Хромосомная теория моргана. О чем говорит хромосомная теория наследственности

Сцепленное наследование. Хромосомная теория наследственности.

Хромосомная теория наследственности.

Основные положення хромосомной теории наследственности. Хромосомный анализ.

Формирование хромосомной теории. В 1902-1903 гг. американский цитолог У. Сеттон и немецкий цитолог и эмбриолог Т. Бовери независимо друг от друга выявили параллелизм в поведении генов и хромосом в ходе формирования гамет и оплодотворения. Эти наблюдения послужили основой для предположения, что гены расположены в хромосомах. Однако экспериментальное доказательство локализации конкретных генов в конкретных хромосомах было получено только в 1910 г. американским генетиком Т. Морганом, который в последующие годы (1911-1926) обосновал хромосомную теорию наследственности. Согласно этой теории, передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены. Таким образом, именно хромосомы представляют собой материальную основу наследственности.

Хромосомная теория наследственности - теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, то есть преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Хромосомная теория наследственности возникла в начале 20 в. на основе клеточной теории и использовалась для изучения наследственных свойств организмов гибридологического анализа.

Основные положения хромосомной теории наследственности.

1. Гены локализованы в хромосомах. При этом различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.

2. Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.

3. Гены расположены в хромосоме в линейной последовательности.

4. Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола).

5. Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).

6. Каждый биологический вид характеризуется определенным набором хромосом - кариотипом.

Сцепленное наследование

Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов значительно превышает количество хромосом. Например, у кукурузы до эры молекулярной биологии было изучено более 500 генов, у мухи дрозофилы - более 1 тыс., а у человека - около 2 тыс. генов, тогда как хромосом у них 10, 4 и 23 пары соответственно. То, что число генов у высших организмов составляет несколько тысяч, было ясно уже У. Сэттону в начале XX века. Это дало основание предположить, что в каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.

Совместное наследование генов Т. Морган предложил назвать сцепленным наследованием. Число групп сцепления соответствует гаплоидному числу хромосом, поскольку группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены. (У особей гетерогаметного пола, например, у самцов млекопитающих, групп сцепления на самом деле на одну больше, так как X- и У-хромосомы содержат разные гены и представляют собой две разные группы сцепления. Таким образом, у женщин 23 группы сцепления, а у мужчин - 24).

Способ наследования сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигетерозиготная особь образует четыре типа гамет (АВ, Ab, аВ и ab) в равных количествах, то при сцепленном наследовании (в отсутствие кроссинговера) такая же дигетерозигота образует только два типа гамет: (АВ и ab) тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.

Было установлено, однако, что кроме обычных (некроссоверных) гамет возникают и другие (кроссоверные) гаметы с новыми комбинациями генов- Ab и аВ, отличающимися от комбинаций генов в хромосомах родителя. Причиной возникновения таких гамет является обмен участками гомологичных хромосом, или кроссинговер.

Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом. В это время части двух хромосом могут перекрещиваться и обмениваться своими участками. В результате возникают качественно новые хромосомы, содержащие участки (гены) как материнских, так и отцовских хромосом. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных или рекомбинантных.

Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами все более возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.

Расстояние между генами характеризует силу их сцепления. Имеются гены с высоким процентом сцепления и такие, где сцепление почти не обнаруживается. Однако при сцепленном наследовании максимальная частота кроссинговера не превышает 50 %. Если же она выше, то наблюдается свободное комбинирование между парами аллелей, не отличимое от независимого наследования.

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость, которая дает широкие возможности адаптации организма в различных условиях среды. Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе.

Сцепление и кроссинговер. Из принципов генетического анализа, изложенных в преды­дущих главах, с очевидностью вытекает, что независимое комбинирование признаков может осуществляться лишь при условии, что гены, определяющие эти признаки, находятся в негомологичных хромосомах. Следовательно, у каждого организма число пар признаков, по которым наблюдается независимое наследование, ограничено числом пар хромосом. С другой стороны, оче­видно, что число признаков и свойств организма, контролируемых генами, чрезвычайно велико, а число пар хромосом у каждого вида относительно мало и постоянно.



Остается предположить, что в каждой хромосоме находится не один ген, а много. Если это так, то третий закон Менделя касается распределения хромосом, а не генов, т. е. его действие ограничено.

Явление сцепленного наследования . Из третьего закона Менделя следует, что при скрещивании форм, различающихся двумя парами генов (АВ и аb), получается гибрид АaВb, образующий четыре сорта гамет АВ, Аb, аВ и аb в равных количествах.

В соответствии с этим в анализирующем скрещивании осуществляется расщепление 1: 1: 1: 1, т.е. сочетания признаков, свойственные родительским формам (АВ и аb), встречаются с такой же частотой, как и новые комбинации (Аb и аВ),- по 25%. Однако по мере накопления фактов генетики все чаще стали сталкиваться с отклонениями от независимого наследования. В отдельных случаях новые комбинации признаков (Аb и аВ) в F b совсем отсутствовали - наблюдалось полное сцепление между генами исходных форм. Но чаще в потомстве в той или иной степени преобладали родительские сочетания признаков, а новые комбинации встречались с меньшей частотой, чем ожидается при независимом наследовании, т.е. меньше 50%. Таким образом, в данном случае гены чаще наследовались в исходном сочетании (были сцеплены), но иногда это сцепление нарушалось, давая новые комбинации.

Совместное наследование генов, ограничивающее их свобод­ное комбинирование, Морган предложил называть сцеплением генов или сцепленным наследованием.

Кроссинговер и его генетическое доказательство. При допущении размещения в одной хромосоме более одного гена встает вопрос, могут ли аллели одного гена в гомологичной паре хромосом меняться местами, перемещаясь из одной гомологичной хромосомы в другую. Если бы такой процесс не происходил, то гены комбинировались бы только путем случайного расхождения негомологичных хромосом в мейозе, а гены, находящиеся в одной паре гомологичных хромосом, наследовались бы всегда сцепленно - группой.

Исследования Т.Моргана и его школы показали, что в гомологичной паре хромосом регулярно происходит обмен генами. Процесс обмена идентичными участками гомологичных хромосом с содержащимися в них генами называют перекрестом хромосом или кроссинговером.Кроссинговер обеспечивает новые сочетания генов, находящихся в гомологичных хромосомах. Явление кроссинговера, так же как и сцепление, оказалось общим для всех животных, растений и микроорганизмов. Наличие обмена идентичными участками между гомологичными хромосомами обеспечивает обмен или рекомбинацию генови тем самым значительно увеличивает роль комбинативной изменчивости в эволюции. О перекресте хромосом можно судить по частоте возникновения организмов с новым сочетанием признаков. Такие организмы называют рекомбинантами.

