Что такое эффект доплера. Эффект доплера для звуковых волн

– важнейшее явление в физике волн. Прежде чем перейти напрямую к сути вопроса, немного вводной теории.

Колебание – в той или иной степени повторяющийся процесс изменения состояния системы около положения равновесия. Волна - это колебание, которое способно удаляться от места своего возникновения, распространяясь в среде. Волны характеризуются амплитудой , длиной и частотой . Звук, который мы слышим - это волна, т.е. механические колебания частиц воздуха, распространяющиеся от источника звука.

Вооружившись сведениями о волнах, перейдем к эффекту Доплера. А если хотите узнать больше о колебаниях, волнах и резонансе - добро пожаловать в нашего блога.

Суть эффекта Доплера

Самый популярный и простой пример, объясняющий суть эффекта Доплера – неподвижный наблюдатель и машина с сиреной. Допустим, вы стоите на остановке. К вам по улице движется карета скорой помощи со включенной сиреной. Частота звука, которую вы будете слышать по мере приближения машины, не одинакова.

Сначала звук будет более высокой частоты, когда машина поравняется с остановкой. Вы услышите истинную частоту звука сирены, а по мере удаления частота звука будет понижаться. Это и есть эффект Доплера .


Частота и длина волны излучения, воспринимаемого наблюдателем, изменяется вследствие движения источника излучения.

Если у Кэпа спросят, кто открыл эффект Доплера, он не задумываясь ответит, что это сделал Доплер. И будет прав. Данное явление, теоретически обоснованное в 1842 году австрийским физиком Кристианом Доплером , было впоследствии названо его именем. Сам Доплер вывел свою теорию, наблюдая за кругами на воде и предположив, что наблюдения можно обобщить для всех волн. Экспериментально подтвердить эффект Доплера для звука и света удалось позднее.

Выше мы рассмотрели пример Эффект Доплера для звуковых волн. Однако эффект Доплера справедлив не только для звука. Различают:

  • Акустический эффект Доплера;
  • Оптический эффект Доплера;
  • Эффект Доплера для электромагнитных волн;
  • Релятивистский эффект Доплера.

Именно эксперименты со звуковыми волнами помогли дать первое экспериментальное подтверждение этому эффекту.

Экспериментальное подтверждение эффекта Доплера

Подтверждением правильности рассуждений Кристиана Доплера связано с одним из интересных и необычных физических экспериментов. В 1845 году метеоролог из Голландии Христиан Баллот взял мощный локомотив и оркестр, состоящий из музыкантов с абсолютным слухом. Часть музыкантов – это были трубачи – ехали на открытой площадке поезда и постоянно тянули одну и ту же ноту. Допустим, это была ля второй октавы.

Другие музыканты находились на станции и слушали, что играют их коллеги. Абсолютный слух всех участников эксперимента сводил вероятность ошибки к минимуму. Эксперимент длился два дня, все устали, было сожжено много угля, но результаты того стоили. Оказалось, что высота звука действительно зависит от относительной скорости источника или наблюдателя (слушателя).


Применение эффекта Доплера

Одно из наиболее широко известных применений – определение скорости движения объектов при помощи датчиков скорости. Радиосигналы, посылаемые радаром, отражаются от машин и возвращаются обратно. При этом, смещение частоты, с которой сигналы возвращаются, имеет непосредственную связь со скоростью машины. Сопоставляя скорость и изменение частоты, можно вычислять скорость.

Эффект Доплера широко применяется в медицине. На нем основано действие приборов ультразвуковой диагностики. Существует отдельная методика в УЗИ, называемая доплерографией .

Эффект Доплера также используют в оптике , акустике , радиоэлектронике , астрономии , радиолокации .

Кстати! Для наших читателей сейчас действует скидка 10% на

Открытие эффекта Доплера сыграло важную роль в ходе становления современной физики. Одно из подтверждений теории Большого взрыва основывается на этом эффекте. Как связаны эффект Доплера и Большой взрыв? Согласно теории Большого взрыва, Вселенная расширяется.

