Число деленное на 0 бесконечность. Раздумья и наблюдения

В разделе на вопрос А когда считаешь предел и получается ноль умножить на бесконечность - это ноль или неопределённость? заданный автором James Bond лучший ответ это Мистер Бонд, прочтите первый том "Курса дифференциального и интегрального исчисления" Г. М. Фихтенгольца. Ноль * Бесконечность - это неопределенность. Она сводится к неопределенности типа 0 / 0 или Бесконечность / Бесконечность, которые дальше можно раскрыть, например, применяя правила Лопиталя.
Не хотите открывать Фихтенгольца - суньтесь в Яндекс. Вот ссылочка первая же по запросу "Неопределенность, Правило Лопиталя"
Успехов в решении! И не забывайте о том, что Джеймс Бонд всегда находил решения самых трудных задач.



Ответ от Олег Филоненко [гуру]
Нуль


Ответ от RevArt [активный]
Сколько раз ни складывай ноль с нулем, ноль никогда не сдвинется с места, даже если бесконечное число раз. Это очевидно, поэтому результат всегда равен нулю.
Другие числа могут получиться, если считать предел произведения функций, одна из которых стремится к нулю, а другая к бесконечности, в этом случае все зависит от их скоростей стремления к нулю или к бесконечности.


Ответ от Игорь [новичек]
?


Ответ от Артур Валиев [гуру]
Это вы предел не доразложили. Непонятно какой ноль и какая бесконечность.
Например:
1. Lnx/x при x стремящемся к бесконечности - 0
2. e^x/x при x стремящемся к бесконечности - бесконечность
3. sin2x/x при x стремящемся к 0 равно 2
Поэтому, прежде чем считать предел типа f(x)/g(x) при x стремящемся к x0 надо провести разложение в окрестности x0 обоих функций и после сокращения в числителе или знаменателе у вас останется константа - а далее все просто.


Ответ от Виола [гуру]
Иногда так хочется,чтоб ноль стал бесконечностью...


Ответ от Бакыр [гуру]
нуль. Нуль деленная на беск-ть=неопред-ть.


Ответ от урманчи [гуру]
не слушай троечников - неопределенность, разумеется! И может получиться любое число в результате.


Ответ от Lenore ((Little Bunny Foo-Foo)) [гуру]
ноль...
т.к. если любое число из этого бесконечного ряда чисел умножать на ноль, все равно будет 0...


Ответ от Пользователь удален [гуру]
к сожалению только ноль...


Ответ от Вау-Вау Оцень [гуру]
А что у нас "ноль"? Ноль величина абстрактная и в природе не имеющая места быть вообще.

Ну, вот скажите, как так получается, что как только у меня возникает ощущение, что пора высказаться на какую-нибудь тему, так сразу и во френд-ленте возникает несколько постов, в которых затрагиваются те же самые вопросы?
Сейчас вот после публикации рассуждений насчет «свободы и необходимости» () возникла потребность высказаться по неким математическим вопросам; и тут же вижу во френд-ленте: http://vorona-n.livejournal.com/66460.html и http://kosilova.livejournal.com/595991.html?thread=11645207#t11645207 !
А высказаться мне захотелось по вопросам о бесконечности .
Дело в том, что большинство труднопостижимых загадок и «парадоксов» и в науке, и в философии связаны ИМХО именно с бесконечностью . Пока мы остаемся в рамках конечных, замкнутых систем – все просто, наглядно, понятно, но зато и пессимистично: «тепловая смерть», предсказуемость и предопределенность, механистичность и алгебраичность. Пока мы остаемся в рамках замкнутых систем, нет места «звездному небу» или «уроку гармонии», «свободе воли» и «обширному полю сознания».
Возможно, именно в способности аппелировать к бесконечности и заключается основное достижение человеческого разума?
А бесконечность полна парадоксов. Именно они, пожалуй, больше всего запомнились мне из всего курса математики в школе и универе.

sin_gular в обсуждении поста http://kosilova.livejournal.com/595991.html пишет: …И вот что я подумал - все таки вся человеческая математика основана на понятии натурального числа. На дискретности и анизотропности. Видимо так интуитивно работает мозг. Базовым математическим объектом для нас оказалось натуральное число.
Но ведь даже натуральный ряд (1, 2, 3, …) – это уже простейшая из возможных бесконечностей.
И она уже дает нам множество парадоксов.