Гаметы с хромосомами, претерпевшими кроссинговер, называют кроссоверными,а с непретерпевшими - некроссоверными.Соответственно организмы, возникшие от сочетания кроссоверных гамет гибрида с гаметами анализатора, называют кроссоверамиили рекомбинантами,а возникшие за счет некроссоворных гамет гибрида - некроссоверными или нерекомбинантными.

Закон сцепления Моргана. При анализе расщепления в случае кроссинговера обращает на себя внимание определенное коли­чественное отношение кроссоверных и некроссоверных классов. Обе исходные родительские комбинации признаков, образовавшиеся из некроссоверных гамет, оказываются в потомстве анали­зирующего скрещивания в равном количественном отношении. В указанном опыте с дрозофилой тех и других особей было примерно по 41,5%. В сумме некроссоверные мухи составили 83% от общего числа потомков. Два кроссоверных класса по числу особей также одинаковы, и сумма их равна 17%.

Частота кроссинговера не зависит от аллельного состояния генов, участвующих в скрещивании. Если в качестве родителя использовать мух и , то в анализирующем скрещивании кроссоверные (b + vg и bvg + ) и некроссоверные (bvg и b + vg + ) особи появятся с той же частотой (соответственно 17 и 83%), что и в первом случае.

Результаты этих опытов показывают, что сцепление генов реально существует, и лишь в известном проценте случаев оно нарушается вследствие кроссинговера. Отсюда и был сделан вывод, что между гомологичными хромосомами может осуществляться взаимный обмен идентичными участками, в результате чего гены, находящиеся в этих участках парных хромосом, перемещаются из одной гомологичной хромосомы в другую. Отсутствие перекреста (полное сцепление) между генами представляет исключение и известно лишь у гетерогаметного пола немногих видов, например у дрозофилы и шелкопряда.

Изученное Морганом сцепленное наследование признаков получило название закона сцепления Моргана.Поскольку рекомбинация осуществляется между генами, а сам ген кроссинговером не разделяется, его стали считать единицей кроссинговера.

Величина кроссинговера . Величина кроссинговера измеряется отношением числа кроссоверных особей к общему числу особей в потомстве от анализирующего скрещивания. Рекомбинация происходит реципрокно, т.е. между родительскими хромосомами осуществляется взаимный обмен; это обязывает подсчитывать кроссоверные классы вместе как результат одного события. Величина кроссинговера выражается в процентах. Один процент кроссинговера составляет единицу расстояния между генами.

Линейное расположение генов в хромосоме. Т. Морган предположил, что гены расположены в хромосомах линейно, а частота кроссинговера отражает относительное расстояние между ними: чем чаще осуществляется кроссинговер, тем далее отстоят гены друг от друга в хромосоме; чем реже кроссинговер, тем они ближе друг к другу.

Одним из классических опытов Моргана на дрозофиле, доказывающим линейное расположение генов, был следующий. Самки, гетерозиготные по трем сцепленным рецессивным генам, определяющим желтую окраску тела y, белый цвет глаз w и вильчатые крылья bi , были скрещены с самцами, гомозиготными по этим трем генам. В потомстве было получено 1,2% мух кроссоверных, возникших от перекреста между генами у и w; 3,5% − от кроссинговера между генами w и bi и 4,7% - между у и bi.

Из этих данных с очевидностью вытекает, что процент перекреста является функцией расстояния между генами. Поскольку расстояние между крайними генами у и bi равно сумме двух расстояний между у и w , w и bi, следует предположить, что гены расположены в хромосоме последовательно, т.е. линейно.

Воспроизводимость этих результатов в повторных опытах указывает на то, что местоположение генов в хромосоме строго фиксировано, т. е. каждый ген занимает в хромосоме свое опрделенное место - локус.

Основным положениям хромосомной теории наследственности - парности аллелей, их редукции в мейозе и линейному расположению генов в хромосоме - соответствует однонитчатая модель хромосомы.

Одинарный и множественный перекресты. Приняв положения, что генов в хромосоме может быть много и расположены они в хромосоме в линейном порядке, а каждый ген занимает определённый локус в хромосоме, Морган допустил, что перекрест между гомологичными хромосомами может происходить одновременно в нескольких точках. Это предположение было им доказано тоже на дрозофиле, а затем полностью подтвердилось на ряде других животных, а также на растениях и микроорганизмах.

Кроссинговер, происходящий лишь в одном месте, называют одинарным, в двух точках одновременно – двойным, в трёх – тройным и т.д., т.е. он может быть множественным.

Чем дальше отстоят друг от друга в хромосоме гены, тем больше вероятность двойных перекрестов между ними. Процент рекомбинаций между двумя генами тем точнее отражает расстояние между ними, чем оно меньше, так как в случае малого расстояния уменьшается возможность двойных обменов.

Для учета двойного кроссинговера необходимо иметь дополнительный маркер, находящийся между двумя изучаемыми генами. Определение расстояния между генами осуществляют следующим образом: к сумме процентов одинарных кроссоверных классов прибавляют удвоенный процент двойных кроссинговеров. Удвоение процента двойных кроссинговеров необходимо в связи с тем, что каждый двойной кроссинговер возни­кает благодаря двум независимым одинарным разрывам в двух точках.

Интерференция. Установлено, что кроссинговер, происшедший в одном месте хромосомы, подавляет кроссинговер в близлежащих районах. Это явление носит название интерференции.При двойном перекресте интерференция проявляется особенно сильно в случае малых расстояний между генами. Разрывы хромосом оказываются зависимыми друг от друга. Степень этой зависимо­сти определяется расстоянием между происходящими разрывами: по мере удаления от места разрыва возможность другого разрыва увеличивается.

Эффект интерференции измеряется отношением числа наблюдаемых двойных разрывов к числу возможных при допущении полной независимости каждого из разрывов.

Локализация гена. Если гены расположены в хромосоме линейно, а частота кроссинговера отражает расстояние между ними, то можно определить местоположение гена в хромосоме.

Прежде чем определить, положение гена, т. е. его локализацию, необходимо определить, в какой хромосоме находится данный ген. Гены, находящиеся в одной хромосоме и наследующиеся сцепленно, составляют группу сцепления.Очевидно, что количество групп сцепления у каждого вида должно соответствовать гаплоидному набору хромосом.