При наблюдении удаленных галактик наблюдается красное смещение – сдвиг спектральных линий в красную сторону спектра. Объясняя красное смещение при помощи эффекта Доплера, можно сделать вывод, согласующийся с теорией: галактики удаляются друг от друга, Вселенная расширяется.


Формула для эффекта Доплера

Когда теорию эффекта Доплера подвергали критике, одним из аргументов оппонентов ученого был факт, что теория помещалась всего на восьми листах, а вывод формулы эффекта Доплера не содержал громоздких математических выкладок. На наш взгляд, это только плюс!

Пусть u – скорость приемника относительно среды, v – скорость источника волн относительно среды, с - скорость распространения волн в среде, w0 - частота волн источника. Тогда формула эффекта Доплера в самом общем случае будет выглядеть так:

Здесь w – частота, которую будет фиксировать приемник.

Релятивистский эффект Доплера

В отличие от классического эффекта Доплера при распространении электромагнитных волн в вакууме для расчета эффекта Доплера следует применять СТО и учитывать релятивистское замедление времени. Пусть света – с , v – скорость источника относительно приемника, тета – угол между направлением на источник и вектором скорости, связанным с системой отсчета приемника. Тогда формула для релятивистского эффекта Доплера будет иметь вид:

Сегодня мы рассказали о важнейшем эффекте нашего мира – эффекте Доплера. Хотите научиться решать задачи на эффект Доплера быстро и легко? Спросите у , и они охотно поделятся своим опытом! А в конце - еще немного про теорию Большого взрыва и эффект Доплера.

Источник волн перемещается налево. Тогда слева частота волн становится выше (больше), а справа - ниже (меньше), другими словами, если источник волн догоняет испускаемые им волны, то длина волны уменьшается. Если удаляется - длина волны увеличивается.

Эффе́кт До́плера - изменение частоты и длины волн , регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.

Сущность явления

Эффект Доплера легко наблюдать на практике, когда мимо наблюдателя проезжает машина с включённой сиреной. Предположим, сирена выдаёт какой-то определённый тон, и он не меняется. Когда машина не движется относительно наблюдателя, тогда он слышит именно тот тон, который издаёт сирена. Но если машина будет приближаться к наблюдателю, то частота звуковых волн увеличится (а длина уменьшится), и наблюдатель услышит более высокий тон, чем на самом деле издаёт сирена. В тот момент, когда машина будет проезжать мимо наблюдателя, он услышит тот самый тон, который на самом деле издаёт сирена. А когда машина проедет дальше и будет уже отдаляться, а не приближаться, то наблюдатель услышит более низкий тон, вследствие меньшей частоты (и, соответственно, большей длины) звуковых волн.

Также важен случай, когда в среде движется заряженная частица с релятивистской скоростью . В этом случае в лабораторной системе регистрируется черенковское излучение , имеющее непосредственное отношение к эффекту Доплера.

Математическое описание

Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается, если удаляется - длина волны увеличивается:

,

где - частота, с которой источник испускает волны, - скорость распространения волн в среде, - скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

где - скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

Подставив вместо в формуле (2) значение частоты из формулы (1), получим формулу для общего случая:

где - скорость света , - скорость источника относительно приёмника (наблюдателя), - угол между направлением на источник и вектором скорости в системе отсчёта приёмника. Если источник радиально удаляется от наблюдателя, то , если приближается - .

Релятивистский эффект Доплера обусловлен двумя причинами:

  • классический аналог изменения частоты при относительном движении источника и приёмника;

Последний фактор приводит к поперечному эффекту Доплера, когда угол между волновым вектором и скоростью источника равен . В этом случае изменение частоты является чисто релятивистским эффектом, не имеющим классического аналога.

