Движение под действием силы тяжести. Конспект урока "движение тела под действием силы тяжести"

Движение под действием силы тяжести

Будем скатывать небольшую тележку с двух очень гладких наклонных плоскостей. Одну доску возьмем значительно короче другой и положим их на одну и ту же опору. Тогда одна наклонная плоскость будет крутой, а другая – пологой. Верхушки обеих досок – места старта тележки – будут на одинаковой высоте. Как вы полагаете, какая из тележек приобретет большую скорость, скатившись с наклонной доски? Многие решат, что та, которая съехала по более крутой плоскости.

Опыт покажет, что они ошиблись, – тележки приобретут одинаковую скорость. Пока тело движется по наклонной плоскости, оно находится под действием постоянной силы, а именно (рис. 33) под действием составляющей силы тяжести, направленной вдоль движения. Скорость v , которую приобретает тело, движущееся с ускорением a на пути S , равна, как мы знаем, v = sqrt(2aS ).

Откуда же видно, что эта величина не зависит от угла наклона плоскости? На рис. 33 мы видим два треугольника. Один из них изображает наклонную плоскость. Малый катет этого треугольника, обозначенный буквой h , – высота, с которой начинается движение; гипотенуза S есть путь, проходимый телом в ускоренном движении. Маленький треугольник сил с катетом ma и гипотенузой mg подобен большому, так как они прямоугольные и углы их равны как углы со взаимно перпендикулярными сторонами. Значит, отношение катетов должно равняться отношению гипотенуз, т.е.

Мы доказали, что произведение aS , а значит, и конечная скорость тела, скатившегося с наклонной плоскости, не зависит от угла наклона, а зависит лишь от высоты, с которой началось движение вниз. Скорость v = sqrt(2gh ) для всех наклонных плоскостей при единственном условии, что движение началось с одной и той же высоты h . Эта скорость оказалась равной скорости свободного падения с высоты h .

Измерим скорость тела в двух местах наклонной плоскости – на высотах h 1 и h 2 . Скорость тела в момент прохождения через первую точку обозначим v 1 , а скорость в момент прохождения через вторую точку – v 2 .

Если начальная высота, с которой началось движение, есть h , то квадрат скорости тела в первой точке будет v 1 2 = 2g (h h 1), а во второй точке v 2 2 = 2g (h ? h 2). Вычитая первое из второго, мы найдем, как связаны скорости тела в начале и в конце какого угодно кусочка наклонной плоскости с высотами этих точек:

v 2 2 ? v 1 2 = 2g (h 1 ? h 2).

Разность квадратов скоростей зависит лишь от разности высот. Заметим, что полученное уравнение одинаково пригодно для движений вверх и для движений вниз. Если первая высота меньше второй (подъем), то вторая скорость меньше первой.

Эту формулу можно переписать следующим образом:

Мы хотим подчеркнуть такой записью, что сумма половины квадрата скорости и высоты, умноженной на g , одинакова для любой точки наклонной плоскости. Можно сказать, что величина v 2 /2 + gh сохраняется во время движения.

Самое замечательное в найденном нами законе то, что он справедлив для движения без трения по любой горке и вообще по любому пути, состоящему из чередующихся подъемов и спусков различной крутизны. Это следует из того, что любой путь можно разбить на прямолинейные участки. Чем меньше брать отрезки, тем ближе будет приближаться ломаная линия к кривой. Каждый прямой отрезок, на которые разбит криволинейный путь, можно считать частью наклонной плоскости и применить к нему найденное правило.

Значит, в любой точке траектории сумма v 2 /2 + gh одинакова. Поэтому изменение квадрата скорости не зависит от формы и длины пути, по которому двигалось тело, а определяется лишь разностью высот точек начала и конца движения.