К настоящему времени группы сцепления определены у наиболее изученных в генетическом отношении объектов, причем во всех этих случаях обнаружено полное соответствие числа групп сцепления гаплоидному числу хромосом. Так, у кукурузы (Zea mays ) гаплоидный набор хромосом и число групп сцепления со­ставляют 10, у гороха (Pisum sativum ) - 7, дрозофилы (Drosophila melanogaster) - 4, домовой мыши (Mus musculus ) - 20 и т. п.

Поскольку ген занимает определенное место в группе сцепления, это позволяет устанавливать порядок расположения генов в каждой хромосоме и строить генетические карты хромосом.

Генетические карты. Генетической картой хромосомназывают схему относительного расположения генов, находящихся в данной группе сцепления. Они составлены пока лишь для некоторых наиболее изученных с генетической точки зрения объектов: дрозофилы, кукурузы, томатов, мыши, нейроспоры, кишечной палочки и др.

Генетические карты составляют для каждой пары гомологичных хромосом. Группы сцепления нумеруют.

Для того, чтобы составить карты, необходимо изучить закономерности наследования большого числа генов. У дрозофилы, например, изучено более 500 генов, локализованных в четырех группах сцепления, у кукурузы - более 400 генов, локализованных в десяти группах сцепления и т.д. При составлении генетических карт указывается группа сцепления, полное или сокращенное название генов, расстояние в процентах от одного из концов хромосомы, принятого за нулевую точку; иногда обозначается место центромеры.

У многоклеточных организмов рекомбинация генов бывает реципрокной. У микроорганизмов она может быть односторонней. Так, у ряда бактерий, например у кишечной палочки (Escherichia coli ), перенос генетической информации происходит во время конъюгации клеток. Единственная хромосома бактерии, имеющая форму замкнутого кольца, рвется во время конъюгации всегда в определенной точке и переходит из одной клетки в другую.

Длина переданного участка хромосомы зависит от длительности конъюгации. Последовательность генов в хромосоме оказывается постоянной. В силу этого расстояние между генами на такой кольцевой карте измеряется не в процентах кроссинговера, а в минутах, что отражает продолжительность конъюгации.

Цитологическое доказательство кроссинговера. После того как генетическими методами удалось установить явление кроссинговера, необходимо было получить прямое доказательство обмена участками гомологичных хромосом, сопровождающегося рекомбинацией генов. Наблюдаемые в профазе мейоза картины хиазм могут служить лишь косвенным доказательством этого явления, констатация происшедшего обмена прямым наблюдением невозможна, так как обменивающиеся участками гомологичные хромосомы обычно абсолютна одинаковы но величине и форме.

Чтобы сопоставить цитологические карты гигантских хромо­сом с генетическими, Бриджес предложил воспользоваться коэффициентом кроссинговера.Для этого он разделил общую длину всех хромосом слюнных желез (1180 мкм) на общую длину генетических карт (279 единиц). В среднем это отношение оказалось равным 4,2. Следовательно, каждой единице перекреста на генетической карте соответствует 4,2 мкм на цитологической карте (для хромосом слюнных желез). Зная расстояние между генами на генетической карте какой-либо хромосомы, можно сравнить относительную частоту перекреста в разных ее районах. Например, в Х- хромосоме дрозофилы гены у и ec находятся на расстоянии 5,5%, следовательно, расстояние между ними в гигантской хромосоме должно быть 4,2 мкм Х 5,5 = 23 мкм, но непосредственное измерение дает 30 мкм. Значит, в этом рай­оне Х -хромосомы кроссинговер идет реже средней нормы.

В силу неравномерного осуществления обменов по длине хромосом гены при нанесении их на карту распределяются на ней с разной плотностью. Следовательно, распределение генов на генетических картах можно рассматривать как показатель возможности осуществления перекреста по длине хромосомы.

Механизм кроссинговера. Еще до открытия перекреста хромосом генетическими методами цитологи, изучая профазу мейоза, наблюдали явление взаимного обвивания хромосом, образования ими χ-образных фигур – хиазм (χ-греческая буква «хи»). В 1909 г. Ф.Янсенс высказал предположение, что хиазмы свя­заны с обменом участками хромосом. Впоследствии эти картины послужили дополнительным аргументом в пользу гипотезы генетического перекреста хромосом, выдвинутой Т.Морганом в 1911 г.

Механизм перекреста хромосом связан с поведением гомоло­гичных хромосом в профазе I мейоза.

Кроссинговер происходит на стадии четырех хроматид и приурочен к образованию хиазм.

Если в одном биваленте произошел не один обмен, а два и более, то и этом случае образуется несколько хиазм. Поскольку в биваленте четыре хроматиды, то, очевидно, каждая из них имеет равную вероятность обменяться участками с любой другой. При этом в обмене могут участвовать две, три или четыре хроматиды.

Обмен внутри сестринских хроматид не может приводить к рекомбинациям, поскольку они генетически идентичны, и в силу этого такой обмен не имеет смысла в качестве биологического механизма комбинативной изменчивости.

Соматический (митотический) кроссинговер. Как уже говорилось, кроссинговер происходит в профазе I мейоза при образовании гамет. Однако существует соматический,или митотический, кроссинговер,который осуществляется при митотическом делении соматических клеток главным образом эмбриональных тканей.

Известно, что гомологичные хромосомы в профазе митоза обычно не конъюгируют и располагаются независимо друг от друга. Однако иногда удается наблюдать синапсис гомологичных хромосом и фигуры, похо­жие на хиазмы, но при этом редукции числа хромосом не наблюдается.

Гипотезы о механизме кроссинговера. По поводу механизма перекреста существует несколько гипотез, но ни одна из них не объясняет полностью фактов рекомбинации генов и наблюдаемых при этом цитологических картин.

Согласно гипотезе, предложенной Ф.Янсенсом и развитой К.Дарлингтоном, в процессе синапсиса гомологичных хромосом в биваленте создается динамическое напряжение, возникающее в связи со спирализацией хромосомных нитей, а также при взаимном обвивании гомологов в биваленте. В силу этого напряжения одна из четырех хроматид рвется. Разрыв, нарушая равновесие в биваленте, приводит к компенсирующему разрыву в строго идентичной точке какой-либо другой хроматиды этого же бивалента. Затем происходит реципрокное воссоединение разорванных концов, приводящее к кроссинговеру. Согласно этой гипотезе хиазмы непосредственно связаны с кроссинговером.

По гипотезе К.Сакса хиазмы не являются результатом кроссинговера: сначала образуются хиазмы, а затем происходит обмен. При расхождении хромосом к полюсам вследствие механического напряжения в местах хиазм происходят разрывы и обмен соответствующими участками. После обмена хиазма исчезает.

