда суммы будут интегральными для функции f(x) на отрезке . (При составлении первой суммы мы рассматриваем значения функции y=f(x) в точках, являющихся левыми концами частичных сегментов, а при составлении второй суммы – в точках, являющихся правыми концами этих сегментов.)

По определению интеграла имеем:

и

Поэтому в качестве приближенного значения естественно взять интегральную сумму ,т.е. положить:

т.е (1)

и (1")

Эти приближенные равенства называются формулами прямоугольников.

В том случае, когда f(x) 0 , формулы (1) и (1’) с геометрической точки зрения означают, что площадь криволинейной трапеции aABb , ограниченной дугой кривой y=f(x), осью Ох и прямыми х=а и х=b , принимается приближенно равной площади ступенчатой фигуры, образованной из n прямоугольников с основаниями и высотами: y 0 , y 1 , y 2 , …, y n-1 – в случае формулы (1) (рис.8) и y 1 , y 2 , y 3 , …, y n – в случае формулы (1") (рис.9).

Исходя из приведенного выше геометрического смысла формул (1) и (1") способ приближенного вычисления определенного интеграла по этим формулам принято называть методом прямоугольников .

Всякое приближенное вычисление имеет определенную ценность лишь тогда, когда оно сопровождается оценкой допущенной при этом погрешности. Поэтому формулы прямоугольников будут практически пригодны для приближенного вычисления интегралов лишь в том случае, если будет существовать удобный способ оценки получающейся при этом погрешности (при заданном n), позволяющий к тому же находить и число частей n разбиения сегмента, гарантирующее требуемую степень точности приближенного вычисления.

Будем предполагать, что функция f(x) имеет ограниченную производную на сегменте , так что существует такое число М>0 , что для всех значений х из выполняется неравенство |f"(x)|M . Качественный смысл этого неравенства заключается в том, что скорость изменения значения функции ограничена. В реальных природных системах это требование практически всегда выполнено. В этих условиях абсолютная величина погрешности R n , которую мы допускаем, вычисляя интеграл по формуле прямоугольников может быть оценена по формуле :

|R n | M(b-a) 2 /2n (2)

При неограниченном возрастании n выражение M(b-a) 2 /2n , а следовательно, и абсолютная величина погрешности R n будет стремиться к нулю, т.е. точность приближения будет тем больше, чем на большее число равных частей будет разделен сегмент . Абсолютная погрешность результата будет заведомо меньше заданного числа >0 , если взять

n > M(b-a) 2 /2 .

Следовательно, для вычисления интеграла с указанной степенью точности достаточно сегмент разбить на число частей, большее числа M(b-a) 2 /2 . .

Метод прямоугольников – это наиболее простой и вместе с тем наиболее грубый метод приближенного интегрирования. Заметно меньшую погрешность дает другой метод – метод трапеций.

Очевидно, что чем больше будет число n отрезков разбиения, тем более точный результат дадут формулы (3а) и (3б). Однако увеличение числа отрезков разбиения промежутка интегрирования не всегда возможно. Поэтому большой интерес представляют формулы, дающие более точные результаты при том же числе точек разбиения.

Простейшая из таких формул получается как среднее арифметическое правых частей формул (1) и (1"):

(4)

Легко усмотреть геометрический смысл этой формулы. Если на каждом отрезке разбиения дугу графика подинтегральной функции y=f(x) заменить стягивающей ее хордой (линейная интерполяция), то мы получим трапецию, площадь которой равна и следовательно, формула (4) представляет собой площадь фигуры, состоящей из таких трапеций (рис.10) . Из геометрических соображений понятно, что площадь такой фигуры будет, вообще говоря, более точно выражать площадь криволинейной трапеции, нежели площадь ступенчатой фигуры, рассматриваемая в методе прямоугольников.

Приведя в формуле (4) подобные члены, окончательно получим

Формулу (5) называют формулой трапеций .

Формулой трапеций часто пользуются для практических вычислений. Что касается оценки погрешности R n , возникающей при замене левой части (5) правой, то доказывается, что абсолютная величина ее удовлетворяет неравенству:

(6)

где М 2 – максимум модуля второй производной подинтегральной функции на отрезке , т.е.

.

Следовательно, R n убывает при по крайней мере так же быстро, как .

Абсолютная погрешность R n будет меньше наперед заданного числа > 0 , если взять .