Как наблюдать эффект Доплера

Поскольку явление характерно для любых волн и потоков частиц, то его очень легко наблюдать для звука. Частота звуковых колебаний воспринимается на слух как высота звука . Надо дождаться ситуации, когда быстро движущийся автомобиль или поезд будет проезжать мимо вас, издавая звук, например, сирену или просто звуковой сигнал. Вы услышите, что когда автомобиль будет приближаться к вам, высота звука будет выше, потом, когда автомобиль поравняется с вами, резко понизится и далее, при удалении, автомобиль будет сигналить на более низкой ноте .

Применение

  • Доплеровский радар - радар , который измеряет изменение частоты сигнала, отражённого от объекта. По изменению частоты вычисляется радиальная составляющая скорости объекта (проекция скорости на прямую, проходящую через объект и радар). Доплеровские радары могут применяться в самых разных областях: для определения скорости летательных аппаратов, кораблей, автомобилей, гидрометеоров (например, облаков), морских и речных течений , а также других объектов.
  • Астрономия
    • По смещению линий спектра определяют лучевую скорость движения звёзд , галактик и других небесных тел. С помощью эффекта Доплера по спектру небесных тел определяется их лучевая скорость . Изменение длин волн световых колебаний приводит к тому, что все спектральные линии в спектре источника смещаются в сторону длинных волн, если лучевая скорость его направлена от наблюдателя (красное смещение), и в сторону коротких, если направление лучевой скорости - к наблюдателю (фиолетовое смещение). Если скорость источника мала по сравнению со скоростью света (300 000 км/с), то лучевая скорость равна скорости света, умноженной на изменение длины волны любой спектральной линии и делённой на длину волны этой же линии в неподвижном источнике.
    • По увеличению ширины линий спектра определяют температуру звёзд
  • Неинвазивное измерение скорости потока. С помощью эффекта Доплера измеряют скорость потока жидкостей и газов. Преимущество этого метода заключается в том, что не требуется помещать датчики непосредственно в поток. Скорость определяется по рассеянию ультразвука на неоднородностях среды (частицах взвеси , каплях жидкости, не смешивающихся с основным потоком, пузырьках газа).
  • Охранные сигнализации. Для обнаружения движущихся объектов
  • Определение координат. В спутниковой системе Коспас-Сарсат координаты аварийного передатчика на земле определяются спутником по принятому от него радиосигналу, используя эффект Доплера.

Искусство и культура

  • В 6-ой серии 1-го сезона американского комедийного телесериала «The Big Bang Theory » доктор Шелдон Купер идёт на Хэллоуин , для которого надел костюм, символизирующий эффект Доплера. Однако все присутствующие (кроме друзей) думают, что он - зебра .

Примечания

См. также

Ссылки

  • Применение эффекта Доплера для измерения течений в океане

Wikimedia Foundation . 2010 .

  • Воск
  • Полиморфизм компьютерных вирусов

Смотреть что такое "Эффект Доплера" в других словарях:

    эффект Доплера - доплеровский эффект Изменение частоты, возникающее при перемещении передатчика относительно приемника или наоборот. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М. Горностаева. Москва … Справочник технического переводчика

    эффект Доплера - Doplerio reiškinys statusas T sritis fizika atitikmenys: angl. Doppler effect vok. Doppler Effekt, m rus. эффект Доплера, m; явление Доплера, n pranc. effet Doppler, m … Fizikos terminų žodynas

    эффект Доплера - Doppler io efektas statusas T sritis automatika atitikmenys: angl. Doppler effect vok. Doppler Effekt, m rus. доплеровский эффект, m; эффект Доплера, m pranc. effet Doppler, m ryšiai: sinonimas – Doplerio efektas … Automatikos terminų žodynas