Смысл другой гипотезы, предложенной Д.Беллингом и модернизированной И.Ледербергом, заключается в том, что процесс репликации ДНК может реципрокно переключаться с одной нити на другую; воспроизведение, начавшись на одной матрице, с какой-то точки переключается на матричную нить ДНК.

Факторы, влияющие на перекрест хромосом. На кроссинговер влияет множество факторов как генетической природы, так и внешней среды. Поэтому в реальном эксперименте о частоте кроссинговера можно говорить, имея в виду все те условия, в которых она была определена. Кроссинговер практически отсутствует между гетероморфными Х - и Y -хромосомами. Если бы он происходил, то хромосомный механизм определения пола постоянно разрушался бы. Блокирование кроссинговера между этими хромосомами связано не только с различием в их величине (оно наблюдается не всегда), но и обусловлено Y -специфичными нуклеотидными последовательностями. Обязательное условие синапса хромосом (или их участков) - гомология нуклеотидных последовательностей.

Для абсолютного большинства высших эукариот характерна примерно одинаковая частота кроссинговера как у гомогаметного, так и гетерогаметного полов. Однако есть виды, у которых кроссинговер отсутствует у особей гетерогаметного пола, в то время как у особей гомогаметного пола он протекает нормально. Такая ситуация наблюдается у гетерогаметных самцов дрозофилы и самок шелкопряда. Существенно, что частота митотического кроссинговера у этих видов у самцов и самок практически одинакова, что указывает на различные элементы контро­ля отдельных этапов генетической рекомбинации в половых и соматических клетках. В гетерохроматических районах, в частности прицентромерных, частота кроссинговера снижена, и поэтому истинное расстояние между генами в этих участках может быть изменено.

Обнаружены гены, выполняющие роль запирателей кроссинговера, но есть также гены, повышающие его частоту. Они иногда могут индуцировать заметное число кроссоверов у самцов дрозофилы. В качестве запирателей кроссинговера могут выступать также хромосомные перестройки, в частности инверсии. Они нарушают нормальную конъюгацию хромосом в зиготене.

Обнаружено, что на частоту кроссинговера влияют возраст организма, а также экзогенные факторы: температура, радиация, концентрация солей, химические мутагены, лекарства, гормоны. При большинстве указанных воздействий частота кроссинговера повышается.

В целом кроссинговер представляет собой один из регулярных генетических процессов, контролируемых многими генами как непосредственно, так и через физиологическое состояние мейотических или митотических клеток. Частота различных типов рекомбинаций (мейотический, митотический кроссинговер и сестринские, хроматидные обмены) может служить мерой действия мутагенов, канцерогенов, антибиотиков и др.

Законы наследования Моргана и вытекающие из них принципы наследственности. Огромную роль в создании и развитии генетики сыграли работы Т.Моргана. Он автор хромосомной теории наследственности. Им были открыты законы наследования: наследование признаков, сцепленных с полом, сцепленное наследование.

Из этих законов вытекает следующие принципы наследственности:

1. Фактор-ген есть определённый локус хромосомы.

2. Аллели гена расположены в идентичных локусах гомологичных хромосом.

3. Гены расположены в хромосоме линейно.

4. Кроссинговер – регулярный процесс обмена генами между гомологичными хромосомами.

Мобильные элементы генома. В 1948 г. американская исследовательница Мак-Клинток открыла у кукурузы гены перемещающиеся из одного участка хромосомы в другой и назвала феномен транспозицией, а сами гены контролириующими элементами (КЭ). 1.Эти элементы могут перемещаться из одного сайта в другой; 2. их встраивание в данный район влияет на активность генов расположенных рядом; 3. утрата КЭ в данном локусе превращает прежде мутабильный локус в стабильный; 4. в сайтах, в которых присутствуют КЭ, могут возникать делеции, транслокации, транспозиции, инверсии, а также разрывы хромосом. В 1983 г. за открытие мобильных генетических элементов Нобелевская премия была присуждена Барбаре Мак-Клинток.

Наличие мобильных элементов в геномах имеет разнообразные последствия:

1. Перемещения и внедрение мобильных элементов в гены может вызывать мутации;

2. Изменение состояния активности генов;

3. Формирование хромосомных перестроек;

4. Формирование теломер.

5. Участие в горизонтальном переносе генов;

6. Транспозоны на основе Р-элемента используют для трансформации у эукариот, клонирования генов, поиска энхансеров и т.д.

У прокариот существуют три типа мобильных элементов – IS-элементы (инсерции), транспозоны, и некоторые бактериофаги. IS-элементы встраиваются в любой участок ДНК, часто вызывают мутации, разрушая кодирующие или регуляторные последовательности, влияют на экспрессию соседних генов. Бактериофаг может вызывать мутации в результате встраивания.

ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ (греческий chroma цвет, окраска + soma тело) - основная теория современной генетики, согласно которой главными материальными носителями наследственности являются хромосомы и расположенные на них в определенной линейной последовательности гены.

Основы теории сформулированы и экспериментально подтверждены Т. Морганом и его сотрудниками Стертевантом (A. Sturtevant), Меллером (H. J. Muller) и Бриджизом (С. В. Bridges) в начале 20 века. Законы наследственности и изменчивости определяются по хромосомной теории наследственности поведением хромосом в митозе (см.), мейозе (см.) и при образовании зиготы (см. Менделя законы).

В 1865 году Г. Мендель, изучая численные соотношения качественных признаков в гибридном потомстве, полученном от скрещивания отличающихся друг от друга растений гороха, высказал предположение о наличии наследственных факторов (позже названных генами) и чистоты половых клеток - гамет (см. Гаметы , Ген). Согласно этой гипотезе, проявление каждого наследственного признака у организмов с половым размножением контролируется парой наследственных факторов или по современной терминологии парой аллелей (см. Аллели) одного гена, один из которых передается зародышу яйцеклеткой, а другой - спермием. В процессе роста и развития все пары аллелей различных генов передаются от клетки к клетке, репродуцируясь (см. Репродукция хромосом) в каждом клеточном цикле, и обусловливают проявление соответствующих наследственных признаков. При созревании половых клеток все пары аллелей распределяются таким образом, что зрелые гаметы содержат только по одному аллелю для каждого наследственного признака, то есть являются «чистыми» (негибридными). Распределение членов каждой пары аллелей между созревающими половыми клетками происходит независимо от распределения членов других пар. В процессе оплодотворения мужские и женские гаметы сливаются, а их одинарные наборы объединяются, образуя парный набор нового поколения. Эта гипотеза Г. Менделя предвосхитила открытие хромосом, механизмов деления клеток и цитологических основ оплодотворения. В последней четверти 19 века начале 20 века Страсбургер (E. Strasburger), Бовери (Th. Boveri) и Уилсон (Е. В. Wilson) и другие ученые открыли существование хромосом (см.) и доказали, что каждому биол. виду свойствен определенный, постоянный хромосомный набор (см.). Было обнаружено, что парность набора восстанавливается в процессе оплодотворения, хромосомы разных пар неидентичны, индивидуальны и для осуществления нормального онтогенеза требуется полный хромосомный набор. Впоследствии были изучены механизмы поведения хромосом в митозе и мейозе. Сеттон (W. Sutton) в 1902 году обобщил данные о строении и функционировании хромосом и указал на полный параллелизм хромосомных циклов с поведением менделевских наследственных факторов.