Значительное повышение точности приближенных формул может быть достигнуто за счет повышения порядка интерполяции. Одним из таких методов приближенного интегрирования является метод парабол. Идея метода исходит из того, что на частичном промежутке дуга некоторой параболы в общем случае теснее прилегает к кривой y=f(x), чем хорда, соединяющая концы дуги этой кривой, и поэтому значения площадей соответствующих элементарных трапеций, ограниченных “сверху” дугами парабол, являются более близкими к значениям площадей соответствующих частичных криволинейных трапеций, ограниченных сверху дугой кривой y=f(x), чем значения площадей соответствующих прямолинейных трапеций. Сущность метода заключается в следующем. Отрезок делится на 2n равных частей. Пусть точки деления будут

х 0 =а, x 1 , x 2 , …x 2n-2 , x 2n-1 , x 2n =b, а для формулы парабол – пропорционально величине , т.е. метод парабол сходится значительно быстрее метода трапеций, тогда как с точки зрения техники вычислений оба метода одинаковы.

Методы численного интегрирования

ОСНОВЫ ЧИСЛЕННЫХ МЕТОДОВ

Лекция-5

Замечание.

Операторы

use linear_operators

означают подключение библиотек стандартных подпрограмм dfimsl и
linear_operators, соответственно.

В библиотеке linear_operators возможно использовать стандартную подпрограмму определения собственных чисел и векторов eig в виде:

lambda=eig(a,v=y),

a – исходная матрица (двумерный массив nxn ),

lambda – вектор собственных чисел (одномерный массив длиной n ),

y – матрица собственных векторов, расположенных по столбцам (двумерный массив nxn ).

Перечисленные массивы должны быть объявлены в программе.

Пусть требуется вычислить определенный интеграл вида

Для многих функций первообразные представляют собой достаточно сложные комбинации элементарных функций, либо вовсе не выражаются через них. В таких случаях использование формулы Ньютона-Лейбница на практике не представляется возможным. Во многих практических случаях достаточно получить значение интеграла с заданной точностью . Для вычисления приближенного значения интеграла существуют формулы численного интегрирования. Суть построения формул численного интегрирования состоит в следующем.

Разобьем отрезок на частей. Для простоты изложения положим эти части одинаковой длины :

Пронумеруем точки разбиения так, как показано на рис. 2.5.1. Имеем:

Рис. 2.5.1. К вопросу о численном интегрировании.

Исходный интеграл (2.5.1) может быть представлен в виде суммы интегралов по полученным в результате разбиения «малым» отрезкам:

. (2.5.2)

Интегралы

вычисляются по приближенным формулам.

Простейшие формулы для приближенного вычисления интегралов по отрезку называются квадратурными формулами . Рассмотрим некоторые из них ниже, а также изучим вопросы их точности. Порядок точности квадратурной формулы определяется степенью полинома (многочлена), для которой эта квадратурная формула точна.

2.5.2. Формула прямоугольников (формула «средних»).

Заменим на i -ом участке интегрируемую функцию постоянной величиной, например, равной ее значению в средней точке (рис. 2.5.2):

Рис. 2.5.2. К интегрированию по формуле прямоугольников.

, где . (2.5.4)

Тогда интеграл на отрезке заменяется площадью прямоугольника, т.е.

, (2.5.5)

и вычисление исходного интеграла сводится к вычислению суммы

. (2.5.6)

Кроме того, часто из практических соображений в качестве в формуле (2.5.6) берется , либо . В результате получаем:

(2.5.7)


– квадратурная формула «левых» прямоугольников;

(2.5.8)

– квадратурная формула «правых» прямоугольников.

Формулы (2.5.7) и (2.5.8) менее точные, чем (2.5.6), но иногда более удобные, например, при численном решении дифференциальных уравнений.

Точность вычисления . Как следует из построения квадратурные формулы прямоугольников дают точный результат интегрирования для функций, постоянных на i -ом участке (). Квадратурная формула «средних» прямоугольников дает точный результат также и для линейных на i -ом отрезке функций. Это утверждение достаточно проверить для простейшей линейной функции .

При точном интегрировании получаем:

,

а при интегрировании по формуле «средних» прямоугольников

Как видно, результаты точного и численного интегрирования совпадают.

Численное интегрирование

Численное интегрирование (историческое название: (численная) квадратура ) - вычисление значения определённого интеграла (как правило, приближённое). Под численным интегрированием понимают набор численных методов отыскания значения определённого интеграла.

