Интегрирование простейших (элементарных) дробей. Интегрирование — MT1205: Математический анализ для экономистов — Бизнес-информатика Первообразная дроби

Материал, изложенный в этой теме, опирается на сведения, представленные в теме "Рациональные дроби. Разложение рациональных дробей на элементарные (простейшие) дроби" . Очень советую хотя бы бегло просмотреть эту тему перед тем, как переходить к чтению данного материала. Кроме того, нам будет нужна таблица неопределенных интегралов .

Напомню пару терминов. О их шла речь в соответствующей теме , посему тут ограничусь краткой формулировкой.

Отношение двух многочленов $\frac{P_n(x)}{Q_m(x)}$ называется рациональной функцией или рациональной дробью. Рациональная дробь называется правильной , если $n < m$, т.е. если степень многочлена, стоящего в числителе, меньше степени многочлена, стоящего в знаменателе. В противном случае (если $n ≥ m$) дробь называется неправильной .

Элементарными (простейшими) рациональными дробями именуют рациональные дроби четырёх типов:

  1. $\frac{A}{x-a}$;
  2. $\frac{A}{(x-a)^n}$ ($n=2,3,4, \ldots$);
  3. $\frac{Mx+N}{x^2+px+q}$ ($p^2-4q < 0$);
  4. $\frac{Mx+N}{(x^2+px+q)^n}$ ($p^2-4q < 0$; $n=2,3,4,\ldots$).

Примечание (желательное для более полного понимания текста): показать\скрыть

Зачем нужно условие $p^2-4q < 0$ в дробях третьего и четвертого типов? Рассмотрим квадратное уравнение $x^2+px+q=0$. Дискриминант этого уравнения $D=p^2-4q$. По сути, условие $p^2-4q < 0$ означает, что $D < 0$. Если $D < 0$, то уравнение $x^2+px+q=0$ не имеет действительных корней. Т.е. выражение $x^2+px+q$ неразложимо на множители. Именно эта неразложимость нас и интересует.

Например, для выражения $x^2+5x+10$ получим: $p^2-4q=5^2-4\cdot 10=-15$. Так как $p^2-4q=-15 < 0$, то выражение $x^2+5x+10$ нельзя разложить на множители.

Кстати сказать, для этой проверки вовсе не обязательно, чтобы коэффициент перед $x^2$ равнялся 1. Например, для $5x^2+7x-3=0$ получим: $D=7^2-4\cdot 5 \cdot (-3)=109$. Так как $D > 0$, то выражение $5x^2+7x-3$ разложимо на множители.

Примеры рациональных дробей (правильных и неправильных), а также примеры разложения рациональной дроби на элементарные можно найти . Здесь нас будут интересовать лишь вопросы их интегрирования. Начнём с интегрирования элементарных дробей. Итак, каждый из четырёх типов указанных выше элементарных дробей несложно проинтегрировать, используя формулы, указанные ниже. Напомню, что при интегрировании дробей типа (2) и (4) предполагается $n=2,3,4,\ldots$. Формулы (3) и (4) требуют выполнение условия $p^2-4q < 0$.

\begin{equation} \int \frac{A}{x-a} dx=A\cdot \ln |x-a|+C \end{equation} \begin{equation} \int\frac{A}{(x-a)^n}dx=-\frac{A}{(n-1)(x-a)^{n-1}}+C \end{equation} \begin{equation} \int \frac{Mx+N}{x^2+px+q} dx= \frac{M}{2}\cdot \ln (x^2+px+q)+\frac{2N-Mp}{\sqrt{4q-p^2}}\arctg\frac{2x+p}{\sqrt{4q-p^2}}+C \end{equation}

Для $\int\frac{Mx+N}{(x^2+px+q)^n}dx$ делается замена $t=x+\frac{p}{2}$, после полученный интерал разбивается на два. Первый будет вычисляться с помощью внесения под знак дифференциала, а второй будет иметь вид $I_n=\int\frac{dt}{(t^2+a^2)^n}$. Этот интеграл берётся с помощью рекуррентного соотношения

\begin{equation} I_{n+1}=\frac{1}{2na^2}\frac{t}{(t^2+a^2)^n}+\frac{2n-1}{2na^2}I_n, \; n\in N \end{equation}

Вычисление такого интеграла разобрано в примере №7 (см. третью часть).