1. Бесконечность + бесконечность = та же самая бесконечность.
Ну, вот первый из парадоксов. Возьмем не натуральные числа, а целые: то есть добавим к натуральному ряду ещё «0» и отрицательные числа. Казалось бы, общее количество чисел должно было увеличиться вдвое; но на самом деле, их осталось столько же! Потому как целые числа можно перенумеровать так же, как натуральные. Вот:
1 – 0
2 – 1
3 – -1
4 – 2
5 – -2
6 – 3
и т.д. То есть взяв любое целое число, мы однозначно сможем сопоставить ему натуральное, и наоборот. Целых чисел – столько же, сколько и натуральных!
И сколько ни прибавляй к бесконечности бесконечность, все равно в результате будет ТА ЖЕ САМАЯ бесконечность! Ну, не хочет она увеличиваться, и всё тут!

2. «Бесконечность» умножить на «бесконечность» = та же самая «бесконечность»!
Но этого мало. Возьмем теперь не целые числа, а рациональные – то есть всевозможные дроби, полученные путем деления одного целого числа на другое.
Казалось бы, их должно быть в бесконечное число раз больше, чем количество целых чисел. Ну, возьмем, к примеру, такое сопоставление:
1 – 1;
2 – ½;
3 – 1/3;
4 – ¼;
5 – 1/5;
и т.д.
Казалось бы, мы взяли лишь малую толику рациональных чисел – только между 0 и 1 и только такие, где в числителе стоит «1»; а их уже оказалось столько же, сколько всех целых чисел, вместе взятых! Значит, в общей сложности, рациональных чисел должно быть в бесконечное число раз больше, чем целых!
А вот получается, что на самом деле это вовсе не так. Потому что рациональные числа на самом деле тоже можно перенумеровать, точно так же, как и целые!
Вот, смотрите. Давайте выстроим такую вот «числовую пирамиду»:
1 – 0;
2 – 1/1 (=1);
3 – ½ ; 2/1 (=2);
4 – 1/3 ; 3/1 (=3);
5 – ¼ ; 2/3 ; 3/2 ; 4/1 (=4);
и т.д.
Т.е. на каждом «этаже» пирамиды располагаются те дроби, в которых сумма числителя и знаменателя равна номеру «этажа» пирамиды!
Не буду приводить доказательств, но таким образом можно перенумеровать все рациональные числа – то есть даже перемножив «бесконечность» на саму себя, да ещё не один раз, мы в итоге получили ТУ ЖЕ САМУЮ бесконечность!

3. Дуализм «дискретного» и «непрерывного»
Как говорится, «чем дальше в лес, тем больше дров».
Парадоксы я стараюсь расположить в порядке нарастания степени их парадоксальности. И вот сейчас мы как раз подходим к тому из парадоксов, который меня в своё время поразил, пожалуй, больше всего.
Интуитивно понятно, что есть две принципиально разные вещи – процессы «дискретные» и «непрерывные». Грубо говоря, набор точек и линия.
Формально, если взять для наглядности геометрическое представление, то дискретное множество – это такое, где вокруг любого элемента можно, грубо говоря, провести окружность, внутри которой ни одного другого элемента этого множества не найдётся. То есть, есть некое минимально возможное «расстояние» между элементами множества, ближе которого они друг к другу не приближаются. Дискретный набор точек в микроскоп всегда при некотором увеличении будет выглядеть именно как набор точек, а не непрерывная линия.
Наоборот, в непрерывном (точнее, насколько я помню, «всюду плотном») множестве, сколь малое расстояние не возьми, всегда найдётся элемент, который ближе к выбранной точке, чем данное расстояние. Грубо говоря, какое увеличение в микроскопе не возьми, такое множество всё равно будет оставаться «линией», и не превратится в «набор точек».
Для чисел самым наглядным геометрическим представлением является ось координат. На этой оси целые числа будут являться отдельными точками, а рациональные – как раз таки всей осью, непрерывной (точнее, «всюду плотной») линией, которую, со сколь угодно большим увеличением ни рассматривай, она всё равно линией и останется, и никогда не «рассыплется» в набор отдельных точек.
И вот, получается, что на самом деле, количество «точек», составляющих дискретное множество и «непрерывную» линию – одинаково!!!
Помню, этот «дуализм» дискретного и непрерывного в своё время поразил меня больше всего из всего того странного и не укладывающегося в рамки «здравого смысла». Что связано с «бесконечностью».

