Электроотрицательность степень окисления. Неорганическая химия

Атомы различных химических элементов могут присоединять разное число других атомов, т. е. проявлять разную валентность.

Валентность характеризует способность атомов соединяться с другими атомами. Теперь, изучив строение атома и виды химической связи, можно более подробно рассмотреть это понятие.

Валентностью называют число одинарных химических связей, которые атом образует с другими атомами в молекуле. Под числом химических связей понимают число общих электронных пар. Так как общие пары электронов образуются только в случае ковалентной связи, то валентность атомов можно определить только в ковалентных соединениях.

В структурной формуле молекулы химические связи изображают черточками. Число черточек, отходящих от символа данного элемента, и есть его валентность. Валентность всегда имеет положительное целое значение от I до VIII.

Как вы помните, высшая валентность химического элемента в оксиде обычно равна номеру группы, в которой он находится. Чтобы определить валентность неметалла в водородном соединении, нужно из 8 вычесть номер группы.

В простейших случаях валентность равна числу неспаренных электронов в атоме, поэтому, например, кислород (содержит два неспаренных электрона) имеет валентность II, а водород (содержит один неспаренный электрон) – I.

В ионных и металлических кристаллах нет общих пар электронов, поэтому для этих веществ понятие валентности как числа химических связей не имеет смысла. Для всех классов соединений, независимо от вида химических связей, применимо более универсальное понятие, которое называют степенью окисления.

Степень окисления

это условный заряд на атоме в молекуле или кристалле. Его вычисляют, полагая, что все ковалентные полярные связи имеют ионный характер.

В отличие от валентности, степень окисления может быть положительной, отрицательной или равной нулю. В простейших ионных соединениях степени окисления совпадают с зарядами ионов.

Например, в хлориде калия KCl (K + Cl - ) калий имеет степень окисления +1, а хлор -1, в оксиде кальция CaO (Ca +2 O -2 ) кальций проявляет степень окисления +2, а кислород -2. Это правило распространяется на все основные оксиды: в них степень окисления металла равна заряду иона металла (натрия +1, бария +2, алюминия +3), а степень окисления кислорода равна -2. Степень окисления обозначают арабской цифрой, которую ставят над символом элемента, подобно валентности:

Cu +2 Cl 2 -1 ; Fe +2 S -2

Степень окисления элемента в простом веществе принимают равной нулю:

Na 0 , O 2 0 , S 8 0 , Cu 0

Рассмотрим, как определяют степени окисления в ковалентных соединениях.

Хлороводород HCl вещество с полярной ковалентной связью. Общая электронная пара в молекуле HCl смещена к атому хлора, имеющему большую электроотрицательность. Мысленно трансформируем связь H-Cl в ионную (это действительно происходит в водном растворе), полностью сместив электронную пару к атому хлора. Он приобретет заряд -1, а водород +1. Следовательно, хлор в этом веществе имеет степень окисления -1, а водород +1:

Реальные заряды и степени окисления атомов в молекуле хлороводорода

Степень окисления и валентность – родственные понятия. Во многих ковалентных соединениях абсолютная величина степени окисления элементов равна их валентности. Существует, однако, несколько случаев, когда валентность отлична от степени окисления. Это характерно, например, для простых веществ, где степень окисления атомов равна нулю, а валентность – числу общих электронных пар:

O=O.

Валентность кислорода равна II, а степень окисления 0.

В молекуле пероксида водорода

H-O-O-H

кислород двухвалентен, а водород одновалентен. В то же время степени окисления обоих элементов по абсолютной величине равны 1:

H 2 +1 O 2 -1

Один и тот же элемент в разных соединениях может иметь как положительные, так и отрицательные степени окисления в зависимости от электроотрицательности связанных с ним атомов. Рассмотрим, например, два соединения углерода – метан CH 4 и фторид углерода(IV) CF 4 .