    эффект Доплера - Doplerio efektas statusas T sritis Energetika apibrėžtis Spinduliuotės stebimo bangos ilgio pasikeitimas, šaltiniui judant stebėtojo atžvilgiu. atitikmenys: angl. Doppler effect vok. Dopplereffekt, m rus. доплеровский эффект, m; эффект Доплера, m … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    эффект Доплера - Doplerio efektas statusas T sritis Standartizacija ir metrologija apibrėžtis Matuojamosios spinduliuotės dažnio pokytis, atsirandantis dėl reliatyviojo judesio tarp pirminio ar antrinio šaltinio ir stebėtojo. atitikmenys: angl. Doppler effect vok … Penkiakalbis aiškinamasis metrologijos terminų žodynas

В акустике изменение частоты, обусловленное эффектом Доплера, определяется скоростями движения источника и приемника по отношению к среде, являющейся носителем звуковых волн (см. формулу (103.2)). Для световых волн также существует эффект Доплера. Однако особой среды, которая служила бы носителем электромагнитных волн, не существует. Поэтому доплеровское смещение частоты световых волн определяется только относительной скоростью источника и приемника.

Свяжем с источником света начало координат системы К, а с приемником - начало координат системы К (рис. 151.1). Оси направим, как обычно, вдоль вектора скорости v, с которой система К (т. е. приемник) движется относительно системы К (т е. источника). Уравнение плоской световой волны, испускаемой источником по направлению к приемнику, будет в системе К иметь вид

Здесь и - частота волны, фиксируемая в системе отсчета, связанной с источником, т. е. частота, с которой колеблется источник. Мы предполагаем, что световая волна распространяется в вакууме; поэтому фазовая скорость равна с.

Согласно принципу относительности законы природы имеют одинаковый вид во всех инерциальных системах отсчета. Следовательно, в системе К волна (151.1) описывается уравнением

где - частота, фиксируемая в системе отсчета К т. е. частота, воспринимаемая приемником. Мы снабдили штрихами все величины, кроме с, которая одинакова во всех системах отсчета.

Уравнение волны в системе К можно получить из уравнения в системе К, перейдя от с помощью преобразований Лоренца.

Заменив в и t согласно формулам (63.16) 1-го тома, получим

(роль играет v). Последнее выражение легко привести к виду

Уравнение (151.3) описывает в системе К ту же волну, что и уравнение (151.2). Поэтому должно выполняться соотношение

Изменим обозначения: частоту источника со обозначим через а частоту приемника - через . В результате формула примет вид

Перейдя от круговой частоты к обычной, получим

(151.5)

Фигурирующая в формулах (151.4) и (151.5) скоростью приемника по отношению к источнику есть величина алгебраическая. При удалении приемника и согласно при приближении приемника к источнику так что со

В случае, если формулу (151.4) можно приближенно записать следующим образом:

Отсюда, ограничившись членами порядка получим

(151.6)

Из этой формулы можно найти относительное изменение частоты:

(151.7)

(под подразумевается ).

Можно показать, что, кроме рассмотренного нами продольного эффекта, для световых волн существует также поперечный эффект Доплера. Он заключается в уменьшении воспринимаемой приемником частоты, наблюдающемся в том случае, когда вектор относительной скорости направлен перпендикулярно к прямой, проходящей через приемник, и источник (когда, например, источник движется по окружности, в центре которой помещаемся приемник).

В этом случае частота в системе источника связана с частотой со в системе приемника соотношением

Относительное изменение частоты при поперечном эффекте Доплера

пропорционально квадрату отношения и, следовательно, значительно меньше, чем при продольном эффекте, для которого относительное изменение частоты пропорционально первой степени

Существование поперечного эффекта Доплера было доказано экспериментально Айвсом в 1938 г. В опытах Айвса определялось изменение частоты излучения атомов водорода в каналовых лучах (см. последний абзац § 85). Скорость атомов составляла примерно 106 м/с. Эти опыты представляют собой непосредственное экспериментальное подтверждение справедливости преобразований Лоренца.

В общем случае вектор относительной скорости можно разложить на две составляющие, одна из которых направлена вдоль луча, а другая - перпендикулярно к лучу. Первая составляющая обусловит продольный, вторая - поперечный эффект Доплера.