Численное интегрирование применяется, когда:

В этих двух случаях невозможно вычисление интеграла по формуле Ньютона-Лейбница . Также возможна ситуация, когда вид первообразной настолько сложен, что быстрее вычислить значение интеграла численным методом.

Одномерный случай

Основная идея большинства методов численного интегрирования состоит в замене подынтегральной функции на более простую, интеграл от которой легко вычисляется аналитически. При этом для оценки значения интеграла получаются формулы вида

где - число точек, в которых вычисляется значение подынтегральной функции. Точки называются узлами метода, числа - весами узлов. При замене подынтегральной функции на полином нулевой, первой и второй степени получаются соответственно методы прямоугольников , трапеций и парабол (Симпсона). Часто формулы для оценки значения интеграла называют квадратурными формулами.

Частным случаем является метод построения интегральных квадратурных формул для равномерных сеток, известный как формулы Котеса . Метод назван в честь Роджера Котса . Основной идеей метода является замена подынтегральной функции каким-либо интерполяционным многочленом . После взятия интеграла можно написать

где числа называются коэффициентами Котеса и вычисляются как интегралы от соответствующих многочленов, стоящих в исходном интерполяционном многочлене для подынтегральной функции при значении функции в узле ( - шаг сетки; - число узлов сетки, а индекс узлов ). Слагаемое - погрешность метода, которая может быть найдена разными способами. Для нечетных погрешность может быть найдена интегрированием погрешности интерполяционного полинома подынтегральной функции.

Частными случаями формул Котеса являются: формулы прямоугольников (n=0), формулы трапеций (n=1), формула Симпсона (n=2), формула Ньютона (n=3) и т. д.

Метод прямоугольников

Пусть требуется определить значение интеграла функции на отрезке . Этот отрезок делится точками на равных отрезков длиной Обозначим через значение функции в точках Далее составляем суммы Каждая из сумм - интегральная сумма для на и поэтому приближённо выражает интеграл

Если заданная функция - положительная и возрастающая, то эта формула выражает площадь ступенчатой фигуры, составленной из «входящих» прямоугольников, также называемая формулой левых прямоугольников, а формула

выражает площадь ступенчатой фигуры, состоящей из «выходящих» прямоугольников, также называемая формулой правых прямоугольников. Чем меньше длина отрезков, на которые делится отрезок , тем точнее значение, вычисляемое по этой формуле, искомого интеграла.

Очевидно, стоит рассчитывать на бо́льшую точность если брать в качестве опорной точки для нахождения высоты точку посередине промежутка. В результате получаем формулу средних прямоугольников:

Учитывая априорно бо́льшую точность последней формулы при том же объеме и характере вычислений её называют формулой прямоугольников

Метод трапеций

Если функцию на каждом из частичных отрезков аппроксимировать прямой, проходящей через конечные значения, то получим метод трапеций.

Площадь трапеции на каждом отрезке:

Погрешность аппроксимации на каждом отрезке:

где

Полная формула трапеций в случае деления всего промежутка интегрирования на отрезки одинаковой длины :

где

Погрешность формулы трапеций:

где

Метод парабол (метод Симпсона)

Использовав три точки отрезка интегрирования, можно заменить подынтегральную функцию параболой. Обычно в качестве таких точек используют концы отрезка и его среднюю точку. В этом случае формула имеет очень простой вид

.

Если разбить интервал интегрирования на равных частей, то имеем

Увеличение точности

Приближение функции одним полиномом на всем отрезке интегрирования, как правило, приводит к большой ошибке в оценке значения интеграла.

Для уменьшения погрешности отрезок интегрирования разбивают на части и применяют численный метод для оценки интеграла на каждой из них.

При стремлении количества разбиений к бесконечности, оценка интеграла стремится к его истинному значению для аналитических функций для любого численного метода.

Приведённые выше методы допускают простую процедуру уменьшения шага в два раза, при этом на каждом шаге требуется вычислять значения функции только во вновь добавленных узлах. Для оценки погрешности вычислений используется правило Рунге .

Метод Гаусса

Описанные выше методы используют фиксированные точки отрезка (концы и середину) и имеют низкий порядок точности (1 - методы правых и левых прямоугольников, 2 - методы средних прямоугольников и трапеций, 3 - метод парабол (Симпсона)). Если мы можем выбирать точки, в которых мы вычисляем значения функции , то можно при том же количестве вычислений подынтегральной функции получить методы более высокого порядка точности. Так для двух (как в методе трапеций) вычислений значений подынтегральной функции, можно получить метод уже не 2-го, а 3-го порядка точности:

.