Схема вычисления интегралов от рациональных функций (рациональных дробей):

  1. Если подынтегральная дробь является элементарной, то применить формулы (1)-(4).
  2. Если подынтегральная дробь не является элементарной, то представить её в виде суммы элементарных дробей, а затем проинтегрировать, используя формулы (1)-(4).

Указанный выше алгоритм интегрирования рациональных дробей имеет неоспоримое достоинство - он универсален. Т.е. пользуясь этим алгоритмом можно проинтегрировать любую рациональную дробь. Именно поэтому почти все замены переменных в неопределённом интеграле (подстановки Эйлера, Чебышева, универсальная тригонометрическая подстановка) делаются с таким расчётом, чтобы после оной замены получить под интералом рациональную дробь. А к ней уже применить алгоритм. Непосредственное применение этого алгоритма разберём на примерах, предварительно сделав небольшое примечание.

$$ \int\frac{7dx}{x+9}=7\ln|x+9|+C. $$

В принципе, этот интеграл несложно получить без механического применения формулы . Если вынести константу $7$ за знак интеграла и учесть, что $dx=d(x+9)$, то получим:

$$ \int\frac{7dx}{x+9}=7\cdot \int\frac{dx}{x+9}=7\cdot \int\frac{d(x+9)}{x+9}=|u=x+9|=7\cdot\int\frac{du}{u}=7\ln|u|+C=7\ln|x+9|+C. $$

Для детальной информации рекомедую посмотреть тему . Там подробно поясняется, как решаются подобные интегралы. Кстати, формула доказывается теми же преобразованиями, что были применены в этом пункте при решении "вручную".

2) Вновь есть два пути: применить готовую формулу или обойтись без неё. Если применять формулу , то следует учесть, что коэффициент перед $x$ (число 4) придется убрать. Для этого оную четвёрку просто вынесем за скобки:

$$ \int\frac{11dx}{(4x+19)^8}=\int\frac{11dx}{\left(4\left(x+\frac{19}{4}\right)\right)^8}= \int\frac{11dx}{4^8\left(x+\frac{19}{4}\right)^8}=\int\frac{\frac{11}{4^8}dx}{\left(x+\frac{19}{4}\right)^8}. $$

Теперь настал черёд и для применения формулы :

$$ \int\frac{\frac{11}{4^8}dx}{\left(x+\frac{19}{4}\right)^8}=-\frac{\frac{11}{4^8}}{(8-1)\left(x+\frac{19}{4} \right)^{8-1}}+C= -\frac{\frac{11}{4^8}}{7\left(x+\frac{19}{4} \right)^7}+C=-\frac{11}{7\cdot 4^8 \left(x+\frac{19}{4} \right)^7}+C. $$

Можно обойтись и без применения формулы . И даже без вынесения константы $4$ за скобки. Если учесть, что $dx=\frac{1}{4}d(4x+19)$, то получим:

$$ \int\frac{11dx}{(4x+19)^8}=11\int\frac{dx}{(4x+19)^8}=\frac{11}{4}\int\frac{d(4x+19)}{(4x+19)^8}=|u=4x+19|=\\ =\frac{11}{4}\int\frac{du}{u^8}=\frac{11}{4}\int u^{-8}\;du=\frac{11}{4}\cdot\frac{u^{-8+1}}{-8+1}+C=\\ =\frac{11}{4}\cdot\frac{u^{-7}}{-7}+C=-\frac{11}{28}\cdot\frac{1}{u^7}+C=-\frac{11}{28(4x+19)^7}+C. $$

Подробные пояснения по нахождению подобных интегралов даны в теме "Интегрирование подстановкой (внесение под знак дифференциала)" .

