Как решать примеры с отрицательными дробными степенями. Формулы степеней и корней

В рамках этого материала мы разберем, что такое степень числа. Помимо основных определений мы сформулируем, что такое степени с натуральными, целыми, рациональными и иррациональными показателями. Как всегда, все понятия будут проиллюстрированы примерами задач.

Yandex.RTB R-A-339285-1

Сначала сформулируем базовое определение степени с натуральным показателем. Для этого нам понадобится вспомнить основные правила умножения. Заранее уточним, что в качестве основания будем пока брать действительное число (обозначим его буквой a), а в качестве показателя – натуральное (обозначим буквой n).

Определение 1

Степень числа a с натуральным показателем n – это произведение n -ного числа множителей, каждый из которых равен числу а. Записывается степень так: a n , а в виде формулы ее состав можно представить следующим образом:

Например, если показатель степени равен 1 , а основание – a , то первая степень числа a записывается как a 1 . Учитывая, что a – это значение множителя, а 1 – число множителей, мы можем сделать вывод, что a 1 = a .

В целом можно сказать, что степень – это удобная форма записи большого количества равных множителей. Так, запись вида 8 · 8 · 8 · 8 можно сократить до 8 4 . Примерно так же произведение помогает нам избежать записи большого числа слагаемых (8 + 8 + 8 + 8 = 8 · 4) ; мы это уже разбирали в статье, посвященной умножению натуральных чисел.

Как же верно прочесть запись степени? Общепринятый вариант – « a в степени n ». Или можно сказать « n -ная степень a » либо « a n -ной степени». Если, скажем, в примере встретилась запись 8 12 , мы можем прочесть « 8 в 12 -й степени», « 8 в степени 12 » или « 12 -я степень 8 -ми».

Вторая и третья степени числа имеют свои устоявшиеся названия: квадрат и куб. Если мы видим вторую степень, например, числа 7 (7 2) , то мы можем сказать « 7 в квадрате» или «квадрат числа 7 ». Аналогично третья степень читается так: 5 3 – это «куб числа 5 » или « 5 в кубе». Впрочем, употреблять стандартную формулировку «во второй/третьей степени» тоже можно, это не будет ошибкой.

Пример 1

Разберем пример степени с натуральным показателем: для 5 7 пятерка будет основанием, а семерка – показателем.

В основании не обязательно должно стоять целое число: для степени (4 , 32) 9 основанием будет дробь 4 , 32 , а показателем – девятка. Обратите внимание на скобки: такая запись делается для всех степеней, основания которых отличаются от натуральных чисел.

Например: 1 2 3 , (- 3) 12 , - 2 3 5 2 , 2 , 4 35 5 , 7 3 .

Для чего нужны скобки? Они помогают избежать ошибок в расчетах. Скажем, у нас есть две записи: (− 2) 3 и − 2 3 . Первая из них означает отрицательное число минус два, возведенное в степень с натуральным показателем три; вторая – число, соответствующее противоположному значению степени 2 3 .

Иногда в книгах можно встретить немного другое написание степени числа – a ^ n (где а – основание, а n - показатель). То есть 4 ^ 9 – это то же самое, что и 4 9 . В случае, если n представляет собой многозначное число, оно берется в скобки. Например, 15 ^ (21) , (− 3 , 1) ^ (156) . Но мы будем использовать обозначение a n как более употребительное.

О том, как вычислить значение степени с натуральным показателем, легко догадаться из ее определения: нужно просто перемножить a n -ное число раз. Подробнее об этом мы писали в другой статье.

Понятие степени является обратным другому математическому понятию – корню числа. Если мы знаем значение степени и показатель, мы можем вычислить ее основание. Степень обладает некоторыми специфическими свойствами, полезными для решения задач, которые мы разобрали в рамках отдельного материала.

В показателях степени могут стоять не только натуральные числа, но и вообще любые целые значения, в том числе отрицательные и нули, ведь они тоже принадлежат к множеству целых чисел.

Определение 2

Степень числа с целым положительным показателем можно отобразить в виде формулы: .

При этом n – любое целое положительное число.

Разберемся с понятием нулевой степени. Для этого мы используем подход, учитывающий свойство частного для степеней с равными основаниями. Оно формулируется так:

Определение 3

Равенство a m: a n = a m − n будет верно при условиях: m и n – натуральные числа, m < n , a ≠ 0 .

Последнее условие важно, поскольку позволяет избежать деления на ноль. Если значения m и n равны, то мы получим следующий результат: a n: a n = a n − n = a 0

Но при этом a n: a n = 1 - частное равных чисел a n и a . Выходит, что нулевая степень любого отличного от нуля числа равна единице.

Однако такое доказательство не подходит для нуля в нулевой степени. Для этого нам нужно другое свойство степеней – свойство произведений степеней с равными основаниями. Оно выглядит так: a m · a n = a m + n .

Если n у нас равен 0 , то a m · a 0 = a m (такое равенство также доказывает нам, что a 0 = 1 ). Но если а также равно нулю, наше равенство приобретает вид 0 m · 0 0 = 0 m , Оно будет верным при любом натуральном значении n , и неважно при этом, чему именно равно значение степени 0 0 , то есть оно может быть равно любому числу, и на верность равенства это не повлияет. Следовательно, запись вида 0 0 своего особенного смысла не имеет, и мы не будем ему его приписывать.

При желании легко проверить, что a 0 = 1 сходится со свойством степени (a m) n = a m · n при условии, что основание степени не равно нулю. Таким образом, степень любого отличного от нуля числа с нулевым показателем равна единице.

Пример 2

Разберем пример с конкретными числами: Так, 5 0 - единица, (33 , 3) 0 = 1 , - 4 5 9 0 = 1 , а значение 0 0 не определено.

После нулевой степени нам осталось разобраться, что из себя представляет степень отрицательная. Для этого нам понадобится то же свойство произведения степеней с равными основаниями, которое мы уже использовали выше: a m · a n = a m + n .

Введем условие: m = − n , тогда a не должно быть равно нулю. Из этого следует, что a − n · a n = a − n + n = a 0 = 1 . Выходит, что a n и a − n у нас являются взаимно обратными числами.

В итоге a в целой отрицательной степени есть не что иное, как дробь 1 a n .

Такая формулировка подтверждает, что для степени с целым отрицательным показателем действительны все те же свойства, которыми обладает степень с натуральным показателем (при условии, что основание не равно нулю).