В общем случае, используя точек, можно получить метод с порядком точности . Значения узлов метода Гаусса по точкам являются корнями полинома Лежандра степени .

Значения узлов метода Гаусса и их весов приводятся в справочниках специальных функций. Наиболее известен метод Гаусса по пяти точкам.

Метод Гаусса-Кронрода

Недостаток метода Гаусса состоит в том, что он не имеет лёгкого (с вычислительной точки зрения) пути оценки погрешности полученного значения интеграла. Использование правила Рунге требует вычисления подынтегральной функции примерно в таком же числе точек, не давая при этом практически никакого выигрыша точности, в отличие от простых методов, где точность увеличивается в несколько раз при каждом новом разбиении. Кронродом был предложен следующий метод оценки значения интеграла

,

где - узлы метода Гаусса по точкам, а параметров , , подобраны таким образом, чтобы порядок точности метода был равен .

Тогда для оценки погрешности можно использовать эмпирическую формулу :

,

где - приближённое значение интеграла, полученное методом Гаусса по точкам. Библиотеки gsl и SLATEC для вычисления определённых интегралов содержат подпрограммы, использующие метод Гаусса-Кронрода по 15, 21, 31, 41, 51 и 61 точкам. Библиотека использует метод Гаусса-Кронрода по 15 точкам.

Метод Чебышева

Интегрирование при бесконечных пределах

Для интегрирования по бесконечным пределам нужно ввести неравномерную сетку, шаги которой нарастают при стремлении к бесконечности, либо можно сделать такую замену переменных в интеграле, после которой пределы будут конечны. Аналогичным образом можно поступить, если функция особая на концах отрезка интегрирования

Методы Монте-Карло

Рисунок 3. Численное интегрирование функции методом Монте-Карло

Для определения площади под графиком функции можно использовать следующий стохастический алгоритм:

Для малого числа измерений интегрируемой функции производительность Монте-Карло интегрирования гораздо ниже, чем производительность детерминированных методов. Тем не менее, в некоторых случаях, когда функция задана неявно, а необходимо определить область, заданную в виде сложных неравенств, стохастический метод может оказаться более предпочтительным.

Методы Рунге-Кутты

Метод сплайнов

Многомерный случай

В небольших размерностях можно так же применять квадратурные формулы, основанные на интерполяционных многочленах . Однако в больших размерностях эти методы становятся неприемлемыми из-за быстрого возрастания числа точек сетки и/или сложной границы области. В этом случае применяется метод Монте-Карло . Генерируются случайные точки в нашей области и усредняются значения функции в них. Так же можно использовать смешанный подход - разбить область на несколько частей, в каждой из которых (или только в тех, где интеграл посчитать не удаётся из-за сложной границы) применить метод Монте-Карло .

Литература

  1. Каханер Д., Моулер К., Нэш С. Численные методы и программное обеспечение (пер. с англ.). М.: Мир, 2001, 575 c.

1. Постановка задачи.

В прикладных исследованиях часто возникает необходимость вычисления значения определенного интеграла

Этот интеграл может выражать площадь, объем, работу переменной силы и

Если функция непрерывна на отрезке и ее первообразную удается выразить через известные функции, то для вычисления интеграла (13.1) можно воспользоваться формулой Ньютона-Лейбница:

К сожалению, в подавляющем большинстве случаев получить значение определенного интеграла с помощью формулы (13.2) или других аналитических методов не удается.

Пример 13.1. Интеграл широко используется при исследовании процессов теплообмена и диффузии, в статистической физике и теории вероятностей. Однако его значение может быть выражено в виде конечной комбинации элементарных функций.

Заметим, что даже в тех случаях, когда удается получить первообразную функцию в аналитической форме, значительные усилия, затраченные на это, часто оказываются чрезмерно высокой платой за окончательный результат. Добавим еще, что вычисления интеграла в этих случаях по формуле (13.2), как правило, приводят к громоздким (а часто - и приближенным) вычислениям. Следует отметить также, что зачастую найти точное значение интеграла (13.1) просто невозможно. Например, это имеет место, когда функция задается таблицей своих значений.

Обычно для вычисления значения определенного интеграла применяют специальные численные методы. Наиболее широко используют на практике квадратурные формулы - приближенные равенства вида

Здесь некоторые точки из отрезка узлы квадратурной формулы; числовые коэффициенты, называемые весами квадратурной формулы; целое число. Сумма которая принимается за приближенное значение интеграла, называется квадратурной суммой Величина называется погрешностью (или остаточным членом) квадратурной формулы.