Читателю может показаться, что наше заключение не совпадает с повседневным опытом: на длинном отлогом пути тело вовсе не набирает скорость и в конце концов остановится. Так оно и есть, но ведь мы в наших рассуждениях не учитывали силу трения. Написанная выше формула верна для движения в поле тяжести Земли под действием одной лишь силы тяжести. Если силы трения малы, то выведенный закон будет выполняться совсем неплохо. На гладких ледяных горах санки с металлическими полозьями скользят с очень небольшим трением. Можно устроить длинные ледяные дорожки, начинающиеся с крутого спуска, на котором набирается большая скорость, а затем причудливо извивающиеся вверх и вниз. Конец путешествия по таким горкам (когда санки остановятся сами собой) при полном отсутствии трения произошел бы на высоте, равной начальной. А так как трения избежать нельзя, то точка, с которой началось движение санок, будет выше того места, где они остановятся.

Закон, по которому конечная скорость не зависит от формы пути при движении под действием силы тяжести, может быть применен для решения различных интересных задач.

В цирке много раз показывали как захватывающий аттракцион вертикальную «мертвую петлю». Велосипедист или тележка с акробатом устанавливаются на высоком помосте. Ускоряющийся спуск, затем подъем. Вот акробат уже в положении вниз головой, опять спуск – и мертвая петля описана. Рассмотрим задачу, которую приходится решать инженеру цирка. На какой высоте надо сделать помост, с которого начинается спуск, чтобы акробат не свалился в наивысшей точке мертвой петли? Условие нам известно: центробежная сила, прижимающая акробата к помосту, должна уравновесить силу тяжести, направленную в противоположную сторону. Значит, mg ? mv 2 /r где r – радиус мертвой петли, а v – скорость движения в верхней точке петли. Для того чтобы эта скорость была достигнута, надо начать движение с места, расположенного выше верхней точки петли на некоторую величину h . Начальная скорость акробата равна нулю, поэтому в верхней точке петли v 2 = 2gh . Но, с другой стороны, v 2 ? gr . Значит, между высотой h и радиусом петли имеется соотношение h ? r /2. Помост должен возвышаться над верхней точкой петли на величину, не меньшую половины радиуса петли. Учитывая неизбежную силу трения, приходится, конечно, брать некоторый запас высоты.

А вот еще одна задача. Возьмем круглый купол, очень гладкий, чтобы трение было минимальным. На вершину положим небольшой предмет и едва заметным толчком дадим ему возможность скользить по куполу. Рано или поздно скользящее тело отделится от купола и начнет падать. Мы можем легко решить вопрос, когда именно тело оторвется от поверхности купола: в момент отрыва центробежная сила должна равняться составляющей веса на направление радиуса (в этот момент тело перестанет давить на купол, а это и есть момент отрыва). На рис. 34 видны два подобных треугольника; изображен момент отрыва. Составим отношение катета к гипотенузе для треугольника сил и приравняем к соответствующему отношению сторон другого треугольника:

Здесь r – радиус сферического купола, а h – разность высот от начала до конца скольжения. Теперь используем закон о независимости конечной скорости от формы пути. Так как начальная скорость тела предполагается равной нулю, то v 2 = 2gh . Подставив это значение в написанную выше пропорцию и произведя арифметические преобразования, найдем: h = r /3. Значит, тело оторвется от купола на высоте, находящейся на 1/3 радиуса ниже вершины купола.

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

Четыре силы Словно мало было хлопот с новыми частицами, в те же 1930 - е годы были открыты еще и новые поля. К уже известному тяготению и электромагнетизму добавились силы ядерного взаимодействия, удерживающие протоны и нейтроны в ядре, и силы слабого взаимодействия,

Из книги Межпланетные путешествия [Полёты в мировое пространство и достижение небесных тел] автора Перельман Яков Исидорович

Невидимые оковы тяжести В старину, говорят, к ноге каторжника приковывали цепь с тяжелой гирей, чтобы отяжелить его шаг и сделать неспособным к побегу. Все мы, жители Земли, незримо отягчены подобною же гирею, мешающей нам вырваться из земного плена в окружающий простор

Из книги Вселенная. Руководство по эксплуатации [Как выжить среди черных дыр, временных парадоксов и квантовой неопределенности] автора Голдберг Дэйв