Пример 3

Степень a с целым отрицательным показателем n можно представить в виде дроби 1 a n . Таким образом, a - n = 1 a n при условии a ≠ 0 и n – любое натуральное число.

Проиллюстрируем нашу мысль конкретными примерами:

Пример 4

3 - 2 = 1 3 2 , (- 4 . 2) - 5 = 1 (- 4 . 2) 5 , 11 37 - 1 = 1 11 37 1

В последней части параграфа попробуем изобразить все сказанное наглядно в одной формуле:

Определение 4

Степень числа a с натуральным показателем z ​​ – это: a z = a z , e с л и z - ц е л о е п о л о ж и т е л ь н о е ч и с л о 1 , z = 0 и a ≠ 0 , (п р и z = 0 и a = 0 п о л у ч а е т с я 0 0 , з н а ч е н и я в ы р а ж е н и я 0 0 н е о п р е д е л я е т с я)   1 a z , е с л и z - ц е л о е о т р и ц а т е л ь н о е ч и с л о и a ≠ 0 (е с л и z - ц е л о е о т р и ц а т е л ь н о е ч и с л о и a = 0 п о л у ч а е т с я 0 z , е г о з н а ч е н и е н е о п р е д е л я е т с я)

Что такое степени с рациональным показателем

Мы разобрали случаи, когда в показателе степени стоит целое число. Однако возвести число в степень можно и тогда, когда в ее показателе стоит дробное число. Это называется степенью с рациональным показателем. В этом пункте мы докажем, что она обладает теми же свойствами, что и другие степени.

Что такое рациональные числа? В их множество входят как целые, так и дробные числа, при этом дробные числа можно представить в виде обыкновенных дробей (как положительных, так и отрицательных). Сформулируем определение степени числа a с дробным показателем m / n , где n – натуральное число, а m – целое.

У нас есть некоторая степень с дробным показателем a m n . Для того, чтобы свойство степени в степени выполнялось, равенство a m n n = a m n · n = a m должно быть верным.

Учитывая определение корня n -ной степени и что a m n n = a m , мы можем принять условие a m n = a m n , если a m n имеет смысл при данных значениях m , n и a .

Приведенные выше свойства степени с целым показателем будут верными при условии a m n = a m n .

Основной вывод из наших рассуждений таков: степень некоторого числа a с дробным показателем m / n – это корень n -ой степени из числа a в степени m . Это справедливо в том случае, если при данных значениях m , n и a выражение a m n сохраняет смысл.

1. Мы можем ограничить значение основания степени: возьмем a , которое при положительных значениях m будет больше или равно 0 , а для отрицательных – строго меньше (поскольку при m ≤ 0 мы получаем 0 m , а такая степень не определена). В таком случае определение степени с дробным показателем будет выглядеть следующим образом:

Степень с дробным показателем m / n для некоторого положительного числа a есть корень n -ной степени из a, возведенного в степень m . В виде формулы это можно изобразить так:

Для степени с нулевым основанием это положение также подходит, но только в том случае, если ее показатель – положительное число.

Степень с нулевым основанием и дробным положительным показателем m / n можно выразить как

0 m n = 0 m n = 0 при условии целого положительного m и натурального n .

При отрицательном отношении m n < 0 степень не определяется, т.е. такая запись смысла не имеет.

Отметим один момент. Поскольку мы ввели условие, что a больше или равно нулю, то у нас оказались отброшены некоторые случаи.

Выражение a m n иногда все же имеет смысл при некоторых отрицательных значениях a и некоторых m . Так, верны записи (- 5) 2 3 , (- 1 , 2) 5 7 , - 1 2 - 8 4 , в которых основание отрицательно.

2. Второй подход – это рассмотреть отдельно корень a m n с четными и нечетными показателями. Тогда нам потребуется ввести еще одно условие: степень a , в показателе которой стоит сократимая обыкновенная дробь, считается степенью a , в показателе которой стоит соответствующая ей несократимая дробь. Позже мы объясним, для чего нам это условие и почему оно так важно. Таким образом, если у нас есть запись a m · k n · k , то мы можем свести ее к a m n и упростить расчеты.

Если n – нечетное число, а значение m – положительно, a – любое неотрицательное число, то a m n имеет смысл. Условие неотрицательного a нужно, поскольку корень четной степени из отрицательного числа не извлекают. Если же значение m положительно, то a может быть и отрицательным, и нулевым, т.к. корень нечетной степени можно извлечь из любого действительного числа.

Объединим все данные выше определения в одной записи:

Здесь m/n означает несократимую дробь, m – любое целое число, а n – любое натуральное число.

Определение 5

Для любой обыкновенной сократимой дроби m · k n · k степень можно заменить на a m n .

Степень числа a с несократимым дробным показателем m / n – можно выразить в виде a m n в следующих случаях: - для любых действительных a , целых положительных значений m и нечетных натуральных значений n . Пример: 2 5 3 = 2 5 3 , (- 5 , 1) 2 7 = (- 5 , 1) - 2 7 , 0 5 19 = 0 5 19 .

Для любых отличных от нуля действительных a , целых отрицательных значений m и нечетных значений n , например, 2 - 5 3 = 2 - 5 3 , (- 5 , 1) - 2 7 = (- 5 , 1) - 2 7

Для любых неотрицательных a , целых положительных значений m и четных n , например, 2 1 4 = 2 1 4 , (5 , 1) 3 2 = (5 , 1) 3 , 0 7 18 = 0 7 18 .

Для любых положительных a , целых отрицательных m и четных n , например, 2 - 1 4 = 2 - 1 4 , (5 , 1) - 3 2 = (5 , 1) - 3 , .

В случае других значений степень с дробным показателем не определяется. Примеры таких степеней: - 2 11 6 , - 2 1 2 3 2 , 0 - 2 5 .

Теперь объясним важность условия, о котором говорили выше: зачем заменять дробь с сократимым показателем на дробь с несократимым. Если бы мы этого не сделали бы, то получились бы такие ситуации, скажем, 6 / 10 = 3 / 5 . Тогда должно быть верным (- 1) 6 10 = - 1 3 5 , но - 1 6 10 = (- 1) 6 10 = 1 10 = 1 10 10 = 1 , а (- 1) 3 5 = (- 1) 3 5 = - 1 5 = - 1 5 5 = - 1 .