4. Бесконечность больше бесконечности.
Но даже и на этом парадоксы всё-таки не заканчиваются.
Казалось бы, всё, дальше ехать некуда, больше найденной нами «бесконечности» ничего уже быть не может.
А вот оказывается, вовсе и не так!
Потому как «рациональные» числа – это вовсе даже не все числа, какие есть в природе.
И, как оказывается, даже не большая их часть.
Потому как кроме «рациональных чисел», каждое из которых можно представить в виде дроби, в числителе и знаменателе которой – целые числа, существуют ещё числа «иррациональные», в виде простых дробей не представимые. Любое рациональное число можно записать в виде периодической десятичной дроби; иррациональные числа – это бесконечные непериодические десятичные дроби. Наиболее известным представителем таких чисел является число «пи » - отношение длины окружности к её диаметру.
Так вот, я не помню уже доказательств (прошу поверить мне на слово), но иррациональные числа перенумеровать принципиально невозможно – их количество оказывается БОЛЬШЕ, чем количество целых чисел! Математически первая из рассмотренных мною бесконечностей (набор целых чисел) принято именовать счетной , вторую (иррациональные числа) - несчетной .
Насколько я помню, для сравнения «бесконечностей» между собой используется понятие «мощности»; и насколько я помню, этих самых «мощностей» опять таки может быть бесконечное количество:-)

5. Линия, которая бесконечно длиннее самой себя.
Ну, и самое интересное, что геометрически и рациональные, и иррациональные числа можно представить как одну и ту же линию – ось координат; и то, и другое множество является «всюду плотным», и на графике будет выглядеть как одна и та же линия! Сколько ни увеличивай разрешающую способность «микроскопа», различий между линией, состоящей из рациональных чисел, и линией, состоящей из иррациональных чисел, увидеть не удастся: при любом «увеличении» это будет одна и та же непрерывная («всюду плотная») линия!
И тем не менее, «рациональная линия» бесконечно «короче» «иррациональной»!

Раскрытие неопределённостей вида 0/0 или ∞/∞ и некоторых других неопределённостей, возникающих при вычислении предела отношения двух бесконечно малых или бесконечно больших функций значительно упрощается с помощью правила Лопиталя (на самом деле двух правил и замечаний к ним).

Суть правил Лопиталя состоит в том, что в случае, когда вычисление предела отношений двух бесконечно малых или бесконечно больших функций даёт неопределённости видов 0/0 или ∞/∞, предел отношения двух функций можно заменить пределом отношения их производных и, таким образом, получить определённный результат.

Перейдём к формулировкам правил Лопиталя.

Правило Лопиталя для случая предела двух бесконечно малых величин . Если функции f (x ) и g (x a a , причём в этой окрестности g "(x a равны между собой и равны нулю

().

Правило Лопиталя для случая предела двух бесконечно больших величин . Если функции f (x ) и g (x ) дифференцируемы в некоторой окрестности точки a , за исключением, может быть, самой точки a , причём в этой окрестности g "(x )≠0 и если и если пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны бесконечности

(),

то предел отношения этих функций равен пределу отношения их производных

().

Иными словами, для неопределённостей вида 0/0 или ∞/∞ предел отношения двух функций равен пределу отношения их производных, если последний существует (конечный или бесконечный).