IV Можно ли укрыться от силы тяжести? Мы слишком привыкли к тому, что все вещи, все физические тела прикованы своим весом к земле; нам трудно поэтому даже мысленно отрешиться от силы тяжести и представить себе картину того, что было бы, если бы мы обладали способностью

Из книги Физика на каждом шагу автора Перельман Яков Исидорович

Заслон от силы тяжести Остроумный английский писатель Герберт Уэльс подробно развил эту мысль в научно-фантастическом романе „Первые люди на Луне".Ученый герой романа, изобретатель Кевор, открыл способ изготовления именно такого вещества, непроницаемого для

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

VI Вопреки тяжести. - На волнах света Из трех мыслимых способов борьбы с тяготением мы рассмотрели и отвергли два: способ защиты от тяготения и способ ослабления земной тяжести. Мы убедились, что ни тот, ни другой не дают человечеству надежды успешно разрешить заманчивую

Из книги Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей автора Дмитриев Александр Станиславович

К главе X 11. Жизнь при отсутствии тяжести По поводу настоящей книжки в печати и в письмах к автору высказывалось опасение, что последствия для живого организма от помещения его в среду без тяжести должны быть роковыми. Опасения эти, однако, ни на чем, в сущности, не

Из книги Быть Хокингом автора Хокинг Джейн

IV. Откуда же берутся эти силы? Наш разговор мы начали с того, что фундаментальные силы похожи на игры, однако в нашей игре не хватает одного компонента, без которого ничего не получится: это мяч. Задумайтесь об этом. Без мяча теннис - не более чем конвульсивное размахивание

Из книги автора

Вопреки тяжести Помощью зеркала вы можете удивить товарищей, показав им маленькое чудо: шары, вкатывающиеся вверх по крутому уклону, словно бы тяжесть для них не существовала. Само собою разумеется, что это будет обман зрения. Рис. 96. Кажется, будто шар катится вверхВам

Из книги автора

Момент силы Попробуйте рукой привести во вращение тяжелое маховое колесо. Тяните за спицу. Вам будет тяжело, если вы ухватитесь рукой слишком близко к оси. Переместите руку к ободу, и дело пойдет легче.Что же изменилось? Ведь сила в обоих случаях одна и та же. Изменилась

Из книги автора

Центр тяжести Все частички тела обладают весом. Поэтому твердое тело находится под действием бесчисленного количества сил тяжести. При этом все эти силы параллельны. Если так, то их можно сложить по правилам, которые мы только что рассматривали, и заменить одной силой.

Из книги автора

Поверхностные силы Можно ли выйти сухим из воды? Конечно, для этого нужно смазаться несмачивающимся водой веществом.Натрите палец парафином и опустите в воду. Когда вы его вынете, окажется, что воды на пальце нет, если не считать двух-трех капелек. Небольшое движение – и

Из книги автора

Силы трения Мы не в первый раз говорим о трении. И правда, как можно было, рассказывая о движении, обойтись без упоминания о трении? Почти любое движение окружающих нас тел сопровождается трением. Останавливается автомобиль, у которого водитель выключил мотор,

Из книги автора

54 Как найти центр тяжести Для опыта нам потребуется: обыкновенная палка. Мы уже знаем правило: чтобы стабилизировать, выровнять полет предмета, надо, чтобы его центр аэродинамического давления находился сзади центра тяжести. Но как быстро найти центр тяжести у палки,

Из книги автора

83 Еще раз про силы сцепления Для опыта нам потребуются: два кусочка стекла или два маленьких зеркальца. Мы помним, как иголка плавала на воде в одном из наших опытов. Помогали ей плавать силы поверхностного натяжения. Но вот вопрос: можно ли почувствовать силу

Из книги автора

99 Тело с перемещаемым центром тяжести Для опыта нам потребуются: коробочка от «киндер-сюрприза», металлический или стеклянный шарик. Для этого опыта понадобится любой достаточно тяжелый шарик (можно металлический, можно стеклянный). Такие шарики продают в магазинах для

Из книги автора

16. Без юридической силы Хотя меня в некоторой степени утешала новообретенная независимость духа, семейный катаклизм на самом деле сломил меня. Во тьме поражения я чувствовала, что опозорена и что от меня все отреклись, что я неуклюже пытаюсь вновь найти свою личность, как

Если начальная скорость тела равна нулю или параллельна силе тяжести, тело совершает прямолинейное свободное падение.