Продольный эффект Доплера используется для определения радиальной скорости звезд. Измерив относительное смещение линий в спектрах звезд, можно по формуле (151.4) определить

Тепловое движение молекул светящегося газа приводит вследствие эффекта Доплера к уширению спектральных линий. Из-за хаотичности теплового движения все направления скоростей молекул относительно спектрографа равновероятны. Поэтому в регистрируемом прибором излучении присутствуют все частоты, заключенные в интервале от до где - частота, излучаемая молекулами, v - скорость теплового движения (см. формулу (151.6)). Таким образом, регистрируемая ширина спектральной линии составит Величину

(151.10)

называют доплеровской шириной спектральной линии (под v подразумевается наиболее вероятная скорость молекул). По величине доплеровского уширения спектральных линий можно судить о скорости теплового движения молекул, а следовательно, и о температуре светящегося газа.

Известно, что при приближении к неподвижному наблюдателю быстро движущегося электропоезда его звуковой сигнал кажется более высоким, а при удалении от наблюдателя – более низким, чем сигнал того же электропоезда, но неподвижного.

Эффектом Доплера называют изменение частоты волн, регистрируемых приемником, которое происходит вследствие движения источника этих волн и приемника.

Источник, двигаясь к приемнику, как бы сжимает пружину – волну (рис. 5.6).

Данный эффект наблюдается при распространении звуковых волн (акустический эффект) и электромагнитных волн (оптический эффект).

Рассмотрим несколько случаев проявления акустического эффекта Доплера .

Пусть приемник звуковых волн П в газообразной (или жидкой) среде неподвижен относительно нее, а источник И удаляется от приемника со скоростью вдоль соединяющей их прямой (рис. 5.7, а ).

Источник смещается в среде за время, равное периоду его колебаний, на расстояние , где – частота колебаний источника.

Поэтому при движении источника длина волны в среде отлична от ее значения при неподвижном источнике:

,

где – фазовая скорость волны в среде.

Частота волны, регистрируемая приемником,

(5.7.1)

Если вектор скорости источника направлен под произвольным углом к радиус-вектору , соединяющему неподвижный приемник с источником (рис. 5.7, б ), то

(5.7.2)

Если источник неподвижен, а приемник приближается к нему со скоростью вдоль соединяющей их прямой (рис. 5.7, в ), то длина волны в среде . Однако, скорость распространения волны относительно приемника равна , так что частота волны, регистрируемая приемником

(5.7.3)

В том случае, когда скорость направлена под произвольным углом к радиус-вектору , соединяющему движущийся приемник с неподвижным источником (рис. 5.7, г ), имеем:

Эту формулу можно также представить в виде (если )

, (5.7.6)

где – скорость источника волны относительно приемника, а – угол между векторами и . Величина , равная проекции на направление , называется лучевой скоростью источника.

Оптический эффект Доплера

При движении источника и приемника электромагнитных волн относительно друг друга также наблюдается эффект Доплера , т.е. изменение частоты волны , регистрируемой приемником. В отличие от рассмотренного нами эффекта Доплера в акустике, закономерности этого явления для электромагнитных волн можно установить только на основе специальной теории относительности.

Соотношение, описывающее эффект Доплера для электромагнитных волн в вакууме, с учетом преобразований Лоренца, имеет вид:

. (5.7.7)

При небольших скоростях движения источника волн относительно приемника, релятивистская формула эффекта Доплера (5.7.7) совпадает с классической формулой (5.7.2).

Если источник движется относительно приемника вдоль соединяющей их прямой, то наблюдается продольный эффект Доплера .

В случае сближения источника и приемника ()

, (5.7.8)

а в случае их взаимного удаления ()

. (5.7.9)

Кроме того, из релятивистской теории эффекта Доплера следует существование поперечного эффекта Доплера , наблюдающегося при и , т.е. в тех случаях, когда источник движется перпендикулярно линии наблюдения (например источник движется по окружности, приемник в центре):

. (5.7.10)

Поперечный эффект Доплера необъясним в классической физике. Он представляет чисто релятивистский эффект.