Углерод более электроотрицателен, чем водород, поэтому в метане электронная плотность связей С–Н смещена от водорода к углероду, и каждый из четырех атомов водорода имеет степень окисления +1, а атом углерода -4. Напротив, в молекуле CF4 электроны всех связей смещены от атома углерода к атомам фтора, степень окисления которых равна -1, следовательно, углерод находится в степени окисления +4. Запомните, что степень окисления самого электроотрицательного атома в соединении всегда отрицательна.


Модели молекул метана CH 4 и фторида углерода(IV) CF 4 . Полярность связей обозначена стрелками

Любая молекула электронейтральна, поэтому сумма степеней окисления всех атомов равна нулю. Используя это правило, по известной степени окисления одного элемента в соединении можно определить степень окисления другого, не прибегая к рассуждениям о смещении электронов.

В качестве примера возьмем оксид хлора(I) Cl 2 O. Исходим из электронейтральности частицы. Атом кислорода в оксидах имеет степень окисления –2, значит, оба атома хлора несут суммарный заряд +2. Отсюда следует, что на каждом из них заряд +1, т. е. хлор имеет степень окисления +1:

Cl 2 +1 O -2

Для того чтобы правильно расставить знаки степени окисления разных атомов, достаточно сравнить их электроотрицательности. Атом с большей электроотрицательностью будет иметь отрицательную степень окисления, а с меньшей – положительную. Согласно установленным правилам, символ наиболее электроотрицательного элемента записывают в формуле соединения на последнем месте:

I +1 Cl -1 , O +2 F 2 -1 , P +5 Cl 5 -1

Реальные заряды и степени окисления атомов в молекуле воды

При определении степеней окисления элементов в соединениях соблюдают следующие правила.

Степень окисления элемента в простом веществе равна нулю.

Фтор – самый электроотрицательный химический элемент, поэтому степень окисления фтора во всех веществах, кроме F2, равна -1.

Кислород – самый электроотрицательный элемент после фтора, поэтому степень окисления кислорода во всех соединениях, кроме фторидов, отрицательна: в большинстве случаев она равна -2, а в пероксиде водорода H 2 O 2 -1 .

Степень окисления водорода равна +1 в соединениях с неметаллами, -1 в соединениях с металлами (гидридах); нулю в простом веществе H 2 .

Степени окисления металлов в соединениях всегда положительны. Степень окисления металлов главных подгрупп, как правило, равна номеру группы. Металлы побочных подгрупп часто имеют несколько значений степени окисления.

Максимально возможная положительная степень окисления химического элемента равна номеру группы (исключение – Cu +2).

Минимальная степень окисления металлов равна нулю, а неметаллов – номеру группы минус восемь.

Сумма степеней окисления всех атомов в молекуле равна нулю.

Навигация

  • Решение комбинированных задач на основе количественных характеристик вещества
  • Решение задач. Закон постоянства состава веществ. Вычисления с использованием понятий «молярная масса» и «химическое количество» вещества
  • Решение расчетных задач на основе количественных характеристик вещества и стехиометрических законов
  • Решение расчетных задач на основе законов газового состояния вещества
  • Электронная конфигурация атомов. Строение электронных оболочек атомов первых трех периодов

ОПРЕДЕЛЕНИЕ

Способность атома к образованию химических связей называют валентностью . Количественной мерой валентности принято считать число разных атомов в молекуле, с которыми данный элемент образует связи.

Согласно обменному механизму метода валентных связей, валентность химических элементов определяется числом содержащихся в атоме неспаренных электронов. Для s- и p-элементов - это электроны внешнего уровня, для d-элементов - внешнего и предвнешнего уровней.

Значения высшей и низшей валентностей химического элемента можно определить при помощи Периодической таблицы Д.И. Менделеева. Высшая валентность элемента совпадает с номером группы, в которой он расположен, а низшая представляет собой разность между числом 8 и номером группы. Например, бром расположен в VIIA группе, значит его высшая валентность равна VII, а низшая - I.