Основной задачей механики, является определение положения тела в любой момент времени. Решением задачи для частиц, движущихся в поле тяжести Земли, являются уравнения, в проекциях на оси OX и OY:

Этих формул достаточно, чтобы решить любую задачу о движении тела под действием силы тяжести.

Тело брошено вертикально вверх

В этом случае v 0x = 0, g x = 0, v 0y = v 0 , g y = -g.

Движение тела в этом случае будет происходить по прямой линии, причем сначала вертикально вверх до точки, в которой скорость обратится в нуль, а затем вертикально вниз.

Рис.4.Движение тела, брошенного вверх.

При движении тела с ускорением в поле тяготения изменяется вес тела.

Весом тела называется сила, с которой тело действует на неподвижную относительно него опору или подвес.

Вес тела возникает вследствие его деформации, вызванной действием силы со стороны опоры (силы реакции) или подвеса (силы натяжения) Вес существенно отличается от силы тяжести:

Это силы разной природы: сила тяжести -- гравитационная сила, вес -- упругая сила (электромагнитной природы).

Они приложены к разным телам: сила тяжести -- к телу, вес -- к опоре.

Рис.5.

Направление веса тела не обязательно совпадает с отвесным направлением.

Сила тяжести тела в данном месте Земли постоянная и не зависит от характера движения тела; вес зависит от ускорения, с которым движется тело.

Рассмотрим, как изменяется вес тела, движущегося в вертикальном направлении вместе с опорой. На тело действуют сила тяжести и сила реакции опоры.


Рис.5.

Основное уравнение динамики: . В проекции на ось Оу:

По третьему закону Ньютона модули сил N p1 = P 1 . Следовательно, вес тела P 1 = mg

, (тело испытывает перегрузки).

Следовательно, вес тела

Если a = g, то P = 0

Таким образом, вес тела при вертикальном движении может быть в общем случае выражен формулой

Мысленно разобьем неподвижное тело на горизонтальные слои. На каждый из этих слоев действует сила тяжести и вес вышележащей части тела. Этот вес будет становиться тем больше, чем ниже лежит слой. Поэтому под влиянием веса вышележащих частей тела каждый слой деформируется и в нем возникают упругие напряжения, которые возрастают по мере перехода от верхней части тела к нижней.

Рис.6.Тело, разбитое на горизонтальные слои.

Если тело свободно падает (a = g), то его вес равен нулю, в теле исчезают всякие деформации и, несмотря на сохраняющееся действие силы тяжести, верхние слои не будут давить на нижние.

Состояние, при котором в свободно движущемся теле исчезают деформации и взаимные давления, называется невесомостью. Причина невесомости заключается в том, что сила всемирного тяготения сообщает телу и его опоре одинаковое ускорение.

Тема. Сила притяжения. Движение тела под действием силы тяжести

Цель урока: дать учащимся представление о понятии силы тяготения; ознакомить с природой этой силы. Познакомить их с движением тела под действием силы тяжести

Тип урока: изучение нового материала

План урока

Контроль знаний

1. Закон всемирного тяготения.

2. Физический смысл гравитационной постоянной.

3. Границы применимости закона всемирного тяготения

Демонстрации

1. Падение тел на землю.

2. Центр тяжести тел.

3. Движение тела, брошенного вертикально вверх и вниз.

Изучение нового материала

1. Сила тяжести и центр тяжести.

2. Ускорение свободного падения.

3. Движение тела по вертикали.

4. Движение тела, брошенного горизонтально.

5. Движение тела, брошенного под углом к горизонту

Закрепление изученного материала

1. Тренируемся решать задачи.