Несоответствие обычно малого числа хромосом всегда большому числу наследственных признаков, которые, по Менделю, должны независимо рекомбинировать (см. Рекомбинация), X. де Фрис объяснил тем, что каждая из хромосом содержит большое число наследственных факторов, а в мейозе гомологичные (структурно идентичные) хромосомы свободно обмениваются аллелями, это и обеспечивает независимое комбинирование разных пар аллелей, расположенных в одной и той же паре гомологичных хромосом. Бейтсон (W. Bateson), Сондерс (Е. В. Saunders) и Паннет (R. С. Punnet) показали, что закон независимого комбинирования не является универсальным: некоторые пары наследственных признаков рекомбинируют реже ожидаемого и сохраняются преимущественно в тех сочетаниях, в каких они присутствовали у исходных родительских форм. Это явление было названо ими сцеплением признаков (и соответствующих наследственных факторов, генов). При этом сцепление неаллельных генов не бывает абсолютным, а сила сцепления одной пары генов относительно постоянна и не зависит от того, в каком из возможных сочетаний данные гены присутствовали у исходных родительских форм. Обоснованием хромосомной теории наследственности явилось открытие хромосомных механизмов определения пола (см. Пол, Хромосомы).

Решающие доказательства хромосомной теории наследственности были получены Т. Морганом и его сотрудниками при изучении наследования признаков у плодовой мушки дрозофилы (см.), когда было показано, что совокупность наследственных признаков дрозофилы распадается на неперекрывающиеся группы наследуемых признаков (групп сцепления), причем в пределах группы все признаки наследуются сцепленно, а любой признак одной группы независимо рекомбинирует с любым признаком другой. Общее число групп сцепления - четыре - оказалось равным числу хромосом в гаплоидном наборе. Наследование признаков, принадлежащих к трем из четырех группа сцепления у дрозофилы, происходило независимо от пола. Признаки же четвертой группы наследовались сцепленно с полом. Принадлежность генов, наследуемых сцепленно с полом, к X-хромосоме была доказана Бриджизом в прямых экспериментах и одновременно им было открыто новое явление - не-расхождение хромосом, ведущее к анеуплоидии (см. Хромосомный набор). У человека анеуплоидия является этиологической основой хромосомных болезней (см.).

Важным экспериментальным подтверждением хромосомной теории наследственности явилось установление расположения генов на хромосомах - построение генетических карт хромосом (см. Хромосомная карта). Параллельный генетический и цитологический анализ гибридного потомства показал, что рекомбинация исследуемых сцепленных внешних наследственных признаков неизменно сопровождается рекомбинацией соответствующих маркерных хромосом.

Т. Морган и его сотрудники высказали предположение, что частота рекомбинации сцепленных генов пропорциональна расстоянию между ними на хромосоме. В сериях скрещиваний они определили частоту рекомбинации между всеми известными им неаллельными генами во всех четырех группах сцепления у дрозофилы. В результате гены каждой группы сцепления выстроились в единственно возможный неравномерный линейный ряд, получивший название генетической карты хромосом. Были сделаны выводы о том, что гены на хромосомах расположены в постоянной последовательности во вполне определенных точках (локусах) и что обмен между генами не затрагивает их целостности. Позже были открыты структурные перестройки хромосом (см. Мутация), в результате которых целые блоки хромосомного материала могут перемещаться как в пределах одной хромосомы - инверсии (см.), транспозиции, так и между хромосомами - транслокации (см.), что приводит соответственно к изменению локализации генов.

Установление полного параллелизма в последовательности генов на генетических и цитологических картах хромосом послужило окончательным обоснованием хромосомной теории наследственности. В настоящее время этот параллелизм обнаружен не только у дрозофилы, но и у всех генетически изученных видов растений, микроорганизмов и животных, в том числе и у человека. Открытие цитоплазматической наследственности не противоречит хромосомной теории, так как по этому механизму наследуется менее 1 % всех признаков (см. Наследственность цитоплазматическая). Хромосомная теория наследственности объясняет все известные закономерности взаимодействия генов. Хромосомная теория наследственности служит не только для теоретического обоснования механизмов наследственности и изменчивости, но и имеет большое практическое значение для точного установления этиологических факторов генетически обусловленной патологии у человека.

Библиогр.: Бочков Н. П., Захаре в А. Ф. и Иванов В. И. Медицинская генетика, М., 1984; Гершензон С. М. Основы современной генетики, Киев, 1983; Морган Т. Г. Структурные основы наследственности, пер. с англ., М. - Пг., 1924; М о r g a n Т. Н. а. о. The mechanism of mendelian heredity, N. Y., 1915; Sturt evantA.H. A history of genetics, N. Y., 1965; Wilson E. B.The cell in development and heredity, N. Y., 1934.

Заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, т.е. преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Х. т. н. возникла в начале 20 в. на основе клеточной теории и использования для изучения наследственных свойств организмов гибридологического анализа.

В 1902 У. Сеттон в США, обративший внимание на параллелизм в поведении хромосом и менделевских т. н. "наследственных факторов", и Т. Бовери в Германии выдвинули хромосомную гипотезу наследственности, согласно которой менделевские наследственные факторы (название впоследствии генами) локализованы в хромосомах. Первые подтверждения этой гипотезы были получены при изучении генетического механизма определения пола у животных, когда было выяснено, что в основе этого механизма лежит распределение половых хромосом среди потомков. Дальнейшее обоснование Х. т. н. принадлежит американскому генетику Т. Х. Моргану , который заметил, что передача некоторых генов (например, гена, обусловливающего белоглазие у самок дрозофилы при скрещивании с красноглазыми самцами) связана с передачей половой Х-хромосомы, т. е. что наследуются признаки, сцепленные с полом (у человека известно несколько десятков таких признаков, в том числе некоторые наследственные дефекты — дальтонизм, гемофилия и др.).