Спаренные (расположенные по два на атомных орбиталях) электроны при возбуждении могут разъединяться при наличии свободных ячеек того же уровня (разъединение электронов в какой-либо уровень невозможно). Рассмотрим на примере элементов Iи II групп. Например, валентность элементов главной подгруппы I группы равна единице, так ка на внешнем уровне атомы этих элементов имеют один электрон:

3 Li 1s 2 2s 1

Валентность элементов главной подгруппы II группы в основном (невозбужденном) состоянии равна нулю, так как на внешнем энергетическом уровне нет неспаренных электронов:

4 Be 1s 2 2 s 2

При возбуждении этих атомов спаренные s-электроны разъединяются в свободные ячейки p-подуровня этого же уровня и валентность становится равной двум (II):

Степень окисления

Для характеристики состояния элементов в соединениях введено понятие степени окисления.

ОПРЕДЕЛЕНИЕ

Число электронов, смещенных от атома данного элемента или к атому данного элемента в соединении называют степенью окисления .

Положительная степень окисления обозначает число электронов, которые смещаются от данного атома, а отрицательная - число электронов, которые смещаются к данному атому.

Из этого определения следует, что в соединениях с неполярными связями степень окисления элементов равна нулю. Примерами таких соединений могут служить молекулы, состоящие из одинаковых атомов (N 2 , H 2 , Cl 2).

Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.

В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na +1 I -1 , Mg +2 Cl -1 2 , Al +3 F -1 3 , Zr +4 Br -1 4 .

При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

Понятие степени окисления для большинства соединений имеет условных характер, так как не отражает реальный заряд атома. Однако это понятие весьма широко используется в химии.

Большинство элементов могут проявлять разную степень окисления в соединениях. При определении их степени окисления пользуются правилом, согласно которому сумма степеней окисления элементов в электронейтральныхмолекуах равна нулю, а в сложных ионах - заряду этих ионов. В качестве примера рассчитаем степень окисления азота в соединениях состава KNO 2 и HNO 3 . Степень окисления водорода и щелочных металлов в соединениях равна (+), а степень окисления кислорода - (-2). Соответственно степень окисления азота равна:

KNO 2 1+ x + 2 × (-2) = 0, x=+3.

HNO 3 1+x+ x + 3 × (-2) = 0, x=+5.

Примеры решения задач

ПРИМЕР 1

Задание Валентность IV характерна для: а)Ca; б) P; в) O; г)Si?
Решение Для того, чтобы дать верный ответ на поставленный вопрос будем рассматривать каждый из предложенных вариантов в отдельности.

а) Кальций - металл. Характеризуется единственно возможным значением валентности, совпадающим с номером группы в Периодической таблице Д.И. Менделеева, в которой он расположен, т.е. валентность кальция равна II. Ответ неверный.

б) Фосфор - неметалл. Относится к группе химических элементов с переменной валентностью: высшая определяется номером группы в Периодической таблице Д.И. Менделеева, в которой он расположен, т.е. равна V, а низшая -разностью между числом 8 и номером группы, т.е. равна III. Ответ неверный.

в) Кислород — неметалл. Характеризуется единственно возможным значением валентности равным II. Ответ неверный.

г) Кремний — неметалл. Характеризуется единственно возможным значением валентности, совпадающим с номером группы в Периодической таблице Д.И. Менделеева, в которой он расположен, т.е. валентность кремния равна IV. Это верный ответ.

Ответ Вариант (г)

ПРИМЕР 2

Задание Какую валентность имеет железо в соединении, которое образуется при его взаимодействии с соляной кислотой: а)I; б) II; в) III; г) VIII?
Решение Запишем уравнение взаимодействия железа с соляной кислотой:

Fe + HCl = FeCl 2 + H 2 .