2. Контрольные вопросы

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

Камень, падающий со скалы, и мяч, брошенный вертикально вверх, двигаются по прямой. Разогнавшись на берегу, человек прыгает в воду, при этом траектория ее тела - половинка параболы. Снаряд, выпущенный из пушки под углом к горизонту, также опишет в пространстве параболу. Траектория спутника Земли очень близка к кругу. Движение всех этих тел происходит под действием силы тяжести. Почему же эти движения настолько отличаются друг от друга? Очевидно, причина - разные начальные условия.

Если на тело действует только сила тяжести, то, согласно второму закону Ньютона, т = m , или m = m . Это означает, что под действием силы тяжести тело движется рівноприскорено с ускорением g (а = g ). При этом уравнение зависимости скорости от времени имеет вид: = 0 + t .

Это уравнение показывает, что скорость движения тела находится в плоскости, образованной векторами 0 и , поэтому для описания таких движений достаточно двумерной системы координат.

Рассмотрим движение тела по вертикали: тело бросили вертикально вверх (рис. а), и тело падает вертикально вниз (рис. б).

В этом случае траекторией движения тела будет отрезок прямой, поскольку движения вдоль оси Ох не происходит (0х = 0, х = х0).

Поскольку во время движения вверх то уравнения движения будут иметь следующий вид:

Аналогично, во время движения тела, брошенного вниз, уравнения будут иметь вид:

1. На основании какого закона можно утверждать, что сила тяготения пропорциональна массе тела?

2. Как зависит ускорение свободного падения от высоты над поверхностью Земли?

3. С каким ускорением движется тело, брошенное горизонтально?

4. Зависит время полета тела, брошенного горизонтально, от значения величины начальной скорости?

5. Можно ли движение тела, брошенного под углом к горизонту, считать равноускоренным?

6. Что общего в движении тел, брошенных вертикально вверх и под углом к горизонту?

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

1. Вычислите массу Земли, если известно, что ее радиус равен 6400 км.

2. Вычислите ускорение свободного падения на высоте, равной радиусу Земли.

3. С какой скоростью надо бросить тело горизонтально с некоторой высоты, чтобы дальность полета была равна высоте, с которой брошено тело?

4. Камень, брошенный горизонтально с крыши дома со скоростью 15 м/с, упал на землю под углом 60° к горизонту. Какой есть высота дома?

5. Камень, брошенный под углом 30° к горизонту, дважды побывал на одной высоте: за 3 с и 5 с после начала движения. Вычислите начальную скорость бросания и максимальную высоту подъема.

1. Почему с увеличением высоты над поверхностью Земли ускорение свободного падения уменьшается?

2. Может ли тело под действием силы тяжести двигаться по кругу? Обоснуйте свой ответ.

3. Что общего в движении тел, брошенных вертикально вверх и под углом к горизонту?

4. Как изменится время и дальность полета тела, брошенного горизонтально с некоторой высоты, если скорость бросания увеличить вдвое?

5. Тело, брошенное под углом 30° к горизонту, упало в определенную точку на поверхности земли. Под каким углом надо бросить второе тело с той же начальной скоростью, чтобы оно упало в ту же точку, что и первое?

Что мы узнали на уроке

Силу, с которой Земля притягивает любое тело, называют силой тяжести.

Сила тяжести, действующая на тело, пропорциональна массе этого тела.

Точку приложения силы тяжести, действующей на тело, за любого его положения в пространстве называют центром тяжести.

Ускорение свободного падения равна:

Если на тело действует только сила тяжести, то уравнение зависимости скорости тела от времени имеет вид:

Тело, брошенное горизонтально, движется по параболе, вершина которой находится в начальной точке движения.

Время полета и дальность полета тела, брошенного горизонтально, вычисляются по формулам:

Во время движения тела, брошенного под углом к горизонту:

а) высота подъема тела -

б) дальность полета тела -

в) максимальная дальность полета достигается, если угол = 45°.

р1) - 7.8; 7.21; 7.28, 8.6; 8.7;

р2) - 7.54; 7.55; 7.56. 8.13, 8.14;

р3) - 7.75; 7.81; 8.34; 8.39, 8.40.


Действием сил всемирного тяготения в природе объясняются многие явления: движение планет в Солнечной системе, искусственных спутников Земли, траектории полета баллистических ракет, движение тел вблизи поверхности Земли – все они находят объяснение на основе закона всемирного тяготения и законов динамики.