Замечания .

1. Правила Лопиталя применимы и тогда, когда функции f (x ) и g (x ) не определены при x = a .

2. Если при вычисления предела отношения производных функций f (x ) и g (x ) снова приходим к неопределённости вида 0/0 или ∞/∞, то правила Лопиталя следует применять многократно (минимум дважды).

3. Правила Лопиталя применимы и тогда, когда аргумент функций (икс) стремится не к конечному числу a , а к бесконечности (x → ∞).

К неопределённостям видов 0/0 и ∞/∞ могут быть сведены и неопределённости других видов.

Раскрытие неопределённостей видов "ноль делить на ноль" и "бесконечность делить на бесконечность"

Пример 1.

x =2 приводит к неопределённости вида 0/0. Поэтому производную каждой функции и получаем

В числителе вычисляли производную многочлена, а в знаменателе - производную сложной логарифмической функции . Перед последним знаком равенства вычисляли обычный предел , подставляя вместо икса двойку.

Пример 2. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

Решение. Подстановка в заданную функцию значения x

Пример 3. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

Решение. Подстановка в заданную функцию значения x =0 приводит к неопределённости вида 0/0. Поэтому вычисляем производные функций в числителе и знаменателе и получаем:

Пример 4. Вычислить

Решение. Подстановка в заданную функцию значения икса, равного плюс бесконечности, приводит к неопределённости вида ∞/∞. Поэтому применим правило Лопиталя:

Замечание. Переходим к примерам, в которых правило Лопиталя приходится применять дважды, то есть приходить к пределу отношений вторых производных, так как предел отношения первых производных представляет собой неопределённость вида 0/0 или ∞/∞.

Применить правило Лопиталя самостоятельно, а затем посмотреть решение

Раскрытие неопределённостей вида "ноль умножить на бесконечность"

Пример 12. Вычислить

.

Решение. Получаем

В этом примере использовано тригонометрическое тождество .

Раскрытие неопределённостей видов "ноль в степени ноль", "бесконечность в степени ноль" и "один в степени бесконечность"

Неопределённости вида , или обычно приводятся к виду 0/0 или ∞/∞ с помощью логарифмирования функции вида

Чтобы вычислить предел выражения , следует использовать логарифмическое тождество , частным случаем которого является и свойство логарифма .

Используя логарифмическое тождество и свойство непрерывности функции (для перехода за знак предела), предел следует вычислять следующим образом:

Отдельно следует находить предел выражения в показателе степени и возводить e в найденную степень.

Пример 13.

Решение. Получаем

.

.

Пример 14. Вычислить, пользуясь правилом Лопиталя

Решение. Получаем

Вычисляем предел выражения в показателе степени

.

.

Пример 15. Вычислить, пользуясь правилом Лопиталя

Методы решения пределов. Неопределённости.
Порядок роста функции. Метод замены

Пример 4

Найти предел

Это более простой пример для самостоятельного решения. В предложенном примере снова неопределённость ( более высокого порядка роста, чем корень ).

Если «икс» стремится к «минус бесконечности»

Призрак «минус бесконечности» уже давно витал в этой статье. Рассмотрим пределы с многочленами, в которых . Принципы и методы решения будут точно такими же, что и в первой части урока, за исключением ряда нюансов.

Рассмотрим 4 фишки, которые потребуются для решения практических заданий:

1) Вычислим предел

Значение предела зависит только от слагаемого , поскольку оно обладает самым высоким порядком роста. Если , то бесконечно большое по модулю отрицательное число в ЧЁТНОЙ степени , в данном случае – в четвёртой, равно «плюс бесконечности»: . Константа («двойка») положительна , поэтому:

2) Вычислим предел

Здесь старшая степень опять чётная , поэтому: . Но перед расположился «минус» (отрицательная константа –1), следовательно:

3) Вычислим предел

Значение предела зависит только от . Как вы помните из школы, «минус» «выскакивает» из-под нечётной степени, поэтому бесконечно большое по модулю отрицательное число в НЕЧЁТНОЙ степени равно «минус бесконечности», в данном случае: .
Константа («четвёрка») положительна , значит:

4) Вычислим предел

Первый парень на деревне снова обладает нечётной степенью, кроме того, за пазухой отрицательная константа, а значит: Таким образом:
.