3) Нам нужно проинтегрировать дробь $\frac{4x+7}{x^2+10x+34}$. Эта дробь имеет структуру $\frac{Mx+N}{x^2+px+q}$, где $M=4$, $N=7$, $p=10$, $q=34$. Однако чтобы убедиться, что это действительно элементарная дробь третьего типа, нужно проверить выполнение условия $p^2-4q < 0$. Так как $p^2-4q=10^2-4\cdot 34=-16 < 0$, то мы действительно имеем дело с интегрированием элементарной дроби третьего типа. Как и в предыдущих пунктах есть два пути для нахождения $\int\frac{4x+7}{x^2+10x+34}dx$. Первый путь - банально использовать формулу . Подставив в неё $M=4$, $N=7$, $p=10$, $q=34$ получим:

$$ \int\frac{4x+7}{x^2+10x+34}dx = \frac{4}{2}\cdot \ln (x^2+10x+34)+\frac{2\cdot 7-4\cdot 10}{\sqrt{4\cdot 34-10^2}} \arctg\frac{2x+10}{\sqrt{4\cdot 34-10^2}}+C=\\ =2\cdot \ln (x^2+10x+34)+\frac{-26}{\sqrt{36}} \arctg\frac{2x+10}{\sqrt{36}}+C =2\cdot \ln (x^2+10x+34)+\frac{-26}{6} \arctg\frac{2x+10}{6}+C=\\ =2\cdot \ln (x^2+10x+34)-\frac{13}{3} \arctg\frac{x+5}{3}+C. $$

Решим этот же пример, но без использования готовой формулы. Попробуем выделить в числителе производную знаменателя. Что это означает? Мы знаем, что $(x^2+10x+34)"=2x+10$. Именно выражение $2x+10$ нам и предстоит вычленить в числителе. Пока что числитель содержит лишь $4x+7$, но это ненадолго. Применим к числителю такое преобразование:

$$ 4x+7=2\cdot 2x+7=2\cdot (2x+10-10)+7=2\cdot(2x+10)-2\cdot 10+7=2\cdot(2x+10)-13. $$

Теперь в числителе появилось требуемое выражение $2x+10$. И наш интеграл можно переписать в таком виде:

$$ \int\frac{4x+7}{x^2+10x+34} dx= \int\frac{2\cdot(2x+10)-13}{x^2+10x+34}dx. $$

Разобьём подынтегральную дробь на две. Ну и, соответственно, сам интеграл тоже "раздвоим":

$$ \int\frac{2\cdot(2x+10)-13}{x^2+10x+34}dx=\int \left(\frac{2\cdot(2x+10)}{x^2+10x+34}-\frac{13}{x^2+10x+34} \right)\; dx=\\ =\int \frac{2\cdot(2x+10)}{x^2+10x+34}dx-\int\frac{13dx}{x^2+10x+34}=2\cdot\int \frac{(2x+10)dx}{x^2+10x+34}-13\cdot\int\frac{dx}{x^2+10x+34}. $$

Поговорим сперва про первый интеграл, т.е. про $\int \frac{(2x+10)dx}{x^2+10x+34}$. Так как $d(x^2+10x+34)=(x^2+10x+34)"dx=(2x+10)dx$, то в числителе подынтегральной дроби расположен дифференциал знаменателя. Короче говоря, вместо выражения $(2x+10)dx$ запишем $d(x^2+10x+34)$.

Теперь скажем пару слов и о втором интеграле. Выделим в знаменателе полный квадрат: $x^2+10x+34=(x+5)^2+9$. Кроме того, учтём $dx=d(x+5)$. Теперь полученную нами ранее сумму интегралов можно переписать в несколько ином виде:

$$ 2\cdot\int \frac{(2x+10)dx}{x^2+10x+34}-13\cdot\int\frac{dx}{x^2+10x+34} =2\cdot\int \frac{d(x^2+10x+34)}{x^2+10x+34}-13\cdot\int\frac{d(x+5)}{(x+5)^2+9}. $$

Если в первом интеграле сделать замену $u=x^2+10x+34$, то он примет вид $\int\frac{du}{u}$ и возьмётся простым применением второй формулы из . Что же касается второго интеграла, то для него осуществима замена $u=x+5$, после которой он примет вид $\int\frac{du}{u^2+9}$. Это чистейшей воды одиннадцатая формула из таблицы неопределенных интегралов . Итак, возвращаясь к сумме интегралов, будем иметь:

$$ 2\cdot\int \frac{d(x^2+10x+34)}{x^2+10x+34}-13\cdot\int\frac{d(x+5)}{(x+5)^2+9} =2\cdot\ln(x^2+10x+34)-\frac{13}{3}\arctg\frac{x+5}{3}+C. $$

Мы получили тот же ответ, что и при применении формулы , что, собственно говоря, неудивительно. Вообще, формула доказывается теми же методами, кои мы применяли для нахождения данного интеграла. Полагаю, что у внимательного читателя тут может возникнуть один вопрос, посему сформулирую его:

Вопрос №1

Если к интегралу $\int \frac{d(x^2+10x+34)}{x^2+10x+34}$ применять вторую формулу из таблицы неопределенных интегралов , то мы получим следующее:

$$ \int \frac{d(x^2+10x+34)}{x^2+10x+34}=|u=x^2+10x+34|=\int\frac{du}{u}=\ln|u|+C=\ln|x^2+10x+34|+C. $$

Почему же в решении отсутствовал модуль?