В результате взаимодействия образуется хлорид железа и выделяется водород. Чтобы определить валентность железа по химической формуле, сначала считаем количество атомов хлора:

Вычисляем общее число единиц валентности хлора:

Определяем число атомов железа: оно равно 1. Тогда валентность железа в его хлориде будет равна:

Ответ Валентность железа в соединении, образовавшемся при его взаимодействии с соляной кислотой равна II.

I. Валентность (повторение)

Валентность – это способность атомов присоединять к себе определенное число других атомов.

Правила определения валентности
элементов в соединениях

1. Валентность водорода принимают за I (единицу). Тогда в соответствии с формулой воды Н 2 О к одному атому кислорода присоединено два атома водорода.

2. Кислород в своих соединениях всегда проявляет валентность II . Поэтому углерод в соединении СО 2 (углекислый газ) имеет валентность IV.

3. Высшая валентность равна номеру группы .

4. Низшая валентность равна разности между числом 8 (количество групп в таблице) и номером группы, в которой находится данный элемент, т.е. 8 - N группы .

5. У металлов, находящихся в «А» подгруппах, валентность равна номеру группы.

6. У неметаллов в основном проявляются две валентности: высшая и низшая.

Например: сера имеет высшую валентность VI и низшую (8 – 6), равную II; фосфор проявляет валентности V и III.

7. Валентность может быть постояннойили переменной.

Валентность элементов необходимо знать, чтобы составлять химические формулы соединений.

Запомните!

Особенности составления химических формул соединений.

1) Низшую валентность проявляет тот элемент, который находится в таблице Д.И.Менделеева правее и выше, а высшую валентность – элемент, расположенный левее и ниже.

Например, в соединении с кислородом сера проявляет высшую валентность VI, а кислород – низшую II. Таким образом, формула оксида серы будет SO 3.

В соединении кремния с углеродом первый проявляет высшую валентность IV, а второй – низшую IV. Значит, формула – SiC. Это карбид кремния, основа огнеупорных и абразивных материалов.

2) Атом металла стоит в формуле на первое место.

2) В формулах соединений атом неметалла, проявляющий низшую валентность, всегда стоит на втором месте, а название такого соединения оканчивается на «ид».

Например, СаО – оксид кальция, NaCl – хлорид натрия, PbS – сульфид свинца.

Теперь вы сами можете написать формулы любых соединений металлов с неметаллами.

3) Атом металла ставится в формуле на первое место.

II . Степень окисления (новый материал)

Степень окисления – это условный заряд, который получает атом в результате полной отдачи (принятия) электронов, исходя из условия, что все связи в соединении ионные.

Рассмотрим строение атомов фтора и натрия:

F +9)2)7

Na +11)2)8)1

- Что можно сказать о завершённости внешнего уровня атомов фтора и натрия?

- Какому атому легче принять, а какому легче отдать валентные электроны с целью завершения внешнего уровня?

Оба атома имеют незавершённый внешний уровень?

Атому натрия легче отдавать электроны, фтору – принять электроны до завершения внешнего уровня.

F 0 + 1ē → F -1 (нейтральный атом принимает один отрицательный электрон и приобретает степень окисления «-1», превращаясь в отрицательно заряженный ион - анион )

Na 0 – 1ē → Na +1 (нейтральный атом отдаёт один отрицательный электрон и приобретает степень окисления «+1», превращаясь в положительно заряженный ион - катион )


Как определить степень окисления атома в ПСХЭ Д.И. Менделеева?

Правила определения степени окисления атома в ПСХЭ Д.И. Менделеева:

1. Водород обычно проявляет степень окисления (СО) +1 (исключение, соединения с металлами (гидриды) – у водорода СО равна (-1) Me + n H n -1 )

2. Кислород обычно проявляет СО -2 (исключения: О +2 F 2 , H 2 O 2 -1 – перекись водорода)

3. Металлы проявляют только + n положительную СО

4. Фтор проявляет всегда СО равную -1 (F -1)

5. Для элементов главных подгрупп :

Высшая СО (+) = номеру группы N группы

Низшая СО (-) = N группы 8

Правила определения степени окисления атома в соединении:

I. Степень окисления свободных атомов и атомов в молекулах простых веществ равна нулю - Na 0 , P 4 0 , O 2 0

II. В сложном веществе алгебраическая сумма СО всех атомов с учётом их индексов равна нулю = 0 , а в сложном ионе его заряду.

Например, H +1 N +5 O 3 -2 : (+1)*1+(+5)*1+(-2)*3 = 0

2- : (+6)*1+(-2)*4 = -2

Задание 1 – определите степени окисления всех атомов в формуле серной кислоты H 2 SO 4 ?

1. Проставим известные степени окисления у водорода и кислорода, а СО серы примем за «х»

H +1 S x O 4 -2

(+1)*1+(х)*1+(-2)*4=0

Х=6 или (+6), следовательно, у серы C О +6, т.е. S +6

Задание 2 – определите степени окисления всех атомов в формуле фосфорной кислоты H 3 PO 4 ?

1. Проставим известные степени окисления у водорода и кислорода, а СО фосфора примем за «х»

H 3 +1 P x O 4 -2

2. Составим и решим уравнение, согласно правилу (II ):

(+1)*3+(х)*1+(-2)*4=0

Х=5 или (+5), следовательно, у фосфора C О +5, т.е. P +5

Задание 3 – определите степени окисления всех атомов в формуле иона аммония (NH 4) + ?

1. Проставим известную степень окисления у водорода, а СО азота примем за «х»

(N х H 4 +1) +

2. Составим и решим уравнение, согласно правилу (II ):

(х)*1+(+1)*4=+1

Х=-3, следовательно, у азота C О -3, т.е. N -3

Электроотрицательность (ЭО) — это способность атомов притягивать электроны при связывании с другими атомами.

Электроотрицательность зависит от расстояния между ядром и валентными электронами, и от того, насколько валентная оболочка близка к завершенной. Чем меньше радиус атома и чем больше валентных электронов, тем выше его ЭО.

Фтор является самым электроотрицательным элементом. Во-первых, он имеет на валентной оболочке 7 электронов (до октета недостает всего 1-го электрона) и, во-вторых, эта валентная оболочка (…2s 2 2p 5) расположена близко к ядру.

Менее всего электроотрицательны атомы щелочных и щелочноземельных металлов. Они имеют большие радиусы и их внешние электронные оболочки далеки от завершения. Им гораздо проще отдать свои валентные электроны другому атому (тогда предвнешняя оболочка станет завершенной), чем «добирать» электроны.

Электроотрицательность можно выразить количественно и выстроить элементы в ряд по ее возрастанию. Наиболее часто используют шкалу электроотрицательностей, предложенную американским химиком Л. Полингом.

Разность электроотрицательностей элементов в соединении (ΔX ) позволит судить о типе химической связи. Если величина Δ X = 0 – связь ковалентная неполярная .

При разности электроотрицательностей до 2,0 связь называют ковалентной полярной , например: связь H-F в молекуле фтороводорода HF: Δ X = (3,98 — 2,20) = 1,78

Связи с разностью электроотрицательностей больше 2,0 считаются ионными . Например: связь Na-Cl в соединении NaCl: Δ X = (3,16 — 0,93) = 2,23.

Степень окисления

Степень окисления (СО) — это условный заряд атома в молекуле, вычисленный в предположении, что молекула состоит из ионов и в целом электронейтральна.

При образовании ионной связи происходит переход электрона от менее электроотрицательного атома к более электроотрицательному, атомы теряет свою электронейтральность, превращается в ионы. возникают целочисленные заряды. При образовании ковалентной полярной связи электрон переходит не полностью, а частично, поэтому возникают частичные заряды (на рисунке ниже HCl). Представим, что электрон перешел полностью от атома водорода к хлору, и на водороде возник целый положительный заряд +1, а на хлоре -1. такие условные заряды и называют степенью окисления.


На этом рисунке изображены степени окисления, характерные для первых 20 элементов.
Обратите внимание. Высшая СО как правило равна номеру группы в таблице Менделеева. У металлов главных подгрупп – одна характерная СО, у неметаллов, как правило, наблюдается разброс СО. Поэтому неметаллы образуют большое количество соединений и обладают более «разнообразными» свойствами, по сравнению с металлами.

Примеры определения степени окисления

Определим степени окисления хлора в соединениях:

Те правила, которые мы рассмотрели не всегда позволяют рассчитать СО всех элементов, как например в данной молекуле аминопропана.


Здесь удобно пользоваться следующим приемом:

1)Изображаем структурную формулу молекулы, черточка – это связь, пара электронов.

2) Черточку превращаем в стрелку, направленную к более ЭО атому. Эта стрелка символизирует переход электрона к атому. Если связаны два одинаковых атома, оставляем черту как есть – нет перехода электронов.

3) Считаем сколько электронов «пришло» и «ушло».

Например, посчитаем заряд первого атома углерода. Три стрелки направленны к атому, значит, 3 электрона пришло, заряд -3.

Второй атом углерода: водород отдал ему электрон, а азот забрал один электрон. Заряд не поменялся, равен нулю. И т.д.

Валентность

Вале́нтность (от лат. valēns «имеющий силу») - способность атомов образовывать определённое число химических связей с атомами других элементов.

В основном, под валентностью понимается способность атомов к образованию определённого числа ковалентных связей . Если в атоме имеется n неспаренных электронов и m неподелённых электронных пар, то этот атом может образовывать n + m ковалентных связей с другими атомами, т.е. его валентность будет равна n + m . При оценке максимальной валентности следует исходить из электронной конфигурации «возбуждённого» состояния. Например, максимальная валентность атома бериллия, бора и азота равна 4 (например, в Be(OH) 4 2- , BF 4 — и NH 4 +), фосфора - 5 (PCl 5), серы - 6 (H 2 SO 4), хлора - 7 (Cl 2 O 7).

В ряде случаев, валентность может численно совпадать со степенью окисления, но ни коим образом они не тождественны друг другу. Например, в молекулах N 2 и CO реализуется тройная связь (то есть валентность каждого атома равна 3), однако степень окисления азота равна 0, углерода +2, кислорода −2.



В азотной кислоте степень окисления азота равна +5, тогда как азот не может иметь валентность выше 4, т.к имеет только 4 орбитали на внешнем уровне (а связь можно рассматривать как перекрывание орбиталей). И вообще, любой элемент второго периода по этой же причине не может иметь валентность большую 4.

Ещё несколько «коварных» вопросов, в которых часто делают ошибки.

образовывать определённое число с атомами других элементов.

    Валентность атомов фтора всегда равна I

    Li, Na, K, F, H , Rb , Cs - одновалентны;

    Be, Mg, Ca, Sr, Ba, Cd, Zn, O , Ra - обладают валентностью, равной II;

    Al, B Ga, In - трехвалентны.

    Максимальная валентность для атомов данного элемента совпадает с номером группы, в которой он находится в Периодической системе. Например, для Са это II , для серы - VI , для хлора - VII . Исключений из этого правила тоже немало:

Элемент VI группы, О, имеет валентность II (в H 3 O+ - III);
- одновалентен F(вместо
VII );
- двух- и трехвалентно обычно железо, элемент VIII группы;
- N может удержать возле себя только 4 атома, а не 5, как следует из номера группы;
- одно- и двухвалентна медь, расположенная в I группе.

    Минимальное значение валентности для элементов, у которых она переменная, определяется по формуле: № группы в ПС - 8. Так, низшая валентность серы 8 - 6 = 2, фтора и других галогенов - (8 - 7) = 1, азота и фосфора - (8 - 5)= 3 и так далее.

    В соединении сумма единиц валентности атомов одного элемента должна соответствовать суммарной валентности другого (или общее число валентностей одного химического элемента равно общему числу валентностей атомов другого химического элемента). Так, в молекуле воды Н-О-Н валентность Н равна I, таких атомов 2, значит, всего единиц валентности у водорода 2 (1×2=2). Такое же значение имеет и валентность кислорода.

    При соединении металлов с неметаллами последние проявляют низшую валентность

    В соединении, состоящем из атомов двух видов, элемент, расположенный на втором месте, обладает низшей валентностью. Так при соединении неметаллов между собой, низшую валентность проявляет тот элемент, который находится в ПСХЭ Менделеева правее и выше, а высшую соответственно левее и ниже.

    Валентность кислотного остатка совпадает с количеством атомов Н в формуле кислоты, валентность группы OH равна I.

    В соединении, образованном атомами трех элементов, тот атом, который находится в середине формулы, называют центральным. Непосредственно с ним связаны атомы О, а с кислородом образуют связи остальные атомы.

Правила определения степени окисления химических элементов.

Степень окисления - это условный заряд атомов химического элемента в соединении, вычисленный из предположения, что соединения состоят только из ионов. Степени окисления могут иметь положительное, отрицательное или нулевое значение, причём знак ставится перед числом:-1, -2, +3, в отличие от заряда иона, где знак ставится после числа.
Степени окисления металлов в соединениях всегда положительные, высшая степень окисления соответствует номеру группы периодической системы, где находится данный элемент (исключая некоторые элементы: золото Au
+3 (I группа), Cu +2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru).
Степени неметаллов могут быть как положительными так и отрицательными, в зависимости от того с каким атомом он соединён: если с атомом металла то всегда отрицательная, если с неметаллом-то может быть и +, и -. При определении степеней окисления необходимо использовать следующие правила:

    Степень окисления любого элемента в простом веществе равна 0.

    Сумма степеней окисления всех атомов, входящих в состав частицы (молекул, ионов и т. д.) равна заряду этой частицы.

    Сумма степеней окисления всех атомов в составе нейтральной молекулы равна 0.

    Если соединение образовано двумя элементами, то у элемента с большей электроотрицательностью степень окисления меньше нуля, а у элемента с меньшей электроотрицательностью – больше нуля.

    Максимальная положительная степень окисления любого элемента равна номеру группы в периодической системе элементов, а минимальная отрицательная равна N– 8, где N – номер группы.

    Степень окисления фтора в соединениях равна -1.

    Степень окисления щелочных металлов (лития, натрия, калия, рубидия, цезия) равна +1.

    Степень окисления металлов главной подгруппы II группы периодической системы (магния, кальция, стронция, бария) равна +2.

    Степень окисления алюминия равна +3.

    Степень окисления водорода в соединениях равна +1 (исключение – соединения с металлами NaH, CaH 2 , в этих соединениях степень окисления у водорода равна -1).

    Степень окисления кислорода равна –2 (исключения – перекиси H 2 O 2 , Na 2 O 2 , BaO 2 в них степень окисления кислорода равна -1, а в соединении с фтором - +2).

    В молекулах алгебраическая сумма степеней окисления элементов с учётом числа их атомов равна 0.

Пример. Определить степени окисления в соединении K 2 Cr 2 O 7 .
У двух химических элементов калия и кислорода степени окисления постоянны и равны соответственно +1 и -2. Число степеней окисления у кислорода равна (-2)·7=(-14), у калия (+1)·2=(+2). Число положительных степеней окисления равно числу отрицательных. Следовательно (-14)+(+2)=(-12). Значит у атома хрома число положительных степеней равно 12, но атомов 2, значит на один атом приходится (+12):2=(+6), записываем степени окисленя над элементами
К + 2 Cr +6 2 O -2 7