Доказательство Х. т. н. было получено в 1913 американским генетиком К. Бриджесом, открывшим нерасхождение хромосом в процессе мейоза у самок дрозофилы и отметившим, что нарушение в распределении половых хромосом сопровождается изменениями в наследовании признаков, сцепленных с полом.

С развитием Х. т. н. было установлено, что гены, расположенные в одной хромосоме, составляют одну группу сцепления и должны наследоваться совместно; число групп сцепления равно числу пар хромосом, постоянному для каждого вида организмов; признаки, зависящие от сцепленных генов, также наследуются совместно. Вследствие этого закон независимого комбинирования признаков должен иметь ограниченное применение; независимо должны наследоваться признаки, гены которых расположены в разных (негомологичных) хромосомах. Явление неполного сцепления генов (когда наряду с родительскими сочетаниями признаков в потомстве от скрещиваний обнаруживаются и новые, рекомбинантные, их сочетания) было подробно исследовано Морганом и его сотрудниками (А. Г. Стёртевантом и др.) и послужило обоснованием линейного расположения генов в хромосомах. Морган предположил, что сцепленные гены гомологичных хромосом, находящиеся у родителей в сочетаниях и , в мейозе у гетерозиготной формы ® могут меняться местами, в результате чего наряду с гаметами АВ и ab образуются гаметы Ab и аВ. Подобные перекомбинации происходят благодаря разрывам гомологичных хромосом на участке между генами и последующему соединению разорванных концов в новом сочетании: Реальность этого процесса, названного перекрестом хромосом, или кроссинговером, была доказана в 1933 нем, учёным К. Штерном в опытах с дрозофилой и американскими учёными Х. Крейтономи Б. Мак-Клинток — с кукурузой. Чем дальше друг от друга расположены сцепленные гены, тем больше вероятность кроссинговера между ними. Зависимость частоты кроссинговера от расстояний между сцепленными генами была использована для построения генетических карт хромосом. В 30-х гг. 20 в. Ф. Добржанский показал, что порядок размещения генов на генетических и цитологических картах хромосом совпадает.


Согласно представлениям школы Моргана, гены являются дискретными и далее неделимыми носителями наследственной информации. Однако открытие в 1925 советскими учёными Г. А. Надсоном и Г. С. Филипповым, а в 1927 американским учёным Г. Мёллером влияния рентгеновских лучей на возникновение наследственных изменений (мутаций) у дрозофилы, а также применение рентгеновских лучей для ускорения мутационного процесса у дрозофилы позволили советским учёным А. С. Серебровскому, Н. П. Дубинину и др. сформулировать в 1928—30 представления о делимости гена на более мелкие единицы, расположенные в линейной последовательности и способные к мутационным изменениям. В 1957 эти представления были доказаны работой американского учёного С. Бензера с бактериофагом Т4. Использование рентгеновских лучей для стимулирования хромосомных перестроек позволило Н. П. Дубинину и Б. Н. Сидорову обнаружить в 1934 эффект положения гена (открытый в 1925 Стёртевантом), т. е. зависимость проявления гена от места расположения его на хромосоме. Возникло представление о единстве дискретности и непрерывности в строении хромосомы.

Х. т. н. развивается в направлении углубления знаний об универсальных носителях наследственной информации — молекулах дезоксирибонуклеиновой кислоты (ДНК). Установлено, что непрерывная последовательность пуриновых и пиримидиновых оснований вдоль цепи ДНК образует гены, межгенные интервалы, знаки начала и конца считывания информации в пределах гена; определяет наследственный характер синтеза специфических белков клетки и, следовательно, наследственный характер обмена веществ. ДНК составляет материальную основу группы сцепления у бактерий и многих вирусов (у некоторых вирусов носителем наследственной информации является рибонуклеиновая кислота); молекулы ДНК, входящие в состав митохондрий, пластид и др. органоидов клетки, служат материальными носителями цитоплазматической наследственности.

Х. т. н., объясняя закономерности наследования признаков у животных и растительных организмов, играет важную роль в с.-х. науке и практике. Она вооружает селекционеров методами выведения пород животных и сортов растений с заданными свойствами. Некоторые положения Х. т. н. позволяют более рационально вести с.-х. производство. Так, явление сцепленного с полом наследования ряда признаков у с.-х. животных позволило до изобретения методов искусственного регулирования пола у тутового шелкопряда выбраковывать коконы менее продуктивного пола, до разработки способа разделения цыплят по полу исследованием клоаки — отбраковывать петушков и т.п. Важнейшее значение для повышения урожайности многих с.-х. культур имеет использование полиплоидии. На знании закономерностей хромосомных перестроек основывается изучение наследственных заболеваний человека.

Закономерности, открытые школой Моргана, а затем подтвержденные н углубленные на многочисленных объектах, известны под общим назва-нием хромосомной теории наследственности.

Основные положения ее следующие:

1. Гены находятся в хромосомах; каждая хромосома представляет со-бой группу сцепления генов; число групп сцепления у каждого вида рав-но числу пар хромосом.

2. Каждый ген в хромосоме занимает определенное место (локус); гены в хромосомах расположены линейно.

3. Между гомологичными хромосомами происходит обмен аллельными генами.

4. Расстояние между генами (локусами) в хромосоме пропорциональ-но числу кроссинговера между ними.

1) Гены находятся в хромосомах.

2) Гены в хромосомах расположены линейно друг за другом и не перекрываются.

3) Гены, расположенные в одной хромосоме, называются сцепленными и составляют группу сцепления. Поскольку в гомологичные хромосомы входят аллельные гены, отвечающие за развитие одних и тех же признаков, в группу сцепления включают обе гомологичные хромосомы; таким образом, количество групп сцепления соответствует числу хромосом в гаплоидном наборе. В пределах каждой группы сцепления вследствие кроссинговера происходит перекомбинирование генов.

4) Закон Моргана – «Гены, расположенные в одной хромосоме, наследуются совместно».

Полное сцепление генов. Если гены расположены в хромосоме непосредственно друг за другом, то кроссинговер между ними практически невероятен. Они почти всегда наследуются вместе, и при анализирующем скрещивании наблюдается расщепление в соотношении 1:1

Неполное сцепление генов. Если гены в хромосомах расположены на некотором расстоянии друг от друга, то частота кроссинговера между ними возрастает и, следовательно, появляются кроссоверные хромосомы, несущие новые комбинации генов: Аb и аВ

Их количество прямо пропорционально расстоянию между генами. При неполном сцеплении в потомстве появляется некоторое количество кроссоверных форм, причем их количество зависит от расстояния между генами. Процент кроссоверных форм указывает на расстояние между генами, расположенными в одной хромосоме.