Закон всемирного тяготения объясняет механическое устройство Солнечной системы, и законы Кеплера, описывающие траектории движения планет, могут быть выведены из него. Для Кеплера его законы носили чисто описательный характер - ученый просто обобщил свои наблюдения в математической форме, не подведя под формулы никаких теоретических оснований. В великой же системе мироустройства по Ньютону законы Кеплера становятся прямым следствием универсальных законов механики и закона всемирного тяготения. То есть мы опять наблюдаем, как эмпирические заключения, полученные на одном уровне, превращаются в строго обоснованные логические выводы при переходе на следующую ступень углубления наших знаний о мире.

Ньютон первый высказал мысль о том, что гравитационные силы определяют не только движение планет Солнечной системы; они действуют между любыми телами Вселенной. Одним из проявлений силы всемирного тяготения является сила тяжести - так принято называть силу притяжения тел к Земле вблизи ее поверхности.

Если M – масса Земли, RЗ – ее радиус, m – масса данного тела, то сила тяжести равна

где g – ускорение свободного падения у поверхности Земли

Сила тяжести направлена к центру Земли. В отсутствие других сил тело свободно падает на Землю с ускорением свободного падения.

Среднее значение ускорения свободного падения для различных точек поверхности Земли равно 9,81 м/с2. Зная ускорение свободного падения и радиус Земли (RЗ = 6,38·106 м), можно вычислить массу Земли

Картину устройства солнечной системы, вытекающую из этих уравнений и объединяющую земную и небесную гравитацию, можно понять на простом примере. Предположим, мы стоим у края отвесной скалы, рядом пушка и горка пушечных ядер. Если просто сбросить ядро с края обрыва по вертикали, оно начнет падать вниз отвесно и равноускоренно. Его движение будет описываться законами Ньютона для равноускоренного движения тела с ускорением g. Если теперь выпустить ядро из пушки в направлении горизонта, оно полетит - и будет падать по дуге. И в этом случае его движение будет описываться законами Ньютона, только теперь они применяются к телу, движущемуся под воздействием силы тяжести и обладающему некой начальной скоростью в горизонтальной плоскости. Теперь, раз за разом заряжая в пушку всё более тяжелое ядро и стреляя, вы обнаружите, что, поскольку каждое следующее ядро вылетает из ствола с большей начальной скоростью, ядра падают всё дальше и дальше от подножия скалы.

Теперь представим, что мы забили в пушку столько пороха, что скорости ядра хватает, чтобы облететь вокруг земного шара. Если пренебречь сопротивлением воздуха, ядро, облетев вокруг Земли, вернется в исходную точку точно с той же скоростью, с какой оно изначально вылетело из пушки. Что будет дальше, понятно: ядро на этом не остановится и будет и продолжать наматывать круг за кругом вокруг планеты.

Иными словами, мы получим искусственный спутник, обращающийся вокруг Земли по орбите, подобно естественному спутнику - Луне.

Так поэтапно мы перешли от описания движения тела, падающего исключительно под воздействием «земной» гравитации (ньютоновского яблока), к описанию движения спутника (Луны) по орбите, не изменяя при этом природы гравитационного воздействия с «земной» на «небесную». Вот это-то прозрение и позволило Ньютону связать воедино считавшиеся до него различными по своей природе две силы гравитационного притяжения.

При удалении от поверхности Земли сила земного тяготения и ускорение свободного падения изменяются обратно пропорционально квадрату расстояния r до центра Земли. Примером системы двух взаимодействующих тел может служить система Земля–Луна. Луна находится от Земли на расстоянии rЛ = 3,84·106 м. Это расстояние приблизительно в 60 раз превышает радиус Земли RЗ. Следовательно, ускорение свободного падения aЛ, обусловленное земным притяжением, на орбите Луны составляет

С таким ускорением, направленным к центру Земли, Луна движется по орбите. Следовательно, это ускорение является центростремительным ускорением. Его можно рассчитать по кинематической формуле для центростремительного ускорения

где T = 27,3 сут – период обращения Луны вокруг Земли.