Пример 5

Найти предел

Используя вышеизложенные пункты, приходим к выводу, что здесь неопределённость . Числитель и знаменатель одного порядка роста, значит, в пределе получится конечное число. Узнаем ответ, отбросив всех мальков:

Решение тривиально:

Пример 6

Найти предел

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

А сейчас, пожалуй, самый тонкий из случаев:

Пример 7

Найти предел

Рассматривая старшие слагаемые, приходим к выводу, что здесь неопределённость . Числитель более высокого порядка роста, чем знаменатель, поэтому сразу можно сказать, что предел равен бесконечности. Но какой бесконечности, «плюс» или «минус»? Приём тот же – в числителе и знаменателе избавимся от мелочи:

Решаем:

Разделим числитель и знаменатель на

Пример 15

Найти предел

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Ещё пара занятных примеров на тему замены переменной:

Пример 16

Найти предел

При подстановке единицы в предел получается неопределённость . Замена переменной уже напрашивается, но сначала преобразуем тангенс по формуле . Действительно, зачем нам тангенс?

Заметьте, что , поэтому . Если не совсем понятно, посмотрите значения синуса в тригонометрической таблице . Таким образом, мы сразу избавляемся от множителя , кроме того, получаем более привычную неопределённость 0:0. Хорошо бы ещё и предел у нас стремился к нулю.

Проведем замену:

Если , то

Под косинусом у нас находится «икс», который тоже необходимо выразить через «тэ».
Из замены выражаем: .

Завершаем решение:

(1) Проводим подстановку

(2) Раскрываем скобки под косинусом.

(4) Чтобы организовать первый замечательный предел , искусственно домножаем числитель на и обратное число .

Задание для самостоятельного решения:

Пример 17

Найти предел

Полное решение и ответ в конце урока.

Это были несложные задачи в своём классе, на практике всё бывает хуже, и, помимо формул приведения , приходится использовать самые разные тригонометрические формулы , а также прочие ухищрения. В статье Сложные пределы я разобрал пару настоящих примеров =)

В канун праздника окончательно проясним ситуацию ещё с одной распространённой неопределённостью:

Устранение неопределённости «единица в степени бесконечность»

Данную неопределённость «обслуживает» второй замечательный предел , и во второй части того урока мы очень подробно рассмотрели стандартные примеры решений, которые в большинстве случаев встречаются на практике. Сейчас картина с экспонентами будет завершена, кроме того, заключительные задания урока будут посвящены пределам-«обманкам», в которых КАЖЕТСЯ, что необходимо применить 2-й замечательный предел, хотя это вовсе не так.

Недостаток двух рабочих формул 2-го замечательного предела состоит в том, что аргумент должен стремиться к «плюс бесконечности» либо к нулю. Но что делать, если аргумент стремится к другому числу?

На помощь приходит универсальная формула (которая на самом деле является следствием второго замечательного предела):

Неопределённость можно устранить по формуле:

Где-то вроде уже пояснял, что обозначают квадратные скобки. Ничего особенного, скобки как скобки. Обычно их используют, чтобы чётче выделить математическую запись.

Выделим существенные моменты формулы:

1) Речь идёт только о неопределённости и никакой другой .

2) Аргумент «икс» может стремиться к произвольному значению (а не только к нулю или ), в частности, к «минус бесконечности» либо к любому конечному числу.

С помощью данной формулы можно решить все примеры урока Замечательные пределы , которые относятся ко 2-му замечательному пределу. Например, вычислим предел :

В данном случае , и по формуле :

Правда, делать так не советую, в традициях всё-таки применять «обычное» оформление решения, если его можно применить. Однако с помощью формулы очень удобно выполнять проверку «классических» примеров на 2-й замечательный предел.