Как видно из формулы (5.7.10), поперечный эффект пропорционален отношению , следовательно он значительно слабее продольного, который пропорционален (5.7.9).

В общем случае вектор относительной скорости можно разложить на составляющие: одна обеспечивает продольный эффект, другая – поперечный.

Существование поперечного эффекта Доплера следует непосредственно из замедления времени в движущихся системах отсчета.

Впервые экспериментальная проверка существования эффекта Доплера и правильности релятивистской формулы (5.7.7) была осуществлена американскими физиками Г. Айвсом и Д. Стилуэллом в 30-х гг. Они с помощью спектрографа исследовали излучение атомов водорода, разогнанных до скоростей м/с. В 1938 г. результаты были опубликованы. Резюме: поперечный эффект Доплера наблюдался в полном соответствии с релятивистскими преобразованиями частоты (спектр излучения атомов оказался сдвинут в низкочастотную область); вывод о замедлении времени в движущихся инерциальных системах отсчета подтвержден.

Эффект Доплера нашел широкое применение в науке и технике. Особенно большую роль это явление играет в астрофизике. На основании доплеровского смещения линий поглощения в спектрах звезд и туманностей можно определять лучевые скорости этих объектов по отношению к Земле: при по формуле (5.7.6)

. (5.7.11)

Американский астроном Э. Хаббл обнаружил в 1929 г. явление, получившее название космологического красного смещения и состоящее в том, что линии в спектрах излучения внегалактических объектов смещены в сторону меньших частот (больших длин волн). Оказалось, что для каждого объекта относительное смещение частоты ( – частота линии в спектре неподвижного источника, – наблюдаемая частота) совершенно одинаково по всем частотам. Космологическое красное смещение есть не что иное, как эффект Доплера. Оно свидетельствует о том, что Метагалактика расширяется, так что внегалактические объекты удаляются от нашей Галактики.

Под Метагалактикой понимают совокупность всех звездных систем. В современные телескопы можно наблюдать часть Метагалактики, оптический радиус которой равен . Существование этого явления было теоретически предсказано еще в 1922 г. советским ученым А.А. Фридманом на основе развития общей теории относительности.

Хаббл установил закон, согласно которому относительное красное смещение галактик растет пропорционально расстоянию до них .

Закон Хаббла можно записать в виде

, (5.7.12)

где H – постоянная Хаббла. По самым современным оценкам, проведенным в 2003 г., . (1 пк (парсек) – расстояние, которое свет проходит в вакууме за 3,27 лет ()).

В 1990 г. на борту шаттла «Дискавери» был выведен на орбиту космический телескоп имени Хаббла (рис. 5.8).

Рис. 5.8 Рис. 5.9

Астрономы давно мечтали о телескопе, который работал бы в видимом диапазоне, но находился за пределами земной атмосферы, сильно мешающей наблюдениям. «Хаббл» не только не обманул возлагавшихся на него надежд, но даже превзошел практически все ожидания. Он фантастически расширил «поле зрения» человечества, заглянув в немыслимые глубины Вселенной. За время своей работы космический телескоп передал на землю 700 тыс. великолепных фотографий (рис. 5.9). Он, в частности, помог астрономам определить точный возраст нашей Вселенной – 13,7 млрд. лет; помог подтвердить существование во Вселенной странной, но оказывающей огромное влияние, формы энергии – темной энергии; доказал существование сверхмассивных черных дыр; удивительно четко заснял падение кометы на Юпитер; показал, что процесс формирования планетных систем является широко распространенным в нашей Галактике; обнаружил небольшие протогалактики, зарегистрировав излучение, испущенное ими, когда возраст Вселенной составлял менее 1 млрд. лет.