Совпадение результатов расчетов, выполненных разными способами, подтверждает предположение Ньютона о единой природе силы, удерживающей Луну на орбите, и силы тяжести.

Собственное гравитационное поле Луны определяет ускорение свободного падения gЛ на ее поверхности. Масса Луны в 81 раз меньше массы Земли, а ее радиус приблизительно в 3,7 раза меньше радиуса Земли.

Поэтому ускорение gЛ определится выражением

В условиях такой слабой гравитации оказались космонавты, высадившиеся на Луне. Человек в таких условиях может совершать гигантские прыжки. Например, если человек в земных условиях подпрыгивает на высоту 1 м, то на Луне он мог бы подпрыгнуть на высоту более 6 м.

Рассмотрим вопрос об искусственных спутниках Земли. Искусственные спутники Земли движутся за пределами земной атмосферы, и на них действуют только силы тяготения со стороны Земли.

В зависимости от начальной скорости траектория космического тела может быть различной. Рассмотрим случай движения искусственного спутника по круговой околоземной орбите. Такие спутники летают на высотах порядка 200–300 км, и можно приближенно принять расстояние до центра Земли равным ее радиусу RЗ. Тогда центростремительное ускорение спутника, сообщаемое ему силами тяготения, приблизительно равно ускорению свободного падения g. Обозначим скорость спутника на околоземной орбите через υ1 – такая скорость называют первой космической скоростью. Используя кинематическую формулу для центростремительного ускорения, получим

Двигаясь с такой скоростью, спутник облетал бы Землю за время

На самом деле период обращения спутника по круговой орбите вблизи поверхности Земли несколько превышает указанное значение из-за отличия между радиусом реальной орбиты и радиусом Земли. Движение спутника можно рассматривать как свободное падение, подобное движению снарядов или баллистических ракет. Различие заключается только в том, что скорость спутника настолько велика, что радиус кривизны его траектории равен радиусу Земли.

Для спутников, движущихся по круговым траекториям на значительном удалении от Земли, земное притяжение ослабевает обратно пропорционально квадрату радиуса r траектории. Таким образом, на высоких орбитах скорость движения спутников меньше, чем на околоземной орбите.

Период обращения спутника растет с увеличением радиуса орбиты. Нетрудно подсчитать, что при радиусе r орбиты, равном приблизительно 6,6 RЗ, период обращения спутника окажется равным 24 часам. Спутник с таким периодом обращения, запущенный в плоскости экватора, будет неподвижно висеть над некоторой точкой земной поверхности. Такие спутники используются в системах космической радиосвязи. Орбита с радиусом r = 6,6 RЗ называется геостационарной.

Второй космической скоростью называется минимальная скорость, которую нужно сообщить космическому кораблю у поверхности Земли, чтобы он, преодолев земное притяжение, превратился в искусственный спутник Солнца (искусственная планета). При этом корабль будет удаляться от Земли по параболической траектории.

Рисунок 5 иллюстрирует космические скорости. Если скорость космического корабля равна υ1 = 7.9·103 м/с и направлена параллельно поверхности Земли, то корабль будет двигаться по круговой орбите на небольшой высоте над Землей. При начальных скоростях, превышающих υ1, но меньших υ2 = 11,2·103 м/с, орбита корабля будет эллиптической. При начальной скорости υ2 корабль будет двигаться по параболе, а при еще большей начальной скорости – по гиперболе.

Рисунок 5 - Космические скорости

Указаны скорости вблизи поверхности Земли: 1) υ = υ1 – круговая траектория;

2) υ1 < υ < υ2 – эллиптическая траектория; 3) υ = 11,1·103 м/с – сильно вытянутый эллипс;

4) υ = υ2 – параболическая траектория; 5) υ > υ2 – гиперболическая траектория;

6) траектория Луны

Таким образом, мы выяснили, что все движения в Солнечной системе подчиняются закону всемирного тяготения Ньютона.

Исходя из малой массы планет и тем более прочих тел Солнечной системы, можно приближенно считать, что движения в околосолнечном пространстве подчиняются законам Кеплера.

Все тела движутся вокруг Солнца по эллиптическим орбитам, в одном из фокусов которых находится Солнце. Чем ближе к Солнцу небесное тело, тем быстрее его скорость движения по орбите (планета Плутон, самая далекая из известных, движется в 6 раз медленнее Земли).

Тела могут двигаться и по разомкнутым орбитам: параболе или гиперболе. Это случается в том случае, если скорость тела равна или превышает значение второй космической скорости для Солнца на данном удалении от центрального светила. Если речь идет о спутнике планеты, то и космическую скорость надо рассчитывать относительно массы планеты и расстояния до ее центра.

Движение тел под действием силы тяжести

Рассмотрим вопрос о движении тел под действием силы тяжести. Если модуль перемещения тела много меньше расстояния до центра Земли, то можно считать силу всемирного тяготения во время движения постоянной, а движение тела равноускоренным. Самый простой случай движения тел под действием силы тяжести -- свободное падение с начальной скоростью, равной нулю. В этом случае тело движется прямолинейно с ускорением свободного падения по направлению к центру Земли. Если начальная скорость тела отлична от нуля и вектор начальной скорости направлен не по вертикали, то тело под действием силы тяжести движется с ускорением свободного падения по криволинейной траектории. Форму такой траектории наглядно иллюстрирует струя воды, вытекающая под некоторым углом к горизонту (рис. 31).

При бросании тела с некоторой высоты параллельно земной поверхности дальность полета будет тем большей, чем больше начальная скорость.

При больших значениях начальной скорости необходимо учитывать шарообразность Земли и изменение направления вектора силы тяжести в разных точках траектории.

Первая космическая скорость. При некотором значении начальной скорости тело, брошенное по касательной к поверхности Земли, под действием силы тяжести при отсутствии атмосферы может двигаться вокруг Земли по окружности, не падая на Землю и не удаляясь от нее.

Скорость, с которой происходит движение тела по круговой орбите под действием силы всемирного тяготения, называется первой космической скоростью.

Определим первую космическую скорость для Земли. Если тело под действием силы тяжести движется вокруг Земли равномерно по окружности радиусом, то ускорение свободного падения является его центростремительным ускорением:

Отсюда первая космическая скорость равна

Подставив в выражение (11.2) значение радиуса Земли и ускорения свободного падения у ее поверхности, получим, что первая космическая скорость для Земли. Эта скорость примерно в 8 раз больше скорости пули.

Первая космическая скорость для любого небесного тела также определяется выражением (11.2). Ускорение свободного падения на расстоянии от центра небесного тела можно найти, воспользовавшись вторым законом Ньютона и законом всемирного тяготения:

Из выражений (11.2) и (11.3) получаем, что первая космическая скорость на расстоянии R от центра небесного тела массой M равна

Для запуска на околоземную орбиту искусственный спутник Земли или космический корабль необходимо сначала вывести за пределы атмосферы. Поэтому космические корабли стартуют вертикально. На высоте 200--300 км от поверхности Земли атмосфера очень разрежена и почти не влияет на движение космических кораблей. На такой высоте ракета делает поворот и сообщает аппарату, запускаемому на орбиту искусственного спутника, первую космическую скорость в направлении, перпендикулярном вертикали (рис. 32). тяготение космический орбита спутник

Если космическому аппарату сообщается скорость меньше первой космической, то он движется по траектории, которая пересекается с поверхностью земного шара, т. е. аппарат падает на Землю. При начальной скорости больше 7,9 км/с, но меньше 11,2 км/с космический аппарат движется вокруг Земли по криволинейной траектории -- эллипсу. Чем больше начальная скорость, тем все более вытянут эллипс.

При достижении скорости 11,2 км/с, называемой второй космической скоростью, эллипс превращается в параболу и космический корабль уходит от Земли в космическое пространство. При любых значениях скорости, превышающих 11,2 км/с, тело движется по кривой, называемой гиперболой, и покидает Землю (рис. 33).