Ответ на вопрос №1

Вопрос совершенно закономерный. Модуль отсутствовал лишь потому, что выражение $x^2+10x+34$ при любом $x\in R$ больше нуля. Это совершенно несложно показать несколькими путями. Например, так как $x^2+10x+34=(x+5)^2+9$ и $(x+5)^2 ≥ 0$, то $(x+5)^2+9 > 0$. Можно рассудить и по-иному, не привлекая выделение полного квадрата. Так как $10^2-4\cdot 34=-16 < 0$, то $x^2+10x+34 > 0$ при любом $x\in R$ (если эта логическая цепочка вызывает удивление, советую посмотреть графический метод решения квадратных неравенств). В любом случае, так как $x^2+10x+34 > 0$, то $|x^2+10x+34|=x^2+10x+34$, т.е. вместо модуля можно использовать обычные скобки.

Все пункты примера №1 решены, осталось лишь записать ответ.

Ответ :

  1. $\int\frac{7dx}{x+9}=7\ln|x+9|+C$;
  2. $\int\frac{11dx}{(4x+19)^8}=-\frac{11}{28(4x+19)^7}+C$;
  3. $\int\frac{4x+7}{x^2+10x+34}dx=2\cdot\ln(x^2+10x+34)-\frac{13}{3}\arctg\frac{x+5}{3}+C$.

Пример №2

Найти интеграл $\int\frac{7x+12}{3x^2-5x-2}dx$.

На первый взгляд подынтегральая дробь $\frac{7x+12}{3x^2-5x-2}$ очень похожа на элементарную дробь третьего типа, т.е. на $\frac{Mx+N}{x^2+px+q}$. Кажется, что единcтвенное отличие - это коэффициент $3$ перед $x^2$, но ведь коэффициент и убрать недолго (за скобки вынести). Однако это сходство кажущееся. Для дроби $\frac{Mx+N}{x^2+px+q}$ обязательным является условие $p^2-4q < 0$, которое гарантирует, что знаменатель $x^2+px+q$ нельзя разложить на множители. Проверим, как обстоит дело с разложением на множители у знаменателя нашей дроби, т.е. у многочлена $3x^2-5x-2$.

У нас коэффициент перед $x^2$ не равен единице, посему проверить условие $p^2-4q < 0$ напрямую мы не можем. Однако тут нужно вспомнить, откуда взялось выражение $p^2-4q$. Это всего лишь дискриминант квадратного уравнения $x^2+px+q=0$. Если дискриминант меньше нуля, то выражение $x^2+px+q$ на множители не разложишь. Вычислим дискриминант многочлена $3x^2-5x-2$, расположенного в знаменателе нашей дроби: $D=(-5)^2-4\cdot 3\cdot(-2)=49$. Итак, $D > 0$, посему выражение $3x^2-5x-2$ можно разложить на множители. А это означает, что дробь $\frac{7x+12}{3x^2-5x-2}$ не является элементаной дробью третьего типа, и применять к интегралу $\int\frac{7x+12}{3x^2-5x-2}dx$ формулу нельзя.

Ну что же, если заданная рациональная дробь не является элементарной, то её нужно представить в виде суммы элементарных дробей, а затем проинтегрировать. Короче говоря, след воспользоваться . Как разложить рациональную дробь на элементарные подробно написано . Начнём с того, что разложим на множители знаменатель:

$$ 3x^2-5x-2=0;\\ \begin{aligned} & D=(-5)^2-4\cdot 3\cdot(-2)=49;\\ & x_1=\frac{-(-5)-\sqrt{49}}{2\cdot 3}=\frac{5-7}{6}=\frac{-2}{6}=-\frac{1}{3};\\ & x_2=\frac{-(-5)+\sqrt{49}}{2\cdot 3}=\frac{5+7}{6}=\frac{12}{6}=2.\\ \end{aligned}\\ 3x^2-5x-2=3\cdot\left(x-\left(-\frac{1}{3}\right)\right)\cdot (x-2)=3\cdot\left(x+\frac{1}{3}\right)(x-2). $$