На эффекте Доплера основаны радиолокационные лазерные методы измерения скоростей различных объектов на Земле (например автомобиля, самолета и др.). Лазерная анемометрия является незаменимым методом изучения потока жидкости или газа. Хаотическое тепловое движение атомов светящегося тела также вызывает уширение линий в его спектре, которое возрастает с увеличением скорости теплового движения, т.е. с повышением температуры газа. Это явление можно использовать для определения температуры раскаленных газов.

Эффект Доплера описывается формулой:

где - частота волны, регистрируемой приемником; - частота волны, испускаемой источником; - в среде; и - скорости приемника и источника относительно упругой среды соответственно.

Если источник звука приближается к приемнику, то его скорость имеет знак «плюс». Если источник удаляется от приемника, его скорость имеет знак «минус».

Из формулы видно, что при таком движении источника и приемника, при котором расстояние между ними уменьшается, воспринимаемая приемником частота оказывается больше частоты источника . Если расстояние между источником и приемником увеличивается, будет меньше, чем .

Эффект Доплера лежит в основе радаров, с помощью которых сотрудники ГАИ определяют скорость автомобиля. В медицине используют эффект Доплера для того, чтобы с помощью ультразвукового прибора отличить вены от артерий при проведении инъекций. Благодаря эффекту Доплера, астрономы установили, что Вселенная расширяется — галактики разбегаются друг от друга. С помощью эффекта Доплера определяются параметры движения планет и космических аппаратов.

Примеры решения задач

ПРИМЕР 1

Задание На шоссе сближаются два автомобиля со скоростями м/с и м/с. Первый из них подает звуковой сигнал частотой 600 Гц. Определить частоту сигнала, который услышит водитель второго автомобиля: а) до встречи; б) после встречи. Скорость звука принять равной 348 м/с.
Решение

До встречи автомобили сближаются т.е. расстояние между ними уменьшается и источник звука (первый автомобиль) приближается к приемнику звука (второму автомобилю), поэтому скорость первого автомобиля войдет в формулу со знаком «плюс».

Вычислим:

Гц

После встречи автомобили будут удаляться друг от друга, т.е. источник звукового сигнала будет удаляться от приемника, поэтому скорость источника войдет в формулу со знаком «минус»:

Гц

Ответ Частота сигнала, который услышит водитель второй автомашины до встречи с первой, составит 732 Гц, а после встречи – 616 Гц.

ПРИМЕР 2

Задание Скорый поезд приближается к стоящему на путях электропоезду со скоростью 72 км/ч. Электропоезд подает звуковой сигнал частотой 0,6 кГц. Определить кажущуюся частоту звукового сигнала, который услышит машинист скорого поезда. Скорость звука принять равной 340 м/с.
Решение Запишем формулу для эффекта Доплера:

В системе отсчета, связанной со скорым поездом, машинист скорого поезда (приемник сигнала) неподвижен, поэтому , а электропоезд (источник сигнала) движется навстречу скорому поезду со скоростью , которая имеет знак «плюс», так как расстояние между источником и приемником звукового сигнала уменьшается.

Переведем единицы в систему СИ: скорость движения электропоезда относительно скорого поезда км/ч м/с; частота звукового сигнала электропоезда кГц Гц.

Вычислим:

Гц

Ответ Кажущаяся частота , который услышит машинист скорого поезда, 638 Гц.

ПРИМЕР 3

Задание Мимо железнодорожной платформы проходит электропоезд. Наблюдатель, стоящий на платформе, слышит звук сирены поезда. Когда поезд приближается? наблюдатель слышит звук частотой 1100 Гц, когда поезд удаляется, кажущаяся частота звука 900 Гц. Найти скорость электровоза и частоту звука, издаваемого сиреной. Скорость звука в воздухе принять равной 340 м/с.
Решение Так как наблюдатель, стоящий на платформе, неподвижен, скорость приемника .

Запишем формулу для эффекта Доплера для обоих случаев.

а) когда поезд приближается:

б) когда поезд удаляется:

Выразим частоты звукового сигнала сирены и приравняем правые части полученных равенств: