Физиология возбудимых тканей: законы раздражения и проведения возбуждения в нервах. Закон градиента, или аккомодации

062. СПОСОБНОСТЬ ЖИВОЙ ТКАНИ РЕАГИРОВАТЬ НА ЛЮБЫЕ ВИДЫ ВОЗДЕЙСТВИЙ ИЗМЕНЕНИЕМ МЕТАБОЛИЗМА НОСИТ НАЗВАНИЕ

1) проводимость

2) лабильность

3) возбудимость

4) раздражимость

063. СПОСОБНОСТЬ КЛЕТОК ОТВЕЧАТЬ НА ДЕЙСТВИЕ РАЗДРАЖИТЕЛЕЙ СПЕЦИФИЧЕСКОЙ РЕАКЦИЕЙ,ХАРАКТЕРИЗУЮЩЕЙСЯ ВРЕМЕННОЙ ДЕПОЛЯРИЗАЦИЕЙ МЕМБРАНЫ И ИЗМЕНЕНИЕМ МЕТАБОЛИЗМА, НОСИТ НАЗВАНИЕ

1) раздражимость

2) проводимость

3) лабильность

4) возбудимость

064. МИНИМАЛЬНАЯ СИЛА РАЗДРАЖИТЕЛЯ НЕОБХОДИМАЯ И ДОСТАТОЧНАЯ ДЛЯ ВОЗНИКНОВЕНИЯ ОТВЕТНОЙ РЕАКЦИИ НАЗЫВАЕТСЯ

1) подпороговой

2) сверхпороговой

3) субмаксимальной

4) пороговой

065. АМПЛИТУДА СОКРАЩЕНИЯ ОДИНОЧНОГО МЫШЕЧНОГО ВОЛОКНА ПРИ УВЕЛИЧЕНИИ СИЛЫ РАЗДРАЖЕНИЯ ВЫШЕ ПОРОГОВОЙ

1) уменьшается

2) сначала увеличивается, потом уменьшается

3) увеличивается до достижения максимума

4) остается без изменения

066. МИНИМАЛЬНАЯ СИЛА ПОСТОЯННОГО ТОКА, ВЫЗЫВАЮЩАЯ ВОЗБУЖДЕНИЕ ПРИ НЕОГРАНИЧЕННО ДОЛГОМ ДЕЙСТВИИ, НАЗЫВАЕТСЯ

1) хронаксией

2) полезным временем

3) электротоном

4) реобазой

067. ВРЕМЯ, В ТЕЧЕНИЕ КОТОРОГО ТОК, РАВНЫЙ УДВОЕННОЙ РЕОБАЗЕ, ВЫЗЫВАЕТ ВОЗБУЖДЕНИЕ, НАЗЫВАЕТСЯ

1) реобазой

2) временем реакции

3) полезным временем

4) хронаксией

068. ЗАКОНУ СИЛЫ ПОДЧИНЯЕТСЯ СТРУКТУРА

1) сердечная мышца

2) одиночное нервное волокно

3) одиночное мышечное волокно

4) целая скелетная мышца

069. ЗАКОНУ "ВСЕ ИЛИ НИЧЕГО" ПОДЧИНЯЕТСЯ СТРУКТУРА

1) целая скелетная мышца

2) гладкая мышца

3) нервный ствол

4) сердечная мышца

070. СПОСОБНОСТЬ ВСЕХ ЖИВЫХ КЛЕТОК ПОД ВЛИЯНИЕМ ОПРЕДЕЛЕННЫХ ФАКТОРОВ ВНЕШНЕЙ ИЛИ ВНУТРЕННЕЙ СРЕДЫ ПЕРЕХОДИТЬ ИЗ СОСТОЯНИЯ ФИЗИОЛОГИЧЕСКОГО ПОКОЯ В СОСТОЯНИЕ АКТИВНОСТИ НАЗЫВАЕТСЯ

1) возбудимостью

2) проводимостью

3) сократимостью

4) раздражимостью

071. ФАКТОРЫ ВНЕШНЕЙ ИЛИ ВНУТРЕННЕЙ СРЕДЫ ОРГАНИЗМА, ВЫЗЫВАЮЩИЕ ПЕРЕХОД ЖИВЫХ СТРУКТУР ИЗ СОСТОЯНИЯ ФИЗИОЛОГИЧЕСКОГО ПОКОЯ В СОСТОЯНИЕ АКТИВНОСТИ НАЗЫВАЮТСЯ

1) возбудители

2) активаторы

3) повреждающие

4) раздражители

072. ТКАНИ, СПОСОБНЫЕ В ОТВЕТ НА ДЕЙСТВИЕ РАЗДРАЖИТЕЛЯ ПЕРЕХОДИТЬ В СОСТОЯНИЕ ВОЗБУЖДЕНИЯ, НАЗЫВАЮТСЯ

1) раздражимыми

2) сократимыми

3) проводящими

4) возбудимыми

073. К ВОЗБУДИМЫМ ТКАНЯМ ОТНОСЯТСЯ

1) эпителиальная, мышечная

2) нервная, мышечная

3) костная, соединительная

4) нервная, мышечная, железистая

074. ПРОЦЕСС ВОЗДЕЙСТВИЯ РАЗДРАЖИТЕЛЯ НА ЖИВУЮ КЛЕТКУ НАЗЫВАЕТСЯ

1) возбуждением

2) торможением

3) повреждением

4) раздражением



075. РАЗДРАЖИТЕЛЬ, К ВОСПРИЯТИЮ КОТОРОГО В ПРОЦЕССЕ ЭВОЛЮЦИИ СПЕЦИАЛИЗИРОВАЛАСЬ ДАННАЯ КЛЕТКА, ВЫЗЫВАЮЩИЙ ВОЗБУЖДЕНИЕ ПРИ МИНИМАЛЬНЫХ ВЕЛИЧИНАХ РАЗДРАЖЕНИЯ, НАЗЫВАЕТСЯ

2) пороговым

3) субпороговым

4) адекватным

076. ПОРОГ РАЗДРАЖЕНИЯ ЯВЛЯЕТСЯ ПОКАЗАТЕЛЕМ СВОЙСТВА ТКАНИ

1) проводимости

2) сократимости

3) лабильности

4) возбудимости

077. ПРИСПОСОБЛЕНИЕ ВОЗБУДИМОЙ ТКАНИ К МЕДЛЕННО НАРАСТАЮЩЕМУ ПО СИЛЕ РАЗДРАЖИТЕЛЮ НАЗЫВАЕТСЯ

1) лабильностью

2) функциональной мобильностью

3) сенсибилизацией

4) стабилизацией

5) аккомодацией

078. ПРИ ЗАМЫКАНИИ ПОЛЮСОВ ЦЕПИ ПОСТОЯННОГО ТОКА ВОЗБУДИМОСТЬ НЕРВА ПОД КАТОДОМ

1) понижается

2) не изменяется

3) сначала понижается, затем повышается

4) повышается

079. ПРИ ЗАМЫКАНИИ ПОЛЮСОВ ЦЕПИ ПОСТОЯННОГО ТОКА ВОЗБУДИМОСТЬ НЕРВА ПОД АНОДОМ

1) повышается

2) не изменяется

3) сначала повышается, затем понижается

4) понижается

080. ИЗМЕНЕНИЕ ВОЗБУДИМОСТИ КЛЕТОК ИЛИ ТКАНЕЙ ПОД ДЕЙСТВИЕМ ПОСТОЯННОГО ЭЛЕКТРИЧЕСКОГО ТОКА НАЗЫВАЕТСЯ

1) катэлектротон

2) физический электротон

3) анэлектротон

4) физиологический электротон

081. ИЗМЕНЕНИЕ ВОЗБУДИМОСТИ КЛЕТОК ИЛИ ТКАНЕЙ В ОБЛАСТИ КАТОДА ПРИ ДЕЙСТВИИ ПОСТОЯННОГО ТОКА НАЗЫВАЕТСЯ

1) анэлектротон

2) физический электротон

3) физиологический электротон

4) катэлектротон

082. ИЗМЕНЕНИЯ ВОЗБУДИМОСТИ КЛЕТОК ИЛИ ТКАНЕЙ В ОБЛАСТИ АНОДА ПРИ ДЕЙСТВИИ ПОСТОЯННОГО ТОКА НАЗЫВАЕТСЯ

1) катэлектротон

2) физический электротон

3) физиологический электротон

4) анэлектротон

083. ПРИ ДЕЙСТВИИ ПОСТОЯННОГО ТОКА В ТЕЧЕНИЕ 1 МСЕК ВОЗБУДИМОСТЬ В ОБЛАСТИ КАТОДА

1) уменьшается

2) стабилизируется

3) увеличивается

084. ЗАКОН, СОГЛАСНО КОТОРОМУ ПРИ УВЕЛИЧЕНИИ СИЛЫ РАЗДРАЖИТЕЛЯ ОТВЕТНАЯ РЕАКЦИЯ ВОЗБУДИМОЙ СТРУКТУРЫ УВЕЛИЧИВАЕТСЯ ДО ДОСТИЖЕНИЯ МАКСИМУМА, НАЗЫВАЕТСЯ

1) "все или ничего"

2) силы-длительности

3) аккомодации

4) силы

085. ЗАКОН, СОГЛАСНО КОТОРОМУ ВОЗБУДИМАЯ СТРУКТУРА НА ПОРОГОВЫЕ И СВЕРХПОРОГОВЫЕ РАЗДРАЖЕНИЯ ОТВЕЧАЕТ МАКСИМАЛЬНО ВОЗМОЖНЫМ ОТВЕТОМ, НАЗЫВАЕТСЯ ЗАКОНОМ...

2) аккомодации

3) силы-длительности

4) "все или ничего"

086. ЗАКОН, СОГЛАСНО КОТОРОМУ ПОРОГОВАЯ ВЕЛИЧИНА РАЗДРАЖАЮЩЕГО ТОКА ОПРЕДЕЛЯЕТСЯ ВРЕМЕНЕМ ЕГО ДЕЙСТВИЯ НА ТКАНЬ, НАЗЫВАЕТСЯ ЗАКОНОМ....

2) "все или ничего"

3) аккомодации

4) силы - длительности

087. НАИМЕНЬШЕЕ ВРЕМЯ, В ТЕЧЕНИЕ КОТОРОГО ДОЛЖЕН ДЕЙСТВОВАТЬ СТИМУЛ ВЕЛИЧИНОЙ В ОДНУ РЕОБАЗУ, ЧТОБЫ ВЫЗВАТЬ ВОЗБУЖДЕНИЕ, НАЗЫВАЕТСЯ

1) хронаксией

2) аккомодацией

3) адаптацией

4) полезным временем

Установите соответствие.

СВОЙСТВА ВОЗБУДИМЫХ ТКАНЕЙ.... ХАРАКТЕРИЗУЮТСЯ

А.123 Возбудимость 1. Порогом раздражения.

Б.5 Проводимость 2. Хронаксией.

3. Реобазой.

4. Длительностью ПД.

5. Скоростью распространения ПД.

СВОЙСТВА ВОЗБУДИМЫХ ТКАНЕЙ... ХАРАКТЕРИЗУЮТСЯ

А.1 Сократимость 1. Величиной напряжения, развиваемой при возбуждении.

Б.3 Лабильность 2. Полезным временем.

3. Максимальным числом импульсов, проводимых в единицу времени без искажения

4. Реобазой.

5. Порогом раздражения.

ЗАКОНАМ РАЗДРАЖЕНИЯ ВОЗБУДИМЫХ ТКАНЕЙ....СООТВЕТСТВУЮТ ПОНЯТИЯ (ТЕРМИНЫ)

А.12 Силы - длительности 1. Реобаза.

Б.4 Аккомодации 2. Хронаксия.

В.3 Полярный закон 3. Электротон.

4. Градиент.

ЗАКОНАМ РАЗДРАЖЕНИЯ....ПОДЧИНЯЮТСЯ СТРУКТУРЫ

А.1 Силы 1. Скелетная мышца.

Б.234 "Все или ничего" 2. Сердечная мышца.

3. Нервное волокно.

4. Мышечное волокно.

К РАЗДРАЖИТЕЛЯМ....ОТНОСЯТСЯ

А.14 Физическим 1. Электрический ток.

Б.3 Химическим 2. Осмотическое давление.

В.2 Физико-химическим 3. Кислоты.

4. Звуковые колебания.

ПРИ ЗАМЫКАНИИ ЦЕПИ ПОСТОЯННОГО ТОКА ВОЗБУЖДЕНИЕ В ОБЛАСТИ ПРИЛОЖЕНИЯ....

А.2 Катода 1. Возникает.

Б.1 Анода 2. Не возникает.

В ОБЛАСТИ ПРИЛОЖЕНИЯ....ВОЗБУЖДЕНИЕ ВОЗНИКАЕТ ПРИ

А.2 Катода 1. Размыкании полюсов постоянного тока.

Б.1 Анода 2. Замыкании полюсов постоянного тока.

ПРИ ДЕЙСТВИИ ПОСТОЯННОГО ТОКА В ОБЛАСТИ ПРИЛОЖЕНИЯ.... ВОЗНИКАЕТ

А.2 Катода 1. Гиперполяризация.

Б.1 Анода 2. Деполяризация.

ПРИ ДЕЙСТВИИ ТОКА НАИМЕНЬШЕЕ ВРЕМЯ, В ТЕЧЕНИЕ ВЕЛИЧИНОЙ.....КОТОРОГО ДОЛЖЕН ДЕЙСТВОВАТЬ РАЗДРАЖАЮЩИЙ СТИМУЛ, НАЗЫВАЕТСЯ

А.1 В одну реобазу 1. Полезным временем.

Б.2 В две реобазы 2. Хронаксией.

097. Скелетная мышца сокращается по закону "Все или ничего", потому что она состоит из волокон разной возбудимости.

5) НВН

098. Сердечная мышца сокращается по закону "Все или ничего", потому что волокна сердечной мышцы связаны друг с другом нексусами.

5) ВВВ

099. Сердечная мышца сокращается по закону "Все или ничего", потому что сердечная мышца сокращается по типу одиночного сокращения.

5) ВВН

100. Сердечная мышца сокращается по закону "Все или ничего", потому сердечная мышца более возбудима, чем скелетная.

5) ВНН

101. Сердечная мышца сокращается по закону "Силы", потому что волокна сердечной мышцы связаны друг с другом нексусами.

5) НВН

102. Сердечная мышца сокращается по закону "Силы", потому что сердечная мышца состоит из изолированных друг от друга волокон разной возбудимости.

5) ННН

103. Сердечная мышца более возбудима по сравнению со скелетной, потому что волокна сердечной мышцы связаны друг с другом нексусами.

5) НВН

104. Амплитуда локального ответа не зависит от силы раздражения, потому что развитие локального ответа подчиняется закону "Все или ничего"

5) ННН

105. Медленное нарастание деполяризующего тока приводит к снижению возбудимости вплоть до ее исчезновения, потому что при этом происходит частичная инактивация натриевых и активация калиевых каналов.

5) ВВВ

НЕРВ. СИНАПС. МЫШЦА .

Выберите один правильный ответ.

106. ОТКРЫТЫЙ УЧАСТОК МЕМБРАНЫ ОСЕВОГО ЦИЛИНДРА ШИРИНОЙ ОКОЛО 1МКМ, В КОТОРОМ МИЕЛИНОВАЯ ОБОЛОЧКА ПРЕРЫВАЕТСЯ, НОСИТ НАЗВАНИЕ

1) терминаль аксона

2) аксонный холмик

3) пресинаптическая терминаль

4) перехват Ранвье

107. ИЗОЛИРУЮЩУЮ И ТРОФИЧЕСКУЮ ФУНКЦИЮ В МИЕЛИНИЗИРОВАННОМ НЕРВНОМ ВОЛОКНЕ ВЫПОЛНЯЕТ

1) нейрофибриллы

2) микротубулы

3) мембрана аксона

4) миелиновая оболочка

108. ВОЗБУЖДЕНИЕ В БЕЗМИЕЛИНОВЫХ НЕРВНЫХ ВОЛОКНАХ РАСПРОСТРАНЯЕТСЯ

1) скачкообразно, "перепрыгивая" через участки волокна, покрытые миелиновой оболочкой

3) непрерывно вдоль всей мембраны от возбужденного участкак расположенному рядом невозбужденному участку

109. ВОЗБУЖДЕНИЕ В МИЕЛИНИЗИРОВАННЫХ НЕРВНЫХ ВОЛОКНАХ РАСПРОСТРАНЯЕТСЯ

1) непрерывно вдоль всей мембраны от возбужденного участкак невозбужденному участку

2) электротонически и в обе стороны от места возникновения

4) скачкообразно, "перепрыгивая" через участки волокна,покрытые миелиновой оболочкой

110. УТОМЛЕНИЕ НАСТУПАЕТ В ПЕРВУЮ ОЧЕРЕДЬ

1) в нервных клетках

2) в скелетной мыщце

3) в нервном стволе

4) в синапсе

111. МЕДИАТОРОМ В НЕРВНО-МЫШЕЧНОМ СИНАПСЕ СКЕЛЕТНЫХ МЫШЦ ЧЕЛОВЕКА ЯВЛЯЕТСЯ

1) адреналин

2) норадреналин

4) ацетилхолин

112. СТРУКТУРНОЕ ОБРАЗОВАНИЕ, ОБЕСПЕЧИВАЮЩЕЕ ПЕРЕДАЧУ ВОЗБУЖДЕНИЯ С ОДНОЙ КЛЕТКИ НА ДРУГУЮ, НОСИТ НАЗВАНИЕ

2) аксонный холмик

3) перехват Ранвье

4) синапс

113. МЕМБРАНА НЕРВНОГО ВОЛОКНА, ОГРАНИЧИВАЮЩАЯ НЕРВНОЕ ОКОНЧАНИЕ, НАЗЫВАЕТСЯ

1) постсинаптической

2) субсинаптической

3) синаптической щелью

4) пресинаптической

114. НА ПОСТСИНАПТИЧЕСКОЙ МЕМБРАНЕ НЕРВНО-МЫШЕЧНОГО СИНАПСА ВОЗНИКАЕТ ПОТЕНЦИАЛ

1) тормозящий постсинаптический

2) электротонический

3) концевой пластинки

115. СОКРАЩЕНИЕ МЫШЦЫ, ПРИ КОТОРОМ ОБА ЕЕ КОНЦА НЕПОДВИЖНО ЗАКРЕПЛЕНЫ, НАЗЫВАЕТСЯ

1) изотоническим

2) ауксотоническим

3) пессимальным

4) изометрическим

116. СОКРАЩЕНИЕ МЫШЦЫ, ВОЗНИКАЮЩЕЕ ПРИ РАЗДРАЖЕНИИ СЕРИЕЙ ИМПУЛЬСОВ, В КОТОРОЙ ИНТЕРВАЛ МЕЖДУ ИМПУЛЬСАМИ БОЛЬШЕ ДЛИТЕЛЬНОСТИ ОДИНОЧНОГО СОКРАЩЕНИЯ, НАЗЫВАЕТСЯ

1) гладкий тетанус

2) зубчатый тетанус

3) пессимум

4) оптимум

5) одиночное сокращение

117. СОКРАЩЕНИЕ МЫШЦЫ В РЕЗУЛЬТАТЕ РАЗДРАЖЕНИЯ СЕРИЕЙ СВЕРХПОРОГОВЫХ ИМПУЛЬСОВ, КАЖДЫЙ ИЗ КОТОРЫХ ДЕЙСТВУЕТ В ФАЗУ РАССЛАБЛЕНИЯ ОТ ПРЕДЫДУЩЕГО НАЗЫВАЕТСЯ

1) гладкий тетанус

2) одиночное сокращение

3) пессимум

4) зубчатый тетанус

118. ИЗ САРКОПЛАЗМАТИЧЕСКОГО РЕТИКУЛУМА ПРИ ВОЗБУЖДЕНИИ ВЫСВОБОЖДАЮТСЯ ИОНЫ

4) кальция

119. МОТОНЕЙРОН И ИНЕРВИРУЕМЫЕ ИМ МЫШЕЧНЫЕ ВОЛОКНА НАЗЫВАЮТСЯ

1) моторное поле мышцы

2) нервный центр мышцы

3) сенсорное поле мышцы

4) двигательная единица

120. КРАТКОВРЕМЕННАЯ СЛАБАЯ ДЕПОЛЯРИЗАЦИЯ ПОСТСИНАПТИЧЕСКОЙ МЕМБРАНЫ, ВЫЗВАННАЯ ВЫДЕЛЕНИЕМ ОТДЕЛЬНЫХ КВАНТОВ МЕДИАТОРА, НАЗЫВАЕТСЯ ПОСТСИНАПТИЧЕСКИМ ПОТЕНЦИАЛОМ

1) возбуждающим

2) тормозящим

3) концевой пластинки

4) миниатюрным

121. В ОСНОВЕ АККОМОДАЦИИ ЛЕЖАТ ПРОЦЕССЫ

1) повышения натриевой проницаемости

2) понижения калиевой проницаемости

3) инактивации калиевой и повышения натриевой проницаемости

4) инактивации натриевой и повышения калиевой проницаемости

122. СОПРЯЖЕНИЕ ВОЗБУЖДЕНИЯ МЕМБРАНЫ МЫШЕЧНОЙ КЛЕТКИ С РАБОТОЙ СОКРАТИТЕЛЬНОГО АППАРАТА ОБЕСПЕЧИВАЕТСЯ

1) ионами натрия

3) саркомерами

4) Т-системой и саркоплазматическим ретикулумом

123. ОТСОЕДИНЕНИЕ ГОЛОВКИ МИОЗИНА ОТ АКТИНОВОЙ НИТИ ВЫЗЫВАЕТСЯ

1) ионами кальция

2) ионами натрия

3) тропонином

4) свободной АТФ

124. ИНИЦИАЦИЯ МЫШЕЧНОГО СОКРАЩЕНИЯ ОСУЩЕСТВЛЯЕТСЯ

1) ионами натрия

3) вторичными посредниками

4) ионами кальция

125. КАНАЛЫ СУБСИНАПТИЧЕСКОЙ МЕМБРАНЫ, ПРОНИЦАЕМЫЕ ДЛЯ НАТРИЯ И КАЛИЯ, ОТНОСЯТ

1) к неспецифическим

2) к потенциалзависимым

3) к хемозависимым

126. СВОЙСТВО ГЛАДКИХ МЫШЦ, ОТСУТСТВУЮЩЕЕ У СКЕЛЕТНЫХ, НАЗЫВАЕТСЯ

1) возбудимость

2) проводимость

3) сократимость

4) пластичность

127. МЫШЕЧНЫЕ ВОЛОКНА СКЕЛЕТНЫХ МЫШЦ ИННЕРВИРУЮТСЯ

1) нейронами симпатической системы

2) нейронами высших отделов головного мозга

3) мотонейронами

128. К МЕДИАТОРАМ ПЕПТИДНОЙ ПРИРОДЫ ОТНОСЯТСЯ

1) ГАМК, глицин

2) норадреналин, дофамин

3) ацетилхолин, серотонин

4) опиоиды, субстанция П

129. СИНАПТИЧЕСКАЯ ПЕРЕДАЧА ВОЗБУЖДЕНИЯ НЕВОЗМОЖНА

1) при низкой частоте ПД нейрона

2) при увеличении концентрации калия в наружной среде

3) при блокаде кальциевых каналов пресинаптической мембраны

130. ХЕМОЗАВИСИМЫЕ КАНАЛЫ ПОСТСИНАПТИЧЕСКОЙ МЕМБРАНЫ ПРОНИЦАЕМЫ

1) для натрия

2) для калия

3) для натрия, кальция

4) для натрия, калия

131. БЕЛЫЕ МЫШЕЧНЫЕ ВОЛОКНА ПО ТИПУ СОКРАЩЕНИЯ ОТНОСЯТСЯ

1) к тоническим

2) к фазным

132. КРАСНЫЕ МЫШЕЧНЫЕ ВОЛОКНА ПО ТИПУ СОКРАЩЕНИЯ ОТНОСЯТСЯ

1) к фазным

2) к тоническим

Установите соответствие.

ВИДЫ ПОТЕНЦИАЛОВ... ПРЕДСТАВЛЯЮТ СОБОЙ....

А.3 Возбуждающий 1. Местную гиперполяризацию

постсинаптический постсинаптической мембраны.

потенциал 2. Распространяющуюся деполяризацию

Б.1 Тормозный постсинаптической мембраны.

постсинаптический 3. Местную деполяризацию

потенциал постсинаптической мембраны.

В.4 Потенциал 4. Местную деполяризацию постсинаптической

концевой пластинки мембраны в нервно-мышечном синапсе.

МЫШЕЧНЫЕ ВОЛОКНА... ВЫПОЛНЯЮТ ФУНКЦИИ

А.125 Скелетные 1. Перемещения тела в пространстве.

Б. 34 Гладкие 2. Поддержания позы.

3. Обеспечения перистальтики отделов ЖКТ.

4. Обеспечения тонуса кровеносных сосудов.

5. Обеспечения тонуса разгибателей конечностей

РЕЖИМ СОКРАЩЕНИЯ СКЕЛЕТНОЙ МЫШЦЫ.... НАБЛЮДАЕТСЯ, КОГДА

А.3 Одиночное 1. Каждый последующий импульс

Б.2 Зубчатый тетанус приходит в фазу укорочения

В.1 Гладкий тетанус мышцы от предыдущего раздражения.

2. Каждый последующий импульс приходит в фазу расслабления мышцы от предыдущего раздражения.

3. Каждый последующий импульс приходит после окончания сокращения.

ТИП СОКРАЩЕНИЯ СКЕЛЕТНОЙ МЫШЦЫ.... ПРЕДСТАВЛЯЕТ СОБОЙ

А.1 Изометрическое 1. Сокращение без изменений длины волокна.

Б.2 Изотоническое 2. Сокращение без изменения тонуса

В.3 Ауксотоническое (напряжения) волокна.

3. Сокращение в условиях изменения тонуса и длины волокна.

НЕРВНЫЕ ВОЛОКНА ТИПА...ПРОВОДЯТ ВОЗБУЖДЕНИЕ СО СКОРОСТЬЮ

А.2 А альфа 1. 3-18 м/с

Б.1 В 2. 70-120 м/с

В.3 С 3. 0.5-3 м/с

МЫШЦЫ...ПОДЧИНЯЮТСЯ ЗАКОНАМ РАЗДРАЖЕНИЯ

А.1 Гладкая 1. Силы.

Б.1 Скелетная 2. "Все или ничего".

В.2 Сердечная 3. Силы и "Все или ничего".

СТРУКТУРЫ....ПОДЧИНЯЮТСЯ ЗАКОНАМ РАЗДРАЖЕНИЯ

А.1 Нервный ствол 1. Силы.

Б.2 Одиночное нервное 2. "Все или ничего".

В.1 Скелетная мышца

Г.2 Одиночное мышечное волокно

СИНАПСЫ....ОБЛАДАЮТ СВОЙСТВАМИ

А.23 Нервно-мышечный 1. Двустороннего проведения возбуждения.

Б.1 Электрический 2. Одностороннего проведения возбуждения.

3. Синаптической задержки.

В СТРУКТУРАХ.... ПРОДОЛЖИТЕЛЬНОСТЬ ФАЗЫ АБСОЛЮТНОЙ РЕФРАКТЕРНОСТИ СОСТАВЛЯЕТ

А.2 Нервном волокне 1. 0.05 миллисек

Б.3 Мышечной клетке 2. 0.5 миллисек

В.4 Миокардиоците 3. 5 миллисек

4. 270 миллисек

Определите верны или неверны утверждения и связь между ними.

142. Гладкий тетанус возникает при ритмической стимуляции мышцы с большой частотой, потому что при этом происходит суперпозиция одиночных сокращений.

5) ВВВ

143. Гладкий тетанус возникает при большей частоте стимулов, чем зубчатый,потому что амплитуда сокращений при гладком тетанусе выше, чем при зубчатом.

5) ВВН

144. Гладкий тетанус возникает при большей частоте стимулов, чем зубчатый, потому что такой режим работы мышцы возникает при нагрузке неподъемным грузом.

5) ВНН

145. Гладкий тетанус возникает при меньшей частоте стимулов, чем зубчатый,потому что при зубчатом тетанусе каждый последующий импульсприходит в фазу расслабления от предыдущего.

5) НВН

146. Гладкий тетанус возникает при меньшей частоте стимулов, чем зубчатый,потому что при зубчатом тетанусе каждый последующий импульсприходит в фазу укорочения от предыдущего.

5) ННН

147. Оптимум сокращения мышцы возникает при ритмической стимуляции большой частотой, потому что при этом каждое последующее раздражение попадает в фазу экзальтации от предыдущего.

5) ВВВ

148. Оптимум сокращения мышцы возникает при ритмической стимуляции большой частотой, потому что при зубчатом тетанусе каждый последующий импульс приходит в фазу расслабления от предыдущего.

5) ВВН

149. Оптимум сокращения мышцы возникает при ритмической стимуляциис большой частотой, потому что при гладком тетанусе каждый последующий импульс приходит в фазу расслабления от предыдущего.

5) ВНН

150. Пессимум сокращения мышцы возникает при очень большой частоте раздражения, потому что при такой частоте каждый последующий импульс приходит в рефрактерные фазы от предыдущего.

Законы устанавливают зависимость ответной реакции ткани от параметров раздражителя. Эта зависимость характерна для высоко организованных тканей. Существуют три закона раздражения возбудимых тканей:

1) закон силы раздражения;

2) закон длительности раздражения;

3) закон градиента раздражения.

Закон силы раздражения устанавливает зависимость ответной реакции от силы раздражителя. Эта зависимость неодинакова для отдельных клеток и для целой ткани. Для одиночных клеток зависимость называется «все или ничего». Характер ответной реакции зависит от достаточной пороговой величины раздражителя. При воздействии подпороговой величиной раздражения ответной реакции возникать не будет (ничего). При достижении раздражения пороговой величины возникает ответная реакция, она будет одинакова при действии пороговой и любой сверхпороговой величины раздражителя (часть закона – все).

Для совокупности клеток (для ткани) эта зависимость иная, ответная реакция ткани прямо пропорциональна до определенного предела силе наносимого раздражения. Увеличение ответной реакции связано с тем, что увеличивается количество структур, вовлекающихся в ответную реакцию.

Закон длительности раздражений . Ответная реакция ткани зависит от длительности раздражения, но осуществляется в определенных пределах и носит прямо пропорциональный характер. Существует зависимость между силой раздражения и временем его действия. Эта зависимость выражается в виде кривой силы и времени. Эта кривая называется кривой Гоорвега-Вейса-Лапика. Кривая показывает, что каким бы сильным ни был бы раздражитель, он должен действовать определенный период времени. Если временной отрезок маленький, то ответная реакция не возникает. Если раздражитель слабый, то бы как длительно он ни действовал, ответная реакция не возникает. Сила раздражителя постепенно увеличивается, и в определенный момент возникает ответная реакция ткани. Эта сила достигает пороговой величины и называется реобазой (минимальной силой раздражения, которая вызывает первичную ответную реакцию). Время, в течение которого действует ток, равный реобазе, называется полезным временем.

Закон градиента раздражения . Градиент – это крутизна нарастания раздражения. Ответная реакция ткани зависит до определенного предела от градиента раздражения. При сильном раздражителе примерно на третий раз нанесения раздражения ответная реакция возникает быстрее, так как она имеет более сильный градиент. Если постепенно увеличивать порог раздражения, то в ткани возникает явление аккомодации. Аккомодация – это приспособление ткани к медленно нарастающему по силе раздражителю. Это явление связано с быстрым развитием инактивации Na-каналов. Постепенно происходит увеличение порога раздражения, и раздражитель всегда остается подпороговым, т. е. порог раздражения увеличивается.

Законы раздражения возбудимых тканей объясняют зависимость ответной реакции от параметров раздражителя и обеспечивают адаптацию организмов к факторам внешней и внутренней среды.

Полярный закон действия тока . При раздражении нерва или мышцы постоянным током возбуждение возникает в момент замыкания постоянного тока только под катодом, а в момент размыкания - только под анодом, причем порог замыкательного удара меньше, чем размыкательного. Прямые измерения показали, что прохождение через нервное или мышечное волокно электрического тока вызывает прежде всего изменение мембранного потенциала под электродами. В области приложения к поверхности ткани анода (+) положительный потенциал на наружной поверхности мембраны возрастает, т.е. в этом участке происходит гиперполяризация мембраны, что не способствует возбуждению, а, наоборот, ему препятствует. В том же участке, где к мембране приложен катод (-), положительный потенциал наружной поверхности снижается, происходит деполяризация, и если она достигает критической величины - в этом месте возникает ПД.

Изменение МП возникают не только непосредственно в точках приложения к нервному волокну катода и анода, но и на некотором расстоянии от них, но величина этих сдвигов убывает по мере удаления от электродов. Изменения МП под электродами носят название электротонических (соответственно кат-электротон и ан-электротон), а за электродами -периэлектротонических (кат- и ан- периэлектротон).

Увеличение МП под анодом (пассивная гиперполяризация) не сопровождается изменением ионной проницаемости мембраны даже при большой силе приложенного тока. Поэтому при замыкании постоянного тока возбуждение под анодом не возникает. В отличие от этого, уменьшение МП под катодом (пассивная деполяризация) влечет за собой кратковременное повышение проницаемости для Na, что приводит к возбуждению.

Повышение проницаемости мембраны для Na при пороговом раздражении не сразу достигает максимальной величины. В первый момент деполяризация мембраны под катодом приводит к небольшому увеличению натриевой проницаемости и открытию небольшого числа каналов. Когда же под влиянием этого в протоплазму начинают поступать заряженные положительно ионы Na+, то деполяризация мембраны усиливается. Это ведет к открытию других Na-каналов, и, следовательно, к дальнейшей деполяризации, которая, в свою очередь, обуславливает еще большее повышение натриевой проницаемости. Этот круговой процесс, основанный на т.н. положительной обратной связи, получил название регенеративной деполяризации. Возникает она только при снижении Е о до критического уровня (Е к). Причина повышения натриевой проницаемости при деполяризации связана, вероятно, с удалением Са++ из натриевых ворот при возникновении электро отрицательности (или снижении электро положительности) на наружной стороне мембраны.



Повышенная натриевая проницаемость через десятые доли миллисекунды за счет механизмов натриевой инактивации прекращается.

Скорость, с которой происходит деполяризация мембраны, зависит от силы раздражающего тока. При слабой силе деполяризация развивается медленно, и поэтому для возникновения ПД такой стимул должен иметь большую длительность.

Локальный ответ, который возникает при под пороговых стимулах, так же, как и ПД, обусловлен повышением натриевой проницаемости мембраны. Однако при под пороговом стимуле это повышение недостаточно велико для того, чтобы вызвать процесс регенеративной деполяризации мембраны. Поэтому начавшаяся деполяризация приостанавливается инактивацией и повышением калиевой проницаемости.

Подводя итог изложенному выше, можно следующим образом изобразить цепь событий, развивающихся в нервном или мышечном волокне под катодом раздражающего тока: пассивная деполяризация мембраны ---- повышение натриевой проницаемости --- усиление потока Na внутрь волокна --- активная деполяризация мембраны -- локальный ответ --- превышение Ек --- регенеративная деполяризация --- потенциал действия (ПД).

Каков же механизм возникновения возбуждения под анодом при размыкании? В момент включения тока под анодом мембранный потенциал возрастает - происходит гиперполяризация. При этом разница между Ео и Ек растет, и для того, чтобы сдвинуть МП до критического уровня, нужна большая сила. При выключении тока (размыкание) исходный уровень Ео восстанавливается. Казалось бы, в это время нет условий для возникновения возбуждения. Но это справедливо только для того случая, если действие тока продолжалось очень короткое время (менее 100 мсек.). При длительном действии тока начинает меняться сам критический уровень деполяризации - он растет. И, наконец, возникает момент, когда новый Ек становится равным старому уровню Ео. Теперь при выключении тока возникают условия для возбуждения, ибо мембранный потенциал становится равным новому критическому уровню деполяризации. Величина ПД при размыкании всегда больше, чем при замыкании.

Зависимость пороговой силы стимула от его длительности . Как уже указывалось, пороговая сила любого стимула в определенных пределах находится в обратной зависимости от его длительности. В особенно четкой форме эта зависимость проявляется при использовании в качестве раздражителя прямоугольных толчков постоянного тока. Полученная в таких опытах кривая получила название "кривой силы-времени". Она была изучена Гоорвегом, Вейсом и Лапиком в начале века. Из рассмотрения этой кривой прежде всего следует, что ток ниже некоторой минимальной величины или напряжения не вызывает возбуждения, как бы длительно он не действовал. Минимальная сила тока, способная вызвать возбуждение, названа Лапиком реобазой. Наименьшее время, в течение которого должен действовать раздражающий стимул, называют полезным временем. Усиление тока приводит к укорочению минимального времени раздражения, но не беспредельно. При очень коротких стимулах кривая силы-времени становится параллельной оси координат. Это означает, что при таких кратковременных раздражениях возбуждения не возникает, как бы ни была велика сила раздражения.

Определение полезного времени практически затруднено, так как точка полезного времени находится на участке кривой, переходящей в параллельную. Поэтому Лапик предложил использовать полезное время двух реобаз - хронаксию. Ее точка находится на самом крутом участке кривой Гоорвега-Вейса. Хронаксиметрия получила широкое распространение как в эксперименте, так и в клинике для диагностики повреждений волокон двигательных нервов.

Зависимость порога от крутизны нарастания силы раздражителя . Величина порога раздражения нерва или мышцы зависит не только от длительности стимула, но и от крутизны нарастания его силы. Порог раздражения имеет наименьшую величину при толчках тока прямоугольной формы, характеризующихся максимально быстрым нарастанием тока. Если же вместо таких стимулов применять линейно или экспоненциально нарастающие стимулы, пороги оказываются увеличенными и тем больше, чем медленнее нарастает ток. При уменьшении крутизны нарастания тока ниже некоторой минимальной величины (т.н. критический наклон) ПД вообще не возникает, до какой бы конечной силы не увеличивался ток.

Такое явление приспособления возбудимой ткани к медленно нарастающему раздражителю получило название аккомодация. Чем выше скорость аккомодации, тем более круто должен нарастать стимул, чтобы не утратить своего раздражающего действия. Аккомодация к медленно нарастающему току обусловлена тем, что за время действия этого тока в мембране успевают развиться процессы, препятствующие возникновению ПД.

Выше уже указывалось, что деполяризация мембраны приводит к началу двух процессов: одного - быстрого, ведущего к повышению натриевой проницаемости и возникновению ПД, а другого - медленного, приводящего к инактивации натриевой проницаемости и к окончанию возбуждения. При крутом нарастании стимула Na-активация успевает достичь значительной величины прежде, чем развивается Na-инактивация. В случае медленного нарастания силы тока на первый план выступают процессы инактивации, приводящие к повышению порога и снижению амплитуды ПД. Все агенты, усиливающие или ускоряющие инактивацию, увеличивают скорость аккомодации.

Аккомодация развивается не только при раздражении возбудимых тканей электрическим током, но и в случае применения механических, термических и прочих стимулов. Так, быстрый удар палочкой по нерву вызывает его возбуждение, при медленном же надавливании на нерв той же палочкой возбуждения не возникает. Изолированное нервное волокно можно возбудить быстрым охлаждением, а медленным - нельзя. Лягушка выпрыгнет, если ее бросить в воду с температурой 40 градусов, но если ту же лягушку поместить в холодную воду, и медленно нагревать ее, то животное сварится, но не будет реагировать прыжком на подъем температуры.

В лаборатории показателем скорости аккомодации является та наименьшая крутизна нарастания тока, при которой стимул еще сохраняет способность вызывать ПД. Эту минимальную крутизну называюткритическим наклоном . Его выражают или в абсолютных единицах (мА/сек), или в относительных (как отношение пороговой силы того постепенно нарастающего тока, который еще способен вызывать возбуждение, к реобазе прямоугольного толчка тока).

Закон "все или ничего". При изучении зависимости эффектов раздражения от силы приложенного стимула был установлен т.н. закон "все или ничего". Согласно этому закону, под пороговые раздражения не вызывают возбуждения ("ничего"), при пороговых же стимулах возбуждение сразу приобретает максимальную величину ("все"), и уже не возрастает при дальнейшем усилении раздражителя.

Эта закономерность первоначально была открыта Боудичем при исследовании сердца, а в дальнейшем подтверждена и на других возбудимых тканях. Долгое время закон "все или ничего" неправильно интерпретировался как общий принцип реагирования возбудимых тканей. Предполагали, что "ничего" означает полное отсутствие ответа на под пороговый стимул, а "все" рассматривалось как проявление полного исчерпания возбудимым субстратом его потенциальных возможностей. Дальнейшие исследования, в особенности микроэлектродные, показали, что эта точка зрения не соответствует действительности. Выяснилось, что при под пороговых силах возникает местное не распространяющееся возбуждение (локальный ответ). Вместе с тем оказалось, что "все" также не характеризует того максимума, которого может достигнуть ПД. В живой клетке существуют процессы, активно приостанавливающие деполяризацию мембраны. Если каким-либо воздействием на нервное волокно, например, наркотиками, ядами, ослабить входящий Na-ток, обеспечивающий генерацию ПД, то он перестает подчиняться правилу "все или ничего" - его амплитуда начинает градуально зависеть от силы стимула. Поэтому "все или ничего" рассматривается сейчас не как всеобщий закон реагирования возбудимого субстрата на раздражитель, а лишь как правило, характеризующее особенности возникновения ПД в данных конкретных условиях.

1. Закон силы - зависимость силы ответной реакции ткани от силы раздражителя. Увеличение силы стимулов в определенном диапазоне сопровождается ростом величины ответной реакции. Чтобы возникло возбуждение, раздражитель должен быть достаточно сильным - пороговым или выше порогового. В изолированной мышце после появления видимых сокращений при достижении пороговой силы стимулов дальнейшее увеличение силы стимулов повышает амплитуду и силу мышечного сокращения. Действие гормона зависит от его концентрации в крови. Эффективность лечения антибиотиками зависит от введенной дозы препарата.

Сердечная мышца подчиняется закону "все или ничего" - на подпороговый стимул не отвечает, после достижения пороговой силы стимула амплитуда всех сокращений одинакова.

2. Закон длительности действия раздражителя. Раздражитель должен действовать достаточно длительно, чтобы вызвать возбуждение. Пороговая сила раздражителя находится в обратной зависимости от его длительности, т.е. слабый раздражитель для того, чтобы вызвать ответную реакцию, должен действовать более продолжительное время. Зависимость между силой и длительностью раздражителя изучена Гоорвегом (1892), Вейсом (1901) и Лапиком (1909). Минимальная сила постоянного тока, вызывающая возбуждение, названа Лапикомреобазой . Наименьшее время, в течение которого должен действовать пороговый стимул, чтобы вызвать ответную реакцию называетсяполезным временем . При очень коротких стимулах возбуждения не возникает, как бы ни была велика сила раздражителя. Так как величина порога возбудимости колеблется в широком диапазоне, было введено понятиехронаксия - время, в течение которого должен действовать ток удвоенной реобазы (порога), чтобы вызвать возбуждение. Метод (хронаксиметрия) используется клинически при определения возбудимости нервно-мышечного аппарата в неврологической клинике и травматологии. Хронаксия различных тканей отличается: у скелетных мышц она равна 0,08-0,16 мс, у гладких - 0,2-0,5 мс. При повреждениях и заболеваниях хронаксия возрастает. Из закона "сила-время" так же следует, что слишком кратковременные стимулы не вызывают возбуждения. В физиотерапии используют токи ультравысокой частоты (УВЧ), которые имеют короткий период действия каждой волны для получения теплового лечебного эффекта в тканях.

3. Закон градиента раздражения.

Для того, чтобы вызвать возбуждение, сила раздражителя должна нарастать во времени достаточно быстро. При медленном нарастании силы стимулирующего тока, амплитуда ответов уменьшается или ответ вообще не возникает.

Кривая «сила-длительность»

А–порог (реобаза); Б–удвоенная реобаза; а–полезное время действия тока, б – хронаксия.

4. Полярный закон раздражения

Открыт Пфлюгером в 1859 году. При внеклеточном расположении электродов возбуждение возникает только под катодом (отрицательным полюсом) в момент замыкания (включения, начала действия) постоянного электрического тока. В момент размыкания (прекращения действия) возбуждение возникает под анодом. В области приложения к поверхности нейрона анода (положительного полюса источника постоянного тока) положительный потенциал на наружной стороне мембраны возрастет - развивается гиперполяризация, снижение возбудимости, увеличение величины порога. При внеклеточном расположении катода (отрицательного электрода) исходный положительный заряд на внешней мембране уменьшается - наступает деполяризация мембраны и возбуждение нейрона.

Законы раздражения отражают определенную зависимость между действием раздражителя и ответной реакцией возбудимой ткани. К законам раздражения относятся, закон силы, закон "все или ничего", закон аккомодации (Дюбуа-Реймона), закон силы-времени (силы-длительности), закон полярного действия постоянного тока, закон физиологического электротона.

1. Закон силы : чем больше сила раздражителя, тем больше величина ответной реакции. В соответствии с этим законом функционируют сложные структуры, например, скелетная мышца. Амплитуда ее сокращений от минимальных (пороговых) величин постепенно увеличивается с увеличением силы раздражителя до субмаксимальных и максимальных значений. Это обусловлено тем, что скелетная мышца состоит из множества мышечных волокон, имеющих различную возбудимость.

Поэтому на пороговые раздражители отвечают только те мышечные волокна, которые имеют самую высокую возбудимость, амплитуд, мышечного сокращения при этом минимальна. С увеличением силы раздражителя в реакцию вовлекается все большее количество мышечных волокон, и амплитуда сокращения мышц все время увеличивается. Когда в реакцию вовлечены все мышечные волокна, составляющие данную мышцу, дальнейшее увеличение силы раздражителя не приводит к увеличению амплитуды сокращения.

2. Закон «все или ничего»: подпороговые раздражители не вызывают ответной реакции ("ничего"), на пороговые раздражители возникает максимальная ответная реакция ("все"). Закон был сформулирован Боудичем. По закону "все или ничего" сокращаются сердечная мышца и одиночное мышечное волокно. Критика этого закона состоит в том, что во-первых, действие подпороговых раздражителей вызывает местный локальный ответ, хотя видимых изменений нет, но и «ничего» тоже нет. Во-вторых, сердечная мышца, растянутая кровью, при наполнении ею камер сердца, реагирует по закону "все или ничего", но амплитуда ее сокращений будет больше по сравнению с сокращением сердечной мышцы, не растянутой кровью.

3. Закон раздражения - Дюбуа-Реймона (аккомодации) раздражающее действие постоянного тока зависит не только от абсолютной величины силы тока или его плотности, но и от скорости нарастания тока во времени. При действии медленно нарастающего раздражителя возбуждение не возникает, так как происходит приспосабливание возбудимой ткани к действию этого раздражителя, что получило название аккомодации. (Аккомодация обусловлена тем, что при действии медленно нарастающего раздражителя в мембране возбудимой ткани происходит повышение критического уровня деполяризации. При снижении скорости нарастания силы раздражителя до некоторого минимального значения потенциал действия вообще не возникает.


Причина заключается в том, что деполяризация мембраны является пусковым стимулом к началу двух процессов: быстрого, ведущего к повышению натриевой проницаемости, и тем самым обусловливающего возникновение потенциала действия, и медленного, приводящего к инактивации натриевой проницаемости и как следствие этого - окончанию потенциала действия. При быстром нарастании стимула повышение натриевой проницаемости успевает достичь значительной величины прежде, чем наступит инактивация натриевой проницаемости. При медленном нарастании тока на первый план выступают процессы инактивации, приводящие к повышению порога или ликвидации возможности генерировать ПД вообще).

Под градиентом раздражения понимают скорость нарастания силы раздражения до определенной величины. При очень медленном нарастании силы раздражителя порог возбудимости повышается и потенциал действия не возникает, т.е. аккомодация - это увеличение порога возбудимости при действии медленно нарастающей силе раздражителя. Дебуа-Реймон (1818-1896).

Способность к аккомодации различных структур неодинакова. Наиболее высокая она у двигательных нервных волокон, а наиболее низкая у сердечной мышцы, гладких мышц кишечника, желудка.

4. Закон силы-длительности : раздражающее действие постоянного тока зависит не только от его величины, но и от времени, в течение которого он действует. Чем больше ток, тем меньше времени он должен действовать для возникновения возбуждения.

Исследования зависимости силы-длительности показали, что последняя имеет гиперболический характер, которая называется кривая «силы-времени». Впервые была исследована эта кривая учеными Гоорвегом в 1892 г., Вейсом в 1901 г и Лапиком в 1909г. Из этого следует, что ток ниже некоторой минимальной величины (подпороговый) не вызывает возбуждение, как бы длительно он не действовал, и чем короче импульсы тока, тем меньшую раздражающую способность они имеют.

Причиной такой зависимости является мембранная емкость. Очень "короткие" токи просто не успевают разрядить эту емкость до критического уровня деполяризации. Раздражитель, способный вызвать ответную реакцию, называется пороговым. Минимальная величина тока, способная вызвать возбуждение при неограниченно длительном его действии, названа Лапиком реобазой. Время, в течение которого действует ток, равный реобазе, и вызывает возбуждение, называется полезным временем. Это означает, что дальнейшее увеличение времени не имеет смысла для возникновения потенциала действия (ПД).

В связи с тем, что определение этого времени затруднено, было введено понятие хронаксия - минимальное время, в течение которого ток, равный двум реобазам, должен действовать на ткань, чтобы вызвать ответную реакцию. Определение хронаксии - хронаксиметрия - находит применение в клинике. Электрический ток, приложенный к мышце, проходит через как мышечные, так и нервные волокна и их окончания, находящиеся в этой мышце. Хронаксия нервных и мышечных волокон равна тысячным долям секунд. Если нерв поврежден или произошла гибель соответствующих мотонейронов спинного мозга (это имеет место при полиомиелите и некоторых других заболеваниях), то происходит перерождение нервных волокон и тогда определяется хронаксия уже мышечных волокон, которая имеет большую величину, чем нервных волокон.