Подынтеральную дробь представим в таком виде:

$$ \frac{7x+12}{3x^2-5x-2}=\frac{7x+12}{3\cdot\left(x+\frac{1}{3}\right)(x-2)}=\frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}. $$

Теперь разложим дробь $\frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}$ на элементарные:

$$ \frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)} =\frac{A}{x+\frac{1}{3}}+\frac{B}{x-2}=\frac{A(x-2)+B\left(x+\frac{1}{3}\right)}{\left(x+\frac{1}{3}\right)(x-2)};\\ \frac{7}{3}x+4=A(x-2)+B\left(x+\frac{1}{3}\right). $$

Чтобы найти коэффициенты $A$ и $B$ есть два стандартных пути: метод неопределённых коэффициентов и метод подстановки частных значений. Применим метод подстановки частных значений, подставляя $x=2$, а затем $x=-\frac{1}{3}$:

$$ \frac{7}{3}x+4=A(x-2)+B\left(x+\frac{1}{3}\right).\\ x=2;\; \frac{7}{3}\cdot 2+4=A(2-2)+B\left(2+\frac{1}{3}\right); \; \frac{26}{3}=\frac{7}{3}B;\; B=\frac{26}{7}.\\ x=-\frac{1}{3};\; \frac{7}{3}\cdot \left(-\frac{1}{3} \right)+4=A\left(-\frac{1}{3}-2\right)+B\left(-\frac{1}{3}+\frac{1}{3}\right); \; \frac{29}{9}=-\frac{7}{3}A;\; A=-\frac{29\cdot 3}{9\cdot 7}=-\frac{29}{21}.\\ $$

Так как коэффициенты найдены, осталось лишь записать готовое разложение:

$$ \frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}=\frac{-\frac{29}{21}}{x+\frac{1}{3}}+\frac{\frac{26}{7}}{x-2}. $$

В принципе, можно такую запись оставить, но мне по душе более аккуратный вариант:

$$ \frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}=-\frac{29}{21}\cdot\frac{1}{x+\frac{1}{3}}+\frac{26}{7}\cdot\frac{1}{x-2}. $$

Возвращаясь к исходному интегралу, подставим в него полученное разложение. Затем разобьём интеграл на два, и к каждому применим формулу . Константы я предпочитаю сразу выносить за знак интеграла:

$$ \int\frac{7x+12}{3x^2-5x-2}dx =\int\left(-\frac{29}{21}\cdot\frac{1}{x+\frac{1}{3}}+\frac{26}{7}\cdot\frac{1}{x-2}\right)dx=\\ =\int\left(-\frac{29}{21}\cdot\frac{1}{x+\frac{1}{3}}\right)dx+\int\left(\frac{26}{7}\cdot\frac{1}{x-2}\right)dx =-\frac{29}{21}\cdot\int\frac{dx}{x+\frac{1}{3}}+\frac{26}{7}\cdot\int\frac{dx}{x-2}dx=\\ =-\frac{29}{21}\cdot\ln\left|x+\frac{1}{3}\right|+\frac{26}{7}\cdot\ln|x-2|+C. $$

Ответ : $\int\frac{7x+12}{3x^2-5x-2}dx=-\frac{29}{21}\cdot\ln\left|x+\frac{1}{3}\right|+\frac{26}{7}\cdot\ln|x-2|+C$.

Пример №3

Найти интеграл $\int\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}dx$.

Нам нужно проинтегрировать дробь $\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}$. В числителе расположен многочлен второй степени, а в знаменателе - многочлен третьей степени. Так как степень многочлена в числителе меньше степени многочлена в знаменателе, т.е. $2 < 3$, то подынтегральная дробь является правильной. Разложение этой дроби на элементарные (простейшие) было получено в примере №3 на странице, посвящённой разложению рациональных дробей на элементарные. Полученное разложение таково:

$$ \frac{x^2-38x+157}{(x-1)(x+4)(x-9)}=-\frac{3}{x-1}+\frac{5}{x+4}-\frac{1}{x-9}. $$

Нам останется только разбить заданный интеграл на три, и к каждому применить формулу . Константы я предпочитаю сразу выносить за знак интеграла:

$$ \int\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}dx=\int\left(-\frac{3}{x-1}+\frac{5}{x+4}-\frac{1}{x-9} \right)dx=\\=-3\cdot\int\frac{dx}{x-1}+ 5\cdot\int\frac{dx}{x+4}-\int\frac{dx}{x-9}=-3\ln|x-1|+5\ln|x+4|-\ln|x-9|+C. $$

Ответ : $\int\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}dx=-3\ln|x-1|+5\ln|x+4|-\ln|x-9|+C$.

Продолжение разбора примеров этой темы расположено во второй части.

Напомним, что дробно-рациональными называют функции вида $$ f(x) = \frac{P_n(x)}{Q_m(x)}, $$ в общем случае являющиеся отношением двух многочленов %%P_n(x)%% и %%Q_m(x)%%.

Если %%m > n \geq 0%%, то рациональную дробь называют правильной , в противном случае — неправильной. Используя правило деления многочленов , неправильную рациональную дробь можно представить в виде суммы многочлена %%P_{n - m}%% степени %%n - m%% и некоторой правильной дроби, т.е. $$ \frac{P_n(x)}{Q_m(x)} = P_{n-m}(x) + \frac{P_l(x)}{Q_n(x)}, $$ где степень %%l%% многочлена %%P_l(x)%% меньше степени %%n%% многочлена %%Q_n(x)%%.

Таким образом, неопределенный интеграл от рациональной функции можно представить суммой неопределенных интегралов от многочлена и от правильной рациональной дроби.

Интегралы от простейших рациональных дробей

Среди правильных рациональных дробей выделяют четыре типа, которые относят к простейшим рациональным дробям :

  1. %%\displaystyle \frac{A}{x - a}%%,
  2. %%\displaystyle \frac{A}{(x - a)^k}%%,
  3. %%\displaystyle \frac{Ax + B}{x^2 + px + q}%%,
  4. %%\displaystyle \frac{Ax + B}{(x^2 + px + q)^k}%%,

где %%k > 1%% — целое и %%p^2 - 4q < 0%%, т.е. квадратные уравнения не имеют действительных корней.

Вычисление неопределенных интегралов от дробей первых двух типов

Вычисление неопределенных интегралов от дробей первых двух типов не вызывает затруднений: $$ \begin{array}{ll} \int \frac{A}{x - a} \mathrm{d}x &= A\int \frac{\mathrm{d}(x - a)}{x - a} = A \ln |x - a| + C, \\ \\ \int \frac{A}{(x - a)^k} \mathrm{d}x &= A\int \frac{\mathrm{d}(x - a)}{(x - a)^k} = A \frac{(x-a)^{-k + 1}}{-k + 1} + C = \\ &= -\frac{A}{(k-1)(x-a)^{k-1}} + C. \end{array} $$

Вычисление неопределенного интегралов от дробей третьего типа

Дробь третьего типа сначала преобразуем, выделив полный квадрат в знаменателе: $$ \frac{Ax + B}{x^2 + px + q} = \frac{Ax + B}{(x + p/2)^2 + q - p^2/4}, $$ так как %%p^2 - 4q < 0%%, то %%q - p^2/4 > 0%%, которое обозначим как %%a^2%%. Заменив также %%t = x + p/2, \mathrm{d}t = \mathrm{d}x%%, преобразуем знаменатель и запишем интеграл от дроби третьего типа в форме $$ \begin{array}{ll} \int \frac{Ax + B}{x^2 + px + q} \mathrm{d}x &= \int \frac{Ax + B}{(x + p/2)^2 + q - p^2/4} \mathrm{d}x = \\ &= \int \frac{A(t - p/2) + B}{t^2 + a^2} \mathrm{d}t = \int \frac{At + (B - A p/2)}{t^2 + a^2} \mathrm{d}t. \end{array} $$

Последний интеграл, используя линейность неопределенного интеграла, представим в виде суммы двух и в первом из них введем %%t%% под знак дифференциала: $$ \begin{array}{ll} \int \frac{At + (B - A p/2)}{t^2 + a^2} \mathrm{d}t &= A\int \frac{t \mathrm{d}t}{t^2 + a^2} + \left(B - \frac{pA}{2}\right)\int \frac{\mathrm{d}t}{t^2 + a^2} = \\ &= \frac{A}{2} \int \frac{\mathrm{d}\left(t^2 + a^2\right)}{t^2 + a^2} + - \frac{2B - pA}{2}\int \frac{\mathrm{d}t}{t^2 + a^2} = \\ &= \frac{A}{2} \ln \left| t^2 + a^2\right| + \frac{2B - pA}{2a} \text{arctg}\frac{t}{a} + C. \end{array} $$

Возвращаясь к исходной переменной %%x%%, в итоге для дроби третьего типа получаем $$ \int \frac{Ax + B}{x^2 + px + q} \mathrm{d}x = \frac{A}{2} \ln \left| x^2 + px + q\right| + \frac{2B - pA}{2a} \text{arctg}\frac{x + p/2}{a} + C, $$ где %%a^2 = q - p^2 / 4 > 0%%.

Вычисление интеграла 4 типа сложно, поэтому в этом курсе не рассматривается.

Дробь называется правильной , если старшая степень числителя меньше старшей степени знаменателя. Интеграл правильной рациональной дроби имеет вид:

$$ \int \frac{mx+n}{ax^2+bx+c}dx $$

Формула на интегрирование рациональных дробей зависит от корней многочлена в знаменателе. Если многочлен $ ax^2+bx+c $ имеет:

  1. Только комплексные корни, то из него необходимо выделить полный квадрат: $$ \int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{mx+n}{x^2 \pm a^2} $$
  2. Различные действительные корни $ x_1 $ и $ x_2 $, то нужно выполнить разложение интеграла и найти неопределенные коэффициенты $ A $ и $ B $: $$ \int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{A}{x-x_1} dx + \int \frac{B}{x-x_2} dx $$
  3. Один кратный корень $ x_1 $, то выполняем разложение интеграла и находим неопределенные коэффициенты $ A $ и $ B $ для такой формулы: $$ \int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{A}{(x-x_1)^2}dx + \int \frac{B}{x-x_1} dx $$

Если дробь является неправильной , то есть старшая степень в числителе больше либо равна старшей степени знаменателя, то сначала её нужно привести к правильному виду путём деления многочлена из числителя на многочлен из знаменателя. В данном случае формула интегрирования рациональной дроби имеет вид:

$$ \int \frac{P(x)}{ax^2+bx+c}dx = \int Q(x) dx + \int \frac{mx+n}{ax^2+bx+c}dx $$

Примеры решений

Пример 1
Найти интеграл рациональной дроби: $$ \int \frac{dx}{x^2-10x+16} $$
Решение

Дробь является правильной и многочлен имеет только комплексные корни. Поэтому выделим полный квадрат:

$$ \int \frac{dx}{x^2-10x+16} = \int \frac{dx}{x^2-2\cdot 5 x+ 5^2 - 9} = $$

Сворачиваем полный квадрат и подводим под знак дифференциала $ x-5 $:

$$ = \int \frac{dx}{(x-5)^2 - 9} = \int \frac{d(x-5)}{(x-5)^2-9} = $$

Пользуясь таблицей интегралов получаем:

$$ = \frac{1}{2 \cdot 3} \ln \bigg | \frac{x-5 - 3}{x-5 + 3} \bigg | + C = \frac{1}{6} \ln \bigg |\frac{x-8}{x-2} \bigg | + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \int \frac{dx}{x^2-10x+16} = \frac{1}{6} \ln \bigg |\frac{x-8}{x-2} \bigg | + C $$
Пример 2
Выполнить интегрирование рациональных дробей: $$ \int \frac{x+2}{x^2+5x-6} dx $$
Решение

Решим квадратное уравнение: $$ x^2+5x-6 = 0 $$

$$ x_{12} = \frac{-5\pm \sqrt{25-4\cdot 1 \cdot (-6)}}{2} = \frac{-5 \pm 7}{2} $$

Записываем корни:

$$ x_1 = \frac{-5-7}{2} = -6; x_2 = \frac{-5+7}{2} = 1 $$

С учётом полученных корней, преобразуем интеграл:

$$ \int \frac{x+2}{x^2+5x-6} dx = \int \frac{x+2}{(x-1)(x+6)} dx = $$

Выполняем разложение рациональной дроби:

$$ \frac{x+2}{(x-1)(x+6)} = \frac{A}{x-1} + \frac{B}{x+6} = \frac{A(x-6)+B(x-1)}{(x-1)(x+6)} $$