Взаимодействия неаллельных генов

Комплементарность – явление при котором ген одной аллельной пары способствует проявлению генов другой аллельной пары.

1) У душистого горошка есть ген А, обусловливающий синтез бесцветного предшественника пигмента – пропигмента. Ген В определяет синтез фермента, под действием которогo из пропигмента образуется пигмент. Цветки душистого горошка с генотипом ааВВ и АаЬЬ имеют белый цвет: в первом случае есть фермент, но нет пропигмента, во втором – есть пропигмент. но нет фермента, переводящего пропигмент в пигмент:

2) Новообразование признака – наследование формы гребня у кур некоторых пород. В результате различных комбинаций генов возникают четыре варианта формы гребня:

Pиc. Форма гребня у петухов: А – простой (aabb); Б – гороховидный (ааВВ или ааВВ); В – ореховидный (ААВВ или АаВЬ); Г – розовидный (ААЬЬ или Aabb)

Эпистаз – явление, при котором ген одной аллельной пары препятствует проявлению генов из другой аллельной пары, например развитие окраски плодов у тыквы. Окрашенными плоды тыквы будут только в том случае, если в генотипе-растении отсутствует доминантный ген В из другой аллельной пары. Этот ген подавляет развитие окраски, у плодов тыквы, а его рецессивная аллель b не мешает окраске развиваться (Aabb – желтые плоды; aabb – зеленые плоды; ААВВ и ааВВ – белые плоды).

Полимерия – явление, при котором степень выраженности признака зависим от действия нескольких различных пар аллельных генов причем чем больше в генотипе доминантных генов каждой пары, тем ярче выражен признак. У пшеницы красный цвет зерен определяется двумя генами: a1, a2;. Неаллельные гены обозначены здесь одной буквой А(а) потому, что определяют развитие одного признака. При генотипе А1А1А2А2 окраска зерен наиболее интенсивная, при генотипе а1а1а2а2 они имеют белый цвет. В зависимости от числа доминантных генов в генотипе можно получить все переходы между интенсивно красной и белой окраской:

Рис. 26. Наследование окраски зерен пшеницы (полимерия)

Хромосомная теория наследственности

Сцепленное наследование признаков. Как мы отмечали в прошлой лекции, независимое наследование признаков при ди- и полигибридном скрещивании бывает в случае, если гены этих признаков локализованы в разных хромосомах. Но количество хромосом ограничено по сравнению с количеством признаков. У большинства животных организмов число хромосом не превышает 100. В то же время число признаков, каждый из которых контролируется по крайней мере одним геном, значительно больше. Так, например, у дрозофилы изучено 1000 генов, которые локализованы в четырех парах хромосом, у человека известно несколько тысяч генов при 23 парах хромосом и т.д. Отсюда следует, что в каждой паре хромосом располагается много генов. Естественно, что между генами, которые находятся в одной хромосоме, наблюдается сцепление, и при образовании половых клеток они должны передаваться вместе.

Сцепленное наследование признаков открыли в 1906 г, английские генетики В.Бетсон и Р.Пеннет при изучении наследования признаков у душистого горошка, но они не смогли дать теоретическое объяснение этому явлению. Природу сцепленного наследования выяснили американские исследователи Т. Морган и его сотрудники С. Бриджес и А. Стертевант в 1910 году. В качестве объекта исследований они избрали плодовую мушку дрозофилу очень удобную для генетических опытов. Достоинства этого объекта исследования следующие: малое число хромосом (4 лары), высокая плодовитость, быстрая сменяемость поколений (12-14 суток). Мухи дрозофилы серого цвета, с красными глазами, имеют маленькие размеры (около 3 мм), легко разводятся в лабораторных условиях на простых по составу питательных средах. У дрозофилы выявлено большое число мутантных форм. Мутации затрагивают окраску глаз и тела, форму и размер крыльев, расположение щетинок и др.

Изучение наследования разных пар признаков и их расщепления при дигибридномскрещивании позволило обнаружить наряду с независимым комбинированием признаков явление сцепленного наследования. На основании изучения большого числа признаков было установлено, что все они распределяются на четыре группы сцепления в соответствии с числом хромосом у дрозофилы. Сцепленное наследование признаков связано с локализацией группы определенных генов в одной хромосоме.

Мысль о локализации генов в хромосомах была высказана Сеттоном еще в 1902 году, когда им был обнаружен параллелизм в поведении хромосом в мейозе и наследовании признаков у кузнечика.

Наиболее четкая разница в поведении сцепленных и независимо наследующихся генов выявляется при проведении анализирующего скрещивания.

Рассмотрим это на примере. В первом случае возьмем признаки, гены которых расположены в разных хромосомах.

Р === === х === ===

Гаметы: АВ , Ав, аВ, ав ав

А В А в а В а в

F === === ; === === ; === === ; === ===

а в а в а в а в

В результате мы получили потомство четырех фнотипических классов в соотношении: 1: 1: 1: 1. Другие результаты будут, если гены А и В локализованы в одной хромосоме.

Р =*===*= х =*===*=

Гаметы: А В, а в а в

F =*===*= ; =*===*=

Таким образом, если гены находятся в одной хромосоме в потомстве при анализирующем скрещивании, мы получим два класса потомков похожих на отца и на мать и не будет потомков с признаками отца и матери одновременно.

Опыты, подтверждающие сцепленное наследование признаков, были проведены Т.Морганом на дрозофиле. Для скрещивания были взяты особи серые с нормальными крыльями (доминантные признаки) и черные с зачаточными крыльями (рецессивные признаки). В результате опытов были получены потомки только серые крылатые и черные с зачаточными крыльями.

На основании проведенных экспериментов Т.Морган сформулировал закон сцепленного наследования признаков: признаки, гены которых располагаются в одной хромосоме, наследуются сцепленно.

Неполное сцепление. Явление кроссинговера . Наряду с полным сцепленным наследованием признаков Т.Морган в своих опытах с дрозофилой обнаружил и неполное сцепленное наследование. При неполном сцепленном наследовании одновременно с формами, похожими на родителей, были обнаружены организмы, у которых наблюдались признаки обоих родителей. Однако соотношение этих форм не было равным как при независимом комбинировании. В потомстве явно преобладали формы, схожие с родителями, а организмов рекомбинантов было значительно меньше.

Схема неполного сцепленного наследования признаков.