Определение степени с дробным показателем, которое мы привели первым, удобнее применять на практике, чем второе, поэтому мы будем далее пользоваться именно им.

Определение 6

Таким образом, степень положительного числа a с дробным показателем m / n определяется как 0 m n = 0 m n = 0 . В случае отрицательных a запись a m n не имеет смысла. Степень нуля для положительных дробных показателей m / n определяется как 0 m n = 0 m n = 0 , для отрицательных дробных показателей мы степень нуля не определяем.

В выводах отметим, что можно записать любой дробный показатель как в виде смешанного числа, так и в виде десятичной дроби: 5 1 , 7 , 3 2 5 - 2 3 7 .

При вычислении же лучше заменять показатель степени обыкновенной дробью и далее пользоваться определением степени с дробным показателем. Для примеров выше у нас получится:

5 1 , 7 = 5 17 10 = 5 7 10 3 2 5 - 2 3 7 = 3 2 5 - 17 7 = 3 2 5 - 17 7

Что такое степени с иррациональным и действительным показателем

Что такое действительные числа? В их множество входят как рациональные, так и иррациональные числа. Поэтому для того, чтобы понять, что такое степень с действительным показателем, нам надо определить степени с рациональными и иррациональными показателями. Про рациональные мы уже упоминали выше. Разберемся с иррациональными показателями пошагово.

Пример 5

Допустим, что у нас есть иррациональное число a и последовательность его десятичных приближений a 0 , a 1 , a 2 , . . . . Например, возьмем значение a = 1 , 67175331 . . . , тогда

a 0 = 1 , 6 , a 1 = 1 , 67 , a 2 = 1 , 671 , . . . , a 0 = 1 , 67 , a 1 = 1 , 6717 , a 2 = 1 , 671753 , . . .

Последовательности приближений мы можем поставить в соответствие последовательность степеней a a 0 , a a 1 , a a 2 , . . . . Если вспомнить, что мы рассказывали ранее о возведении чисел в рациональную степень, то мы можем сами подсчитать значения этих степеней.

Возьмем для примера a = 3 , тогда a a 0 = 3 1 , 67 , a a 1 = 3 1 , 6717 , a a 2 = 3 1 , 671753 , . . . и т.д.

Последовательность степеней можно свести к числу, которое и будет значением степени c основанием a и иррациональным показателем a . В итоге: степень с иррациональным показателем вида 3 1 , 67175331 . . можно свести к числу 6 , 27 .

Определение 7

Степень положительного числа a с иррациональным показателем a записывается как a a . Его значение – это предел последовательности a a 0 , a a 1 , a a 2 , . . . , где a 0 , a 1 , a 2 , . . . являются последовательными десятичными приближениями иррационального числа a . Степень с нулевым основанием можно определить и для положительных иррациональных показателей, при этом 0 a = 0 Так, 0 6 = 0 , 0 21 3 3 = 0 . А для отрицательных этого сделать нельзя, поскольку, например, значение 0 - 5 , 0 - 2 π не определено. Единица, возведенная в любую иррациональную степень, остается единицей, например, и 1 2 , 1 5 в 2 и 1 - 5 будут равны 1 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Возведение в отрицательную степень - один из основных элементов математики, который часто встречается при решении алгебраических задач. Ниже приведена подробная инструкция.

Как возводить в отрицательную степень - теория

Когда мы число в обычную степень, мы умножаем его значение несколько раз. Например, 3 3 = 3×3×3 = 27. С отрицательной дробью все наоборот. Общий вид по формуле будет иметь следующий вид: a -n = 1/a n . Таким образом, чтобы возвести число в отрицательную степень, нужно единицу поделить на данное число, но уже в положительной степени.

Как возводить в отрицательную степень - примеры на обычных числах

Держа вышеприведенное правило на уме, решим несколько примеров.

4 -2 = 1/4 2 = 1/16
Ответ: 4 -2 = 1/16

4 -2 = 1/-4 2 = 1/16.
Ответ -4 -2 = 1/16.

Но почему ответ в первом и втором примерах одинаковый? Дело в том, что при возведении отрицательного числа в четную степень (2, 4, 6 и т.д.), знак становится положительным. Если бы степень была четной, то минус сохранился:

4 -3 = 1/(-4) 3 = 1/(-64)

Как возводить в отрицательную степень - числа от 0 до 1

Вспомним, что при возведении числа в промежутке от 0 до 1 в положительную степень, значение уменьшается с возрастанием степени. Так например, 0,5 2 = 0,25. 0,25

Пример 3: Вычислить 0,5 -2
Решение: 0,5 -2 = 1/1/2 -2 = 1/1/4 = 1×4/1 = 4.
Ответ: 0,5 -2 = 4

Разбор (последовательность действий):

  • Переводим десятичную дробь 0,5 в дробную 1/2. Так легче.
    Возводим 1/2 в отрицательную степень. 1/(2) -2 . Делим 1 на 1/(2) 2 , получаем 1/(1/2) 2 => 1/1/4 = 4

Пример 4: Вычислить 0,5 -3
Решение: 0,5 -3 = (1/2) -3 = 1/(1/2) 3 = 1/(1/8) = 8

Пример 5: Вычислить -0,5 -3
Решение: -0,5 -3 = (-1/2) -3 = 1/(-1/2) 3 = 1/(-1/8) = -8
Ответ: -0,5 -3 = -8

Исходя из 4-го и 5-ого примеров, сделаем несколько выводов:

  • Для положительного числа в промежутке от 0 до 1 (пример 4), возводимого в отрицательную степень, четность или нечетность степени не важна, значение выражения будет положительным. При этом, чем больше степень, тем больше значение.
  • Для отрицательного числа в промежутке от 0 до 1 (пример 5), возводимого в отрицательную степень, четность или нечетность степени неважна, значение выражения будет отрицательным. При этом, чем больше степень, тем меньше значение.

Как возводить в отрицательную степень - степень в виде дробного числа

Выражения данного типа имеют следующий вид: a -m/n , где a - обычное число, m - числитель степени, n - знаменатель степени.

Рассмотрим пример:
Вычислить: 8 -1/3

Решение (последовательность действий):

  • Вспоминаем правило возведения числа в отрицательную степень. Получим: 8 -1/3 = 1/(8) 1/3 .
  • Заметьте, в знаменателе число 8 в дробной степени. Общий вид вычисления дробной степени таков: a m/n = n √8 m .
  • Таким образом, 1/(8) 1/3 = 1/(3 √8 1). Получаем кубический корень из восьми, который равен 2. Исходя отсюда, 1/(8) 1/3 = 1/(1/2) = 2.
  • Ответ: 8 -1/3 = 2

Со школы всем нам известно правило о возведении в степень: любое число с показателем N равно результату перемножения данного числа на самого себя N-ное количество раз. Иными словами, 7 в степени 3 - это 7, умноженное на себя три раза, то есть 343. Еще одно правило - возведение любой величины в степень 0 дает единицу, а возведение отрицательной величины представляет собой результат обычного возведения в степень, если она четная, и такой же результат со знаком «минус», если она нечетная.

Правила же дают и ответ, как возводить число в отрицательную степень. Для этого нужно возвести обычным способом нужную величину на модуль показателя, а потом единицу поделить на результат.

Из этих правил становится понятно, что выполнение реальных задач с оперированием большими величинами потребует наличия технических средств. Вручную получится перемножить на самого себя максимум диапазон чисел до двадцати-тридцати, и то не более трех-четырех раз. Это не говоря уж о том, чтобы потом еще и единицу разделить на результат. Поэтому тем, у кого нет под рукой специального инженерного калькулятора, мы расскажем, как возвести число в отрицательную степень в Excel.

Решение задач в Excel

Для разрешения задач с возведением в степень Excel позволяет пользоваться одним из двух вариантов.

Первое - это использование формулы со стандартным знаком «крышечка». Введите в ячейки рабочего листа следующие данные:

Таким же образом можно возвести нужную величину в любую степень - отрицательную, дробную. Выполним следующие действия и ответим на вопрос о том, как возвести число в отрицательную степень. Пример:

Можно прямо в формуле подправить =B2^-C2.

Второй вариант - использование готовой функции «Степень», принимающей два обязательных аргумента - число и показатель. Чтобы приступить к ее использованию, достаточно в любой свободной ячейке поставить знак «равно» (=), указывающий на начало формулы, и ввести вышеприведенные слова. Осталось выбрать две ячейки, которые будут участвовать в операции (или указать конкретные числа вручную), и нажать на клавишу Enter. Посмотрим на нескольких простых примерах.

Формула

Результат

СТЕПЕНЬ(B2;C2)

СТЕПЕНЬ(B3;C3)

0,002915

Как видим, нет ничего сложного в том, как возводить число в отрицательную степень и в обычную с помощью Excel . Ведь для решения данной задачи можно пользоваться как привычным всем символом «крышечка», так и удобной для запоминания встроенной функцией программы. Это несомненный плюс!

Перейдем к более сложным примерам. Вспомним правило о том, как возводить число в отрицательную степень дробного характера, и увидим, что эта задача очень просто решается в Excel.

Дробные показатели

Если кратко, то алгоритм вычисления числа с дробным показателем следующий.

  1. Преобразовать дробный показатель в правильную или неправильную дробь.
  2. Возвести наше число в числитель полученной преобразованной дроби.
  3. Из полученного в предыдущем пункте числа вычислить корень, с условием, что показателем корня будет знаменатель дроби, полученной на первом этапе.

Согласитесь, что даже при оперировании малыми числами и правильными дробями подобные вычисления могут занять немало времени. Хорошо, что табличному процессору Excel без разницы, какое число и в какую степень возводить. Попробуйте решить на рабочем листе Excel следующий пример:

Воспользовавшись вышеприведенными правилами, вы можете проверить и убедиться, что вычисление произведено правильно.

В конце нашей статьи приведем в форме таблицы с формулами и результатами несколько примеров, как возводить число в отрицательную степень, а также несколько примеров с оперированием дробными числами и степенями.

Таблица примеров

Проверьте на рабочем листе книги Excel следующие примеры. Чтобы все заработало корректно, вам необходимо использовать смешанную ссылку при копировании формулы. Закрепите номер столбца, содержащего возводимое число, и номер строки, содержащей показатель. Ваша формула должна иметь примерно следующий вид: «=$B4^C$3».

Число / Степень

Обратите внимание, что положительные числа (даже нецелые) без проблем вычисляются при любых показателях. Не возникает проблем и с возведением любых чисел в целые показатели. А вот возведение отрицательного числа в дробную степень обернется для вас ошибкой, поскольку невозможно выполнить правило, указанное в начале нашей статьи про возведение отрицательных чисел, ведь четность - это характеристика исключительно ЦЕЛОГО числа.

Числом, возведенным в степень, называют такое число, которое несколько раз умножено само на себя.

Степень числа с отрицательным значением (a - n) можно определить на подобии того, как определяется степень того же числа с положительным показателем (a n) . Однако, оно также требует дополнительного определения. Определяется такая формула как:

a - n = (1 / a n)

Свойства отрицательных значений степеней чисел аналогичны степеням с положительным показателем. Представленное уравнение a m / a n = a m-n может быть справедливым как

«Нигде, как в математике, ясность и точность вывода не позволяет человеку отвертеться от ответа разговорами вокруг вопроса ».

А. Д. Александров

при n больше m , так и при m больше n . Рассмотрим на примере: 7 2 -7 5 =7 2-5 =7 -3 .

Для начала необходимо определить то число, которое выступает определением степени. b=a(-n) . В этом примере -n является показателем степени, b - искомое числовое значение, a - основание степени в виде натурального числового значения. Затем определить модуль, то есть абсолютное значение отрицательного числа, которое выступает в роли показателя степени. Вычислить степень данного числа относительного абсолютного числа, как показателя. Значение степени находится делением единицы на полученное число.

Рис. 1

Рассмотри степень числа с отрицательным дробным показателем. Представим, что число а это любое положительное число, числа n и m - натуральные числа. Согласно определению a , которое возведено в степень - равняется единице, разделенной на это же число с положительной степенью (рис 1). Когда степенью числа является дробь, то в таких случаях используются исключительно числа с положительными показателями.

Стоит помнить , что ноль никогда не может быть показателем степени числа (правило деления на ноль).

Распространению такого понятия как число стали такие манипуляции, как расчеты измерения, а также развитие математики, как науки. Ввод отрицательных значений было обусловлено развитием алгебры, которая давала общие решения арифметических задач, независимо от их конкретного смысла и исходных числовых данных. В индии еще в VI-XI веках отрицательные значения чисел систематически употребляли во время решения задач и растолковывались таким же образом, что и сегодня. В европейской науке отрицательные числа начали обширно употребляться благодаря Р. Декарту, который дал геометрическое толкование отрицательным числам, как направлениям отрезков. Именно Декарт предложил обозначение числа возведенного в степень отображать как двухэтажную формулу a n .


В этой статье мы разберемся, что такое степень числа . Здесь мы дадим определения степени числа, при этом подробно рассмотрим все возможные показатели степени, начиная с натурального показателя, заканчивая иррациональным. В материале Вы найдете массу примеров степеней, покрывающих все возникающие тонкости.

Навигация по странице.

Степень с натуральным показателем, квадрат числа, куб числа

Для начала дадим . Забегая вперед, скажем, что определение степени числа a с натуральным показателем n дается для a , которое будем называть основанием степени , и n , которое будем называть показателем степени . Также отметим, что степень с натуральным показателем определяется через произведение, так что для понимания нижеизложенного материала нужно иметь представление об умножении чисел.

Определение.

Степень числа a с натуральным показателем n - это выражение вида a n , значение которого равно произведению n множителей, каждый из которых равен a , то есть, .
В частности, степенью числа a с показателем 1 называется само число a , то есть, a 1 =a .

Сразу стоит сказать о правилах чтения степеней. Универсальный способ чтения записи a n таков: «a в степени n ». В некоторых случаях также допустимы такие варианты: «a в n -ой степени» и «n -ая степень числа a ». Для примера возьмем степень 8 12 , это «восемь в степени двенадцать», или «восемь в двенадцатой степени», или «двенадцатая степень восьми».

Вторая степень числа, а также третья степень числа имеют свои названия. Вторую степень числа называют квадратом числа , например, 7 2 читается как «семь в квадрате» или «квадрат числа семь». Третья степень числа называется кубом числа , к примеру, 5 3 можно прочитать как «пять в кубе» или сказать «куб числа 5 ».

Пришло время привести примеры степеней с натуральными показателями . Начнем со степени 5 7 , здесь 5 – основание степени, а 7 – показатель степени. Приведем еще пример: 4,32 является основанием, а натуральное число 9 – показателем степени (4,32) 9 .

Обратите внимание, что в последнем примере основание степени 4,32 записано в скобках: чтобы избежать разночтений мы будем брать в скобки все основания степени, которые отличны от натуральных чисел. В качестве примера приведем следующие степени с натуральными показателями , их основания не являются натуральными числами, поэтому они записаны в скобках. Ну и для полной ясности в этом моменте покажем разницу, заключенную в записях вида (−2) 3 и −2 3 . Выражение (−2) 3 – это степень −2 с натуральным показателем 3, а выражение −2 3 (его можно записать как −(2 3) ) соответствует числу, значению степени 2 3 .

Заметим, что встречается обозначение степени числа a с показателем n вида a^n . При этом, если n – многозначное натуральное число, то показатель степени берется в скобки. Например, 4^9 – это другая запись степени 4 9 . А вот еще примеры записи степеней при помощи символа «^ »: 14^(21) , (−2,1)^(155) . В дальнейшем мы преимущественно будем пользоваться обозначением степени вида a n .

Одной из задач, обратной возведению в степень с натуральным показателем, является задача нахождения основания степени по известному значению степени и известному показателю. Эта задача приводит к .

Известно, что множество рациональных чисел состоит из целых и дробных чисел, причем каждое дробное число может быть представлено в виде положительной или отрицательной обыкновенной дроби. Степень с целым показателем мы определили в предыдущем пункте, поэтому, чтобы закончить определение степени с рациональным показателем, нужно придать смысл степени числа a с дробным показателем m/n , где m – целое число, а n - натуральное. Сделаем это.

Рассмотрим степень с дробным показателем вида . Чтобы сохраняло силу свойство степени в степени, должно выполняться равенство . Если учесть полученное равенство и то, как мы определили , то логично принять при условии, что при данных m , n и a выражение имеет смысл.

Несложно проверить, что при справедливы все свойства степени с целым показателем (это сделано в разделе свойства степени с рациональным показателем).

Приведенные рассуждения позволяют сделать следующий вывод : если при данных m , n и a выражение имеет смысл, то степенью числа a с дробным показателем m/n называют корень n -ой степени из a в степени m .

Это утверждение вплотную подводит нас к определению степени с дробным показателем. Остается лишь расписать, при каких m , n и a имеет смысл выражение . В зависимости от ограничений, накладываемых на m , n и a существуют два основных подхода.

    Проще всего наложить ограничение на a , приняв a≥0 для положительных m и a>0 для отрицательных m (так как при m≤0 степень 0 m не определена). Тогда мы получаем следующее определение степени с дробным показателем.

    Определение.

    Степенью положительного числа a с дробным показателем m/n , где m – целое, а n – натуральное число, называется корень n -ой из числа a в степени m , то есть, .

    Также определяется дробная степень нуля с той лишь оговоркой, что показатель должен быть положительным.

    Определение.

    Степень нуля с дробным положительным показателем m/n , где m – целое положительное, а n – натуральное число, определяется как .
    При степень не определяется, то есть, степень числа нуль с дробным отрицательным показателем не имеет смысла.

    Следует отметить, что при таком определении степени с дробным показателем существует один нюанс: при некоторых отрицательных a и некоторых m и n выражение имеет смысл, а мы отбросили эти случаи, введя условие a≥0 . Например, имеют смысл записи или , а данное выше определение заставляет нас говорить, что степени с дробным показателем вида не имеют смысла, так как основание не должно быть отрицательным.

    Другой подход к определению степени с дробным показателем m/n заключается в раздельном рассмотрении четных и нечетных показателях корня . Этот подход требует дополнительного условия: степень числа a , показателем которой является , считается степенью числа a , показателем которой является соответствующая несократимая дробь (важность этого условия поясним чуть ниже). То есть, если m/n – несократимая дробь, то для любого натурального числа k степень предварительно заменяется на .

    При четных n и положительных m выражение имеет смысл при любом неотрицательном a (корень четной степени из отрицательного числа не имеет смысла), при отрицательных m число a должно быть еще отличным от нуля (иначе будет деление на нуль). А при нечетных n и положительных m число a может быть любым (корень нечетной степени определен для любого действительного числа), а при отрицательных m число a должно быть отличным от нуля (чтобы не было деления на нуль).

    Приведенные рассуждения приводят нас к такому определению степени с дробным показателем.

    Определение.

    Пусть m/n – несократимая дробь, m – целое, а n – натуральное число. Для любой сократимой обыкновенной дроби степень заменяется на . Степень числа a с несократимым дробным показателем m/n - это для

    Поясним, зачем степень с сократимым дробным показателем предварительно заменяется степенью с несократимым показателем. Если бы мы просто определили степень как , и не оговорились о несократимости дроби m/n , то мы бы столкнулись с ситуациями, подобными следующей: так как 6/10=3/5 , то должно выполняться равенство , но , а .

Степень используется для упрощения записи операции умножения числа само на себя. Например, вместо записи можно написать 4 5 {\displaystyle 4^{5}} (объяснение такому переходу дано в первом разделе этой статьи). Степени позволяют упростить написание длинных или сложных выражений или уравнений; также степени легко складываются и вычитаются, что приводит к упрощению выражения или уравнения (например, 4 2 ∗ 4 3 = 4 5 {\displaystyle 4^{2}*4^{3}=4^{5}} ).


Примечание: если вам необходимо решить показательное уравнение (в таком уравнении неизвестное находится в показателе степени), прочитайте .

Шаги

Решение простейших задач со степенями

    Умножьте основание степени само на себя числом раз, равным показателю степени. Если вам нужно решить задачу со степенями вручную, перепишите степень в виде операции умножения, где основание степени умножается само на себя. Например, дана степень 3 4 {\displaystyle 3^{4}} . В этом случае основание степени 3 нужно умножить само на себя 4 раза: 3 ∗ 3 ∗ 3 ∗ 3 {\displaystyle 3*3*3*3} . Вот другие примеры:

    Для начала перемножьте первые два числа. Например, 4 5 {\displaystyle 4^{5}} = 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 {\displaystyle 4*4*4*4*4} . Не волнуйтесь - процесс вычисления не такой сложный, каким кажется на первый взгляд. Сначала перемножьте первые две четверки, а затем замените их полученным результатом. Вот так:

    • 4 5 = 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 {\displaystyle 4^{5}=4*4*4*4*4}
      • 4 ∗ 4 = 16 {\displaystyle 4*4=16}
  1. Умножьте полученный результат (в нашем примере 16) на следующее число. Каждый последующий результат будет пропорционально увеличиваться. В нашем примере умножьте 16 на 4. Вот так:

    • 4 5 = 16 ∗ 4 ∗ 4 ∗ 4 {\displaystyle 4^{5}=16*4*4*4}
      • 16 ∗ 4 = 64 {\displaystyle 16*4=64}
    • 4 5 = 64 ∗ 4 ∗ 4 {\displaystyle 4^{5}=64*4*4}
      • 64 ∗ 4 = 256 {\displaystyle 64*4=256}
    • 4 5 = 256 ∗ 4 {\displaystyle 4^{5}=256*4}
      • 256 ∗ 4 = 1024 {\displaystyle 256*4=1024}
    • Продолжайте умножать результат перемножения первых двух чисел на следующее число до тех пор, пока не получите окончательный ответ. Для этого перемножайте первые два числа, а затем полученный результат умножайте на следующее число в последовательности. Этот метод справедлив для любой степени. В нашем примере вы должны получить: 4 5 = 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 = 1024 {\displaystyle 4^{5}=4*4*4*4*4=1024} .
  2. Решите следующие задачи. Ответ проверьте при помощи калькулятора.

    • 8 2 {\displaystyle 8^{2}}
    • 3 4 {\displaystyle 3^{4}}
    • 10 7 {\displaystyle 10^{7}}
  3. На калькуляторе найдите клавишу, обозначенную как «exp», или « x n {\displaystyle x^{n}} », или «^». При помощи этой клавиши вы будете возводить число в степень. Вычислить степень с большим показателем вручную практически невозможно (например, степень 9 15 {\displaystyle 9^{15}} ), но калькулятор с легкостью справится с этой задачей. В Windows 7 стандартный калькулятор можно переключить в инженерный режим; для этого нажмите «Вид» –> «Инженерный». Для переключения в обычный режим нажмите «Вид» –> «Обычный».

    • Проверьте полученный ответ при помощи поисковой системы (Google или Яндекс) . Воспользовавшись клавишей «^» на клавиатуре компьютера, введите выражение в поисковик, который моментально отобразит правильный ответ (и, возможно, предложит аналогичные выражения для изучения).

    Сложение, вычитание, перемножение степеней

    1. Складывать и вычитать степени можно только в том случае, если у них одинаковые основания. Если нужно сложить степени с одинаковыми основаниями и показателями, то вы можете заменить операцию сложения операцией умножения. Например, дано выражение 4 5 + 4 5 {\displaystyle 4^{5}+4^{5}} . Помните, что степень 4 5 {\displaystyle 4^{5}} можно представить в виде 1 ∗ 4 5 {\displaystyle 1*4^{5}} ; таким образом, 4 5 + 4 5 = 1 ∗ 4 5 + 1 ∗ 4 5 = 2 ∗ 4 5 {\displaystyle 4^{5}+4^{5}=1*4^{5}+1*4^{5}=2*4^{5}} (где 1 +1 =2). То есть посчитайте число подобных степеней, а затем перемножьте такую степень и это число. В нашем примере возведите 4 в пятую степень, а затем полученный результат умножьте на 2. Помните, что операцию сложения можно заменить операцией умножения, например, 3 + 3 = 2 ∗ 3 {\displaystyle 3+3=2*3} . Вот другие примеры:

      • 3 2 + 3 2 = 2 ∗ 3 2 {\displaystyle 3^{2}+3^{2}=2*3^{2}}
      • 4 5 + 4 5 + 4 5 = 3 ∗ 4 5 {\displaystyle 4^{5}+4^{5}+4^{5}=3*4^{5}}
      • 4 5 − 4 5 + 2 = 2 {\displaystyle 4^{5}-4^{5}+2=2}
      • 4 x 2 − 2 x 2 = 2 x 2 {\displaystyle 4x^{2}-2x^{2}=2x^{2}}
    2. При перемножении степеней с одинаковым основанием их показатели складываются (основание не меняется). Например, дано выражение x 2 ∗ x 5 {\displaystyle x^{2}*x^{5}} . В этом случае нужно просто сложить показатели, оставив основание без изменений. Таким образом, x 2 ∗ x 5 = x 7 {\displaystyle x^{2}*x^{5}=x^{7}} . Вот наглядное объяснение этого правила:

      При возведении степени в степень показатели перемножаются. Например, дана степень . Так как показатели степени перемножаются, то (x 2) 5 = x 2 ∗ 5 = x 10 {\displaystyle (x^{2})^{5}=x^{2*5}=x^{10}} . Смысл этого правила в том, что вы умножаете степень (x 2) {\displaystyle (x^{2})} саму на себя пять раз. Вот так:

      • (x 2) 5 {\displaystyle (x^{2})^{5}}
      • (x 2) 5 = x 2 ∗ x 2 ∗ x 2 ∗ x 2 ∗ x 2 {\displaystyle (x^{2})^{5}=x^{2}*x^{2}*x^{2}*x^{2}*x^{2}}
      • Так как основание одно и то же, показатели степени просто складываются: (x 2) 5 = x 2 ∗ x 2 ∗ x 2 ∗ x 2 ∗ x 2 = x 10 {\displaystyle (x^{2})^{5}=x^{2}*x^{2}*x^{2}*x^{2}*x^{2}=x^{10}}
    3. Степень с отрицательным показателем следует преобразовать в дробь (в обратную степень). Не беда, если вы не знаете, что такое обратная степень. Если вам дана степень с отрицательным показателем, например, 3 − 2 {\displaystyle 3^{-2}} , запишите эту степень в знаменатель дроби (в числителе поставьте 1), а показатель сделайте положительным. В нашем примере: 1 3 2 {\displaystyle {\frac {1}{3^{2}}}} . Вот другие примеры:

      При делении степеней с одинаковым основанием их показатели вычитаются (основание при этом не меняется). Операция деления противоположна операции умножения. Например, дано выражение 4 4 4 2 {\displaystyle {\frac {4^{4}}{4^{2}}}} . Вычтите показатель степени, стоящей в знаменателе, из показателя степени, стоящей в числителе (основание не меняйте). Таким образом, 4 4 4 2 = 4 4 − 2 = 4 2 {\displaystyle {\frac {4^{4}}{4^{2}}}=4^{4-2}=4^{2}} = 16 .

      • Степень, стоящую в знаменателе, можно записать в таком виде: 1 4 2 {\displaystyle {\frac {1}{4^{2}}}} = 4 − 2 {\displaystyle 4^{-2}} . Помните, что дробь - это число (степень, выражение) с отрицательным показателем степени.
    4. Ниже приведены некоторые выражения, которые помогут вам научиться решать задачи со степенями. Приведенные выражения охватывают материал, изложенный в этом разделе. Для того, чтобы увидеть ответ, просто выделите пустое пространство после знака равенства.

    Решение задач с дробными показателями степени

      Степень с дробным показателем (например, ) преобразуется в операцию извлечения корня. В нашем примере: x 1 2 {\displaystyle x^{\frac {1}{2}}} = x {\displaystyle {\sqrt {x}}} . Здесь неважно, какое число стоит в знаменателе дробного показателя степени. Например, x 1 4 {\displaystyle x^{\frac {1}{4}}} - это корень четвертой степени из «х», то есть x 4 {\displaystyle {\sqrt[{4}]{x}}} .

    1. Если показатель степени представляет собой неправильную дробь, то такую степень можно разложить на две степени, чтобы упростить решение задачи. В этом нет ничего сложного - просто вспомните правило перемножения степеней. Например, дана степень . Превратите такую степень в корень, степень которого будет равна знаменателю дробного показателя, а затем возведите этот корень в степень, равную числителю дробного показателя. Чтобы сделать это, вспомните, что 5 3 {\displaystyle {\frac {5}{3}}} = (1 3) ∗ 5 {\displaystyle ({\frac {1}{3}})*5} . В нашем примере:

      • x 5 3 {\displaystyle x^{\frac {5}{3}}}
      • x 1 3 = x 3 {\displaystyle x^{\frac {1}{3}}={\sqrt[{3}]{x}}}
      • x 5 3 = x 5 ∗ x 1 3 {\displaystyle x^{\frac {5}{3}}=x^{5}*x^{\frac {1}{3}}} = (x 3) 5 {\displaystyle ({\sqrt[{3}]{x}})^{5}}
    2. На некоторых калькуляторах есть кнопка для вычисления степеней (сначала нужно ввести основание, затем нажать кнопку, а затем ввести показатель). Она обозначается как ^ или x^y.
    3. Помните, что любое число в первой степени равно самому себе, например, 4 1 = 4. {\displaystyle 4^{1}=4.} Более того, любое число, умноженное или разделенное на единицу, равно самому себе, например, 5 ∗ 1 = 5 {\displaystyle 5*1=5} и 5 / 1 = 5 {\displaystyle 5/1=5} .
    4. Знайте, что степени 0 0 не существует (такая степень не имеет решения). При попытке решить такую степень на калькуляторе или на компьютере вы получите ошибку. Но помните, что любое число в нулевой степени равно 1, например, 4 0 = 1. {\displaystyle 4^{0}=1.}
    5. В высшей математике, которая оперирует мнимыми числами: e a i x = c o s a x + i s i n a x {\displaystyle e^{a}ix=cosax+isinax} , где i = (− 1) {\displaystyle i={\sqrt {(}}-1)} ; е - константа, примерно равная 2,7; а - произвольная постоянная. Доказательство этого равенства можно найти в любом учебнике по высшей математике.
    6. Предупреждения

    • При увеличении показателя степени ее значение сильно возрастает. Поэтому если ответ кажется вам неправильным, на самом деле он может оказаться верным. Вы можете проверить это, построив график любой показательной функции, например, 2 x .

Урок и презентация на тему: "Степень с отрицательным показателем. Определение и примеры решения задач"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Пособие к учебнику Муравина Г.К.    Пособие к учебнику Алимова Ш.А.

Определение степени с отрицательным показателем

Ребята, мы с вами хорошо умеем возводить числа в степень.
Например: $2^4=2*2*2*2=16$  ${(-3)}^3=(-3)*(-3)*(-3)=27$.

Мы хорошо знаем, что любое число в нулевой степени равно единице. $a^0=1$, $a≠0$.
Возникает вопрос, а что будет, если возвести число в отрицательную степень? Например, чему будет равно число $2^{-2}$?
Первые математики, задавшиеся этим вопросом, решили, что изобретать велосипед заново не стоит, и хорошо, чтобы все свойства степеней оставались прежними. То есть при умножении степеней с одинаковым основанием, показатели степени складываются.
Давайте рассмотрим такой случай: $2^3*2^{-3}=2^{3-3}=2^0=1$.
Получили, что произведение таких чисел должно давать единицу. Единица в произведении получается при перемножении обратных чисел, то есть $2^{-3}=\frac{1}{2^3}$.

Такие рассуждения привели к следующему определению.
Определение. Если $n$ – натуральное число и $а≠0$, то выполняется равенство: $a^{-n}=\frac{1}{a^n}$.

Важное тождество, которое часто используется: $(\frac{a}{b})^{-n}=(\frac{b}{a})^n$.
В частности, $(\frac{1}{a})^{-n}=a^n$.

Примеры решения

Пример 1.
Вычислите: $2^{-3}+(\frac{2}{5})^{-2}-8^{-1}$.

Решение.
Рассмотрим каждое слагаемое по отдельности.
1. $2^{-3}=\frac{1}{2^3}=\frac{1}{2*2*2}=\frac{1}{8}$.
2. $(\frac{2}{5})^{-2}=(\frac{5}{2})^2=\frac{5^2}{2^2}=\frac{25}{4}$.
3. $8^{-1}=\frac{1}{8}$.
Осталось выполнить операции сложения и вычитания: $\frac{1}{8}+\frac{25}{4}-\frac{1}{8}=\frac{25}{4}=6\frac{1}{4}$.
Ответ: $6\frac{1}{4}$.

Пример 2.
Представить заданное число в виде степени простого числа $\frac{1}{729}$.

Решение.
Очевидно, что $\frac{1}{729}=729^{-1}$.
Но 729 - не простое число, заканчивающиеся на 9. Можно предположить, что это число является степенью тройки. Последовательно разделим 729 на 3.
1) $\frac{729}{3}=243$;
2) $\frac{243}{3}=81$;
3) $\frac{81}{3}=27$;
4) $\frac{27}{3}=9$;
5) $\frac{9}{3}=3$;
6) $\frac{3}{3}=1$.
Выполнено шесть операций и значит: $729=3^6$.
Для нашей задачи:
$729^{-1}=(3^6)^{-1}=3^{-6}$.
Ответ: $3^{-6}$.

Пример 3. Представьте выражение в виде степени: $\frac{a^6*(a^{-5})^2}{(a^{-3}*a^8)^{-1}}$.
Решение. Первое действие выполняется всегда внутри скобок, затем умножение $\frac{a^6*(a^{-5})^2}{(a^{-3}*a^8)^{-1}}=\frac{a^6*a^{-10}}{(a^5)^{-1}}=\frac{a^{(-4)}}{a^{(-5)}}=a^{-4-(-5)}=a^{-4+5}=a$.
Ответ: $a$.

Пример 4. Докажите тождество:
$(\frac{y^2 (xy^{-1}-1)^2}{x(1+x^{-1}y)^2}*\frac{y^2(x^{-2}+y^{-2})}{x(xy^{-1}+x^{-1}y)}):\frac{1-x^{-1} y}{xy^{-1}+1}=\frac{x-y}{x+y}$.

Решение.
В левой части рассмотрим каждый сомножитель в скобках отдельно.
1. $\frac{y^2(xy^{-1}-1)^2}{x(1+x^{-1}y)^2}=\frac{y^2(\frac{x}{y}-1)^2}{x(1+\frac{y}{x})^2} =\frac{y^2(\frac{x^2}{y^2}-2\frac{x}{y}+1)}{x(1+2\frac{y}{x}+\frac{y^2}{x^2})}=\frac{x^2-2xy+y^2}{x+2y+\frac{y^2}{x}}=\frac{x^2-2xy+y^2}{\frac{x^2+2xy+y^2}{x}}=\frac{x(x^2-2xy+y^2)}{(x^2+2xy+y^2)}$.
2. $\frac{y^2(x^{-2}+y^{-2})}{x(xy^{-1}+x^{-1}y)}=\frac{y^2(\frac{1}{x^2}+\frac{1}{y^2})}{x(\frac{x}{y}+\frac{y}{x})} =\frac{\frac{y^2}{x^2}+1}{\frac{x^2}{y}+y}=\frac{\frac{y^2+x^2}{x^2}}{{\frac{x^2+y^2}{y}}}=\frac{y^2+x^2}{x^2} *\frac{y}{x^2+y^2}=\frac{y}{x^2}$.
3. $\frac{x(x^2-2xy+y^2)}{(x^2+2xy+y^2)}*\frac{y}{x^2}=\frac{y(x^2-2xy+y^2)}{x(x^2+2xy+y^2)}=\frac{y(x-y)^2}{x(x+y)^2}$.
4. Перейдем к дроби, на которую делим.
$\frac{1-x^{-1}y}{xy^{-1}+1}=\frac{1-\frac{y}{x}}{\frac{x}{y}+1}=\frac{\frac{x-y}{x}}{\frac{x+y}{y}}=\frac{x-y}{x}*\frac{y}{x+y}=\frac{y(x-y)}{x(x+y)}$.
5. Выполним деление.
$\frac{y(x-y)^2}{x(x+y)^2}:\frac{y(x-y)}{x(x+y)}=\frac{y(x-y)^2}{x(x+y)^2}*\frac{x(x+y)}{y(x-y)}=\frac{x-y}{x+y}$.
Получили верное тождество, что и требовалось доказать.

В конце урока еще раз запишем правила действий со степенями, здесь показатель степени - это целое число.
$a^s*a^t=a^{s+t}$.
$\frac{a^s}{a^t}=a^{s-t}$.
$(a^s)^t=a^{st}$.
$(ab)^s=a^s*b^s$.
$(\frac{a}{b})^s=\frac{a^s}{b^s}$.

Задачи для самостоятельного решения

1. Вычислите: $3^{-2}+(\frac{3}{4})^{-3}+9^{-1}$.
2. Представить заданное число в виде степени простого числа $\frac{1}{16384}$.
3. Представьте выражение в виде степени:
$\frac{b^{-8}*(b^3)^{-4}}{(b^2*b^{-7})^3}$.
4. Докажите тождество:
$(\frac{b^{-m}-c^{-m}}{b^{-m}+c^{-m}}+\frac{b^{-m}+c^{-m}}{c^{-m}-b^{-m}})=\frac{4}{b^m c^{-m}-b^{-m}c^m} $.