Приравниваем числители и находим коэффициенты $ A $ и $ B $:

$$ A(x+6)+B(x-1)=x+2 $$

$$ Ax + 6A + Bx - B = x + 2 $$

$$ \begin{cases} A + B = 1 \\ 6A - B = 2 \end{cases} $$

$$ \begin{cases} A = \frac{3}{7} \\ B = \frac{4}{7} \end{cases} $$

Подставляем в интеграл найденные коэффициенты и решаем его:

$$ \int \frac{x+2}{(x-1)(x+6)}dx = \int \frac{\frac{3}{7}}{x-1} dx + \int \frac{\frac{4}{7}}{x+6} dx = $$

$$ = \frac{3}{7} \int \frac{dx}{x-1} + \frac{4}{7} \int \frac{dx}{x+6} = \frac{3}{7} \ln |x-1| + \frac{4}{7} \ln |x+6| + C $$

Ответ
$$ \int \frac{x+2}{x^2+5x-6} dx = \frac{3}{7} \ln |x-1| + \frac{4}{7} \ln |x+6| + C $$

Введите функцию, для которой надо найти интеграл

После вычисления неопределённого интеграла, вы сможете получить бесплатно ПОДРОБНОЕ решение введённого вами интеграла.

Найдем решение неопределенного интеграла от функции f(x) (первообразную функции).

Примеры

С применением степени
(квадрат и куб) и дроби

(x^2 - 1)/(x^3 + 1)

Квадратный корень

Sqrt(x)/(x + 1)

Кубический корень

Cbrt(x)/(3*x + 2)

С применением синуса и косинуса

2*sin(x)*cos(x)

Арксинус

X*arcsin(x)

Арккосинус

X*arccos(x)

Применение логарифма

X*log(x, 10)

Натуральный логарифм

Экспонента

Tg(x)*sin(x)

Котангенс

Ctg(x)*cos(x)

Иррациональне дроби

(sqrt(x) - 1)/sqrt(x^2 - x - 1)

Арктангенс

X*arctg(x)

Арккотангенс

X*arсctg(x)

Гиберболические синус и косинус

2*sh(x)*ch(x)

Гиберболические тангенс и котангенс

Ctgh(x)/tgh(x)

Гиберболические арксинус и арккосинус

X^2*arcsinh(x)*arccosh(x)

Гиберболические арктангенс и арккотангенс

X^2*arctgh(x)*arcctgh(x)

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке): absolute(x) Абсолютное значение x
(модуль x или |x| ) arccos(x) Функция - арккосинус от x arccosh(x) Арккосинус гиперболический от x arcsin(x) Арксинус от x arcsinh(x) Арксинус гиперболический от x arctg(x) Функция - арктангенс от x arctgh(x) Арктангенс гиперболический от x e e число, которое примерно равно 2.7 exp(x) Функция - экспонента от x (что и e ^x ) log(x) or ln(x) Натуральный логарифм от x
(Чтобы получить log7(x) , надо ввести log(x)/log(7) (или, например для log10(x) =log(x)/log(10)) pi Число - "Пи", которое примерно равно 3.14 sin(x) Функция - Синус от x cos(x) Функция - Косинус от x sinh(x) Функция - Синус гиперболический от x cosh(x) Функция - Косинус гиперболический от x sqrt(x) Функция - квадратный корень из x sqr(x) или x^2 Функция - Квадрат x tg(x) Функция - Тангенс от x tgh(x) Функция - Тангенс гиперболический от x cbrt(x) Функция - кубический корень из x

В выражениях можно применять следующие операции: Действительные числа вводить в виде 7.5 , не 7,5 2*x - умножение 3/x - деление x^3 - возведение в степень x + 7 - сложение x - 6 - вычитание
Другие функции: floor(x) Функция - округление x в меньшую сторону (пример floor(4.5)==4.0) ceiling(x) Функция - округление x в большую сторону (пример ceiling(4.5)==5.0) sign(x) Функция - Знак x erf(x) Функция ошибок (или интеграл вероятности) laplace(x) Функция Лапласа