Р =*===*= х =*===*=

Гаметы: А В, а в, а В, А в а в

без кроссин. кроссоверные

А В а в а В А в

F ====; ====; ====; ====

а в а в а в а в

рекомбинанты

Объяснить этот факт можно следующим образом. Если гены А и В расположены в одной хромосоме, а в гомологичной ей хромосоме расположены рецессивные аллели а и в, то отделиться друг от друга и вступить в новые сочетания гены А и В могут только в том случае, если хромосома, в которой они расположены, будет разорвана на участке между этими генами и затем соединена с участком гомологичной хромосомы. В 1909 году Ф. Янсенс, изучая мейоз у земноводных, обнаружил в диплотене профазы 1 хиазмы (перекресты хромосом) и высказал предположение, что хромосомы взаимно обмениваются участками. Т.Морган развил это представление в идею об обмене генами приконьюгации гомологичных хромосом, а неполное сцепление было объяснено им как результат такого обмена и названо кроссинговером.

Схема кроссинговера.

А а А а А а

В в в В в В

Кроссинговер может быть одинарным, как показано на схеме, двойным и множественным. Кроссинговер возник в процессе эволюции. Он приводит к появлению организмов с новыми сочетаниями признаков, т.е. к увеличению изменчивости. Изменчивостьже является одним из движущих факторов эволюции.

Частота кроссинговера определяется по формуле и выражается в процентах или морганидах (1 морганида равна 1% перекреста).

число рекомбинантов

Р кроссинговера = х 100%

общее число потомков

Если, например, общее число потомков, полученное в результате анализирующего скрещивания, равно 800, а число кроссоверных форм – 80, то

частота кроссинговера будет:

Р кросс. = х 100% = 10% (или 10 морганид)

Величина перекреста зависит от расстояния между генами. Чем дальше удалены гены друг от друга, тем чаще происходит перекрест. Установлено, что количество кроссоверных особей к общему числу потомков никогда не превышает 50%, так как при очень больших расстояниях между генами чаше происходит двойной кроссинговер и часть кроссоверных особей остается неучтенной.

Явление кроссинговера, установленное генетическими методами на дрозофиле, нужно было доказать цитологически. Это сделали в начале 30 годов Штерн на дрозофиле и Б. Мак-Клинтон на кукурузе. Для этого были получены гетероморфные хромосомы, т.е. хромосомы, различающиеся внешне с локализацией в них известных генов. В этом случае у кроссоверных форм можно было видеть рекомбинантные хромосомы и сомнений о наличии кроссинговера не возникало.

Процесс протекания кроссинговера зависит от многих факторов. Большое влияние на кроссинговер оказывает пол. Так, у дрозофилы кроссинговер происходит только у самок. У тутового шелкопряда кроссинговер отмечается у самцов. У животных и человека кроссингавер происходит у обоих полов. На частоту кроссинговера влияют также возраст организмов и условия среды.

К. Штерн показал, что кроссинговер может возникать не только в мейозе, при развитии половых клеток, но в некоторых случаях и в обычных соматических клетках. П о-видимому соматический кроссинговер широко распостранен в природе.

Линейное расположение генов в хромосомах. Карты хромосом . После того как была установлена связь генов с хромосомами и обнаружено, что частота кроссинговера всегда вполне определенная величина для каждой пары генов, расположенных в одной группе сцепления, встал вопрос о пространственном расположении генов в хромосомах. На основании многочисленных генетических исследований Морган и его ученик Стертевант выдвинули гипотезу линейного расположения генов в хромосоме. Изучение взаимоотношения между тремя генами при неполном сцеплении показало, что частота перекреста между первым и вторым, вторым и третьим, первым и третьим генами равна сумме или разности между ними. Так, если в одной группе сцепления расположены три гена - А, В и С, то процент перекреста между генами АС равен сумме процентов перекреста между генами АВ и ВС, частота перекреста между генами АВ оказалась равной АС - ВС, а между генами ВС = АС - АВ. Приведенные данные соответствуют геометрической закономерности в расстояниях между тремя точками на прямой. На этом основании был сделан вывод, что гены расположены в хромосомах в линейной последовательности на определенном расстоянии друг от друга. Используя эту закономерность, можно строить карты хромосом.

Карта хромосомы это схема, на которой показано, какие гены локализованы в данной хромосоме, в каком поряке и на каком расстоянии друг от друга они располагаются. Для построения карты хромосом проводят анализирующее скрещивание и определяют частоту кроссинговера. Например, установлено, что в хромосоме локализованы три гена М, N и К. Частота перекреста между генами М и N составляет 12%, между М и К - 4 % и между N и К - 8%. Чем больше частота кроссинговера, тем дальше друг от друга расположены гены. Используя эту закономерность, строим карту хромосомы.

После построения генетических карт встал вопрос о том, отвечает ли расположение генов в хромосоме, определенное на основании частоты кроссинговера, истинному расположению. С этой цепью генетические карты нужно было сравнить с цитологическими.

В 30 годах нашего столетия Пайнтер открыл в слюнных железах дрозофилы гигантские хромосомы, строение которых можно было изучать под микроскопом. Хромосомы эти имеют характерный для них поперечный рисунок в виде дисков разной толщины и формы. Каждая хромосома по длине имеет специфические рисунки дисков, что позволяет отличать разные ее участки друг от друга. Появилась возможность сравнить генетические карты с фактическим расположением генов в хромосомах. Материалом для проверки служили хромосомы, у которых вследствие мутаций возникли различные хромосомные перестройки:не хватало отдельных дисков, или они были удвоены. Диски служили маркерами, с их помощью определяли характер хромосомных перестроек и место расположения генов, о существовании которых было известно на основании данных генетического анализа. При сопоставлении генетических карт хромосом с цитологическими было установлено, что каждый ген находится в определенном месте (локусе) хромосомы и что гены в хромосомах расположены в определенной линейной последовательности. В то же время было обнаружено, что физические расстояния между генами на генетическойкарте не вполне соответствуют установленным цитологически. Однако это не снижает ценности генетических карт хромосом для предсказания появления особей с новыми сочетаниями признаков.

На основании анализа результатов многочисленных исследований на дрозофиле и других объектах Т. Морган сформулировал хромосомную теорию наследственности, сущность которой заключается в следующем:

Материальные носители наследственности - гены находятся в хромосомах, располагаются в них линейно на определенном расстоянии друг от друга;

Гены, расположенные в одной хромосоме, относятся к одной группе

сцепления. Число групп сцепления соответствуют гаплоидному числу хромосом;

Признаки, гены которых находятся в одной хромосоме, наследуются сцепленно;

Неполное сцепленное наследование признаков связано с явлением кроссинговера, частота которого зависит от расстояния между генами;

На основании линейного расположения генов в хромосоме и частоты кроссинговера как показателя расстояния между генами можно построить карты хромосом.