Будем говорить, что квадратурная формула (13.3) точна для многочленов степени если для любого многочлена степени не выше эта формула дает точное значение интеграла, т.е.

При оценке эффективности квадратурных формул часто исходят из того, что наиболее трудоемкой операцией при вычислении по формуле (13.3) является нахождение значения функции Поэтому среди двух формул, позволяющих вычислить интеграл с заданной точностью более эффективной считается та, в которой используется меньшее число узлов.

Выведем простейшие квадратурные формулы, исходя из наглядных геометрических соображений. Будем интерпретировать интеграл (13.1) как площадь криволинейной трапеции, ограниченной графиком функции осью абсцисс и прямыми (рис. 13.1, а).

Разобьем отрезок на элементарные отрезки точками Интеграл I разобьется при этом на сумму элементарных интегралов:

где что соответствует разбиению площади исходной криволинейной трапеции на сумму площадей элементарных криволинейных трапеций (рис. 13.1, б).

Введем обозначения: где середина элементарного отрезка. Для простоты шаг будем считать постоянным.

2. Формула прямоугольников.

Заменим приближенно площадь элементарной криволинейной трапеции площадью прямоугольника, основанием которого является отрезок а высота равна значению (на рис. 13.2, а через обозначена точка с координатами Так мы приходим к элементарной квадратурной формуле прямоугольников:

Производя такую замену для всех элементарных криволинейных трапеций, получаем составную квадратурную формулу прямоугольников?

Эта формула соответствует приближенной замене площади исходной криволинейной трапеции площадью ступенчатой фшуры, изображенной на рис. 13 2. б.

Замечание. Иногда используют формулы

называемые соответственно составными квадратурными формулами левых и правых прямоугольников. Геометрические иллюстрации приведены на рис. 13.3, а и б. В соответствии с этим формулу (13.6) иногда называют составной квадратурной формулой центральных прямоугольников.

3. Формула трапеций.

Соединив отрезком точки на графике функции получим трапецию (рис 13.4, а). Заменим теперь приближенно площадь элементарной криволинейной трапеции площадью построенной фигуры. Тогда получим элементарную квадратурную формулу трапеций:

Пользуясь этой формулой при выводим составную квадратурную формулу трапеций:

Эта формула соответствует приближенной замене площади исходной

(кликните для просмотра скана)

криволинейной трапеции площадью фигуры, ограниченной ломаной линией, проходящей через точки (рис. 13.4, 6).

4. Формула Симпсона.

Если площадь элементарной криволинейной трапеции заменить площадью фигуры, расположенной под параболой, проходящей через точки (рис. 13.5, а), то получим приближенное равенство Здесь интерполяционный многочлен второй степени с узлами Как нетрудно убедиться, верна формула

Ее интегрирование приводит к равенству

Таким образом, выведена элементарная квадратурная формула Симпсона:

Применяя эту формулу на каждом элементарном отрезке, выводим составную квадратурную формулу Симпсона:

Замечание 1. Учитывая геометрическую интерпретацию формулы Симпсона, ее иногда называют формулой парабол. Замечание 2. В случае, когда число элементарных отрезков разбиения четно в формуле Симпсона можно использовать лишь узлы с целыми индексами:

При выводе этой формулы роль элементарного отрезка играет отрезок длины

5. Оценка погрешности.

Оценим погрешность выведенных квадратурных формул в предложении, что подынтегральная функция достаточно гладкая. Как и в предыдущих главах, будем использовать обозначение

Теорема 13.1. Пусть функция дважды непрерывно дифференцируема на отрезке Тогда для составных квадратурных формул прямоугольников и трапеций справедливы следующие оценки погрешности:

Выведем сначала оценку (13.13). Представим погрешность формулы прямоугольников в виде

Используя формулу Тейлора

где имеем

Так как то Замечая, что , приходим к оценке (13.13).

Для вывода оценки (13.14) воспользуемся тем, что отрезок, соединяющий точки представляет собой график интерполяционного многочлена первой степени Поэтому для элементарной формулы трапеций верно равенство

Используя оценку (11.28) погрешности линейной интерполяции, имеем

Заменим подынтегральную функцию, входящую в (2.50), интерполяционным многочленом Лагранжа нулевой степени, проходящим через середину отрезка - точку х = + Ь)/2 (рис. 2.5). Площадь криволинейной трапеции можно заменить площадью прямоугольника, т. е.

Формула (2.52) носит название ФОРМУЛЫ ПРЯМОУГОЛЬНИКОВ или ФОРМУЛЫ СРЕДНИХ. Ее погрешность составляет


Разложение функции f(x) в ряд относительно середины отрезка имеет вид

Подставив выражение (2.54) в (2.53), получим


Рис. 2.5

При вычислении ошибки интегрирования уничтожился не только первый, но и второй член разложения, что связано с симметричным выбором узла интегрирования. И хотя по построению формула точна для многочленов нулевого порядка, выбор симметричного узла интерполяции привел к тому, что формула точна для любой линейной функции.

Значение остаточного члена в формуле прямоугольников (2.53) может быть велико, так как разность (6 - а) может быть достаточно большой. Для повышения точности введем сетку

с достаточно мелким шагом h t = jc (- x t _ j и применим формулу прямоугольников на каждом шаге сетки. Тогда получим обобщенную формулу прямоугольников

с величиной остаточного члена

На равномерной сетке с шагом h t «= х ( - x t _ j = const формула (2.56) упрощается и имеет вид

величина остаточного члена составляет Заменяя в (2.58) сумму интегралом, получаем

Для справедливости оценки остаточного члена (2.58) необходимо существование непрерывной второй производной; если вторая производная f"x) - кусочно-непрерывная, то удается сделать лишь мажорантную оценку, заменяя f"(x) ее максимальной величиной на [а, 6]. Тогда, если обозначить М 2 = max | f"(x) | [а остаточный член

В том случае, когда функция f(x ) задана в виде таблицы, ее значение в середине интервала неизвестно. Это значение находится, как правило, интерполированием, что приводит к ухудшению точности формулы.

В случае таблично заданных функций удобно в качестве узлов интерполяции выбрать начало и конец отрезка интегрирования, т. е. заменить функцию f(x) многочленом Лагранжа первой степени. Имеем

Рис. 2.6

В этом случае величина интеграла, равная площади криволинейной трапеции, приближенно заменяется величиной площади трапеции (рис. 2.6). Поэтому получаем


имея в виду, что х 0 = а, х г = Ь. Эта формула носит название ФОРМУЛЫ ТРАПЕЦИЙ. При использовании формулы трапеций для

оценки погрешности интегрирования вычислим J dx по

формулам (2.18). Имеем

Погрешность формулы трапеций вдвое больше погрешности формулы прямоугольников. Это объясняется тем, что выбор в формуле прямоугольников в качестве узла интерполяции симметричного узла приводит к повышению ее точности.

Для повышения точности формулы (2.61) введем на отрезке [а, Ь] сетку

Подсчитывая значение интеграла для каждого интервала и суммируя эти значения, получаем обобщенную формулу трапеций

со значением остаточного члена

Эти формулы упрощаются на сетке с постоянным шагом Л = Л (= Xj - д:, t = const (i - 0, 1, - 1):

Введем обозначение М 2 ~ max |ГХ^)1(а &] На практике пользуются мажорантной оценкой величины остаточного члена

Таким образом, формула трапеций (как и формула прямоугольников) имеет второй порядок точности относительно шага сетки, и погрешность асимптотически стремится к нулю при h -» 0 с точностью до членов более высокого порядка малости.

Для повышения порядка точности формулы численного интегрирования заменим подынтегральную кривую параболой - интерполяционным многочленом Лагранжа второй степени, выбрав в качестве узлов интерполяции концы и середину отрезка интегрирования: х 0 = а, х х ~ (а + Ь)/ 2, х г = Ъ (рис. 2.7).

В этом случае, проинтегрировав интерполяционный многочлен для равноотстоящих узлов, получим


Рис. 2.7

При этом значение остаточного члена R ~ J Д 2 (х) dx оценивается приближенным соотношением °

Формулу (2.67) называют ФОРМУЛОЙ СИМПСОНА. Для неравноотстоящих узлов х 0 , Xj, х 2 величина F составляет

Как и в предыдущих двух случаях, для повышения точности формулы (2.67) введем сетку с достаточно малым шагом. Суммируя значения нтегралов, полученных по (2.67) для каждого интервала, получаем обобщенную формулу Симпсона (парабол), которая на равномерной сетке имеет вид

а величина остаточного члена -

Таким образом, формула парабол имеет четвертый порядок точности относительно шага сетки. Введем обозначение М 4 = = max |/ IV (x)| }