Ли космический. Где на самом деле летает МКС? Развенчание мифов - Очарованная Душа — LiveJournal

У NASA нет четких планов относительно того, что делать с телами космонавтов, которые умирают в космосе. По сути, NASA вообще не ожидает, что могут умереть в космосе, поэтому не указывает, как им действовать в случае смерти коллеги. Но что произойдет, если астронавт погибнет в космосе? Ведь это вполне возможно, особенно в случае длительной миссии, например, к Марсу.

Один из вариантов - отправить тело в космос. Но этот вариант не подходит, потому что ООН запрещает сброс мусора (включая тела) в космос из-за опасений, что тот может столкнуться с космическими аппаратами или загрязнить другие планеты. Другой вариант - сохранить тело внутри космического корабля и сжечь по возвращении на Землю. Опять же, этот вариант не подходит: он может поставить под угрозу жизнь других космонавтов. Последний вариант: если люди когда-нибудь колонизируют Марс, тело можно использовать в качестве удобрений. Правда, остается вопрос, действительно ли люди могут быть хорошим удобрением.

NASA в настоящее время работает с погребальной компанией Promesse, которая разрабатывает Body Back. Труп будет запечатываться в воздухонепроницаемом спальном мешке и крепиться к внешней стороне космического аппарата, где на него будет воздействовать холод космоса. Тело замерзнет, подвергнется вибрации и расколется на множество мелких частиц по мере движения аппарата через космос. К моменту возвращения на Землю от тела астронавта останутся лишь крошечные пылинки.

Астронавты пьют переработанную мочу

Доступ к свежей пресной воде в космосе может быть проблемным. Американские астронавты на Международной космической станции получают большую часть воды за счет переработки и восстановления в системе, представленной в 2009 году. Как и следует из названия, система восстановления воды позволяет астронавтам восстанавливать большую часть жидкости, которую они теряют в виде пота и мочи, во время бритья или делая кофе.

Американские астронавты не просто перерабатывают собственную мочу. Они также утилизируют мочу космонавтов, потому что россияне отказались пить такую воду. По словам Лейна Картера, менеджера по водной подсистеме для МКС, переработанная вода по вкусу ничем не отличается от бутилированной.

Астронавты теряют мышечную и костную массу и преждевременно стареют

Условия микрогравитации в космосе приводят астронавтов к преждевременному старению. Кожа стареет быстрее, становится тоньше и суше, начинает зудить. Кости и мышцы также слабеют. Астронавты теряют 1% мышечной массы и 2% костной массы с каждым месяцем, проведенным в космосе. За четыре-шесть месяцев пребывания на Международной космической станции потеря составляет порядка 11% массы бедренной кости.

Даже артерии страдают. Они становятся жестче, что грозит сердечными приступами и инсультами у астронавтов. Канадец Роберт Терск страдал от слабости, хрупких костей и проблем с равновесием, проведя шесть месяцев в космосе. Он сказал, что по возвращении на Землю почувствовал себя стариком. Преждевременное старение сейчас рассматривается как один из побочных эффектов космических путешествий. И от него не скрыться, хотя космонавты могут снизить эффект, упражняясь по несколько часов в день.

Космическое путешествие может сделать бесплодным

Есть предположения, что долгосрочные космические миссии делают космонавтов бесплодными. В одном эксперименте самцов крыс подвешивали над полом на шесть недель, имитируя невесомость космического пространства, в результате чего их семенники уменьшались, как и количество сперматозоидов, эффективным образом диктуя бесплодие. Самки крыс страдали от подобной или даже худшей участи, когда их отправляли в космос. Яичники крыс переставали работать через 15 дней. К моменту возвращения на Землю ген, ответственный за производство эстрогена, работал на износ, а клетки, производящие яйцеклетки, умирали.

Космическое путешествие также связывают с потерей либидо. В одном эксперименте два самца и пять самок мышей, которых отправили в космос, отказались спариваться. Однако некоторые ученые настаивают на том, что космос никак не связан с либидо или бесплодием. Яйцеклетки рыб и лягушек, отправленные в космос, удавалось оплодотворить, хотя потомство лягушек осталось в фазе головастиков. Мужчины-космонавты также зачинали детей своим женам через несколько дней по возвращении на Землю.

С женщинами похожая ситуация. Они также беременели вскоре после возвращения из космических миссий, хотя у них был более высокий шанс выкидыша. Влияние космических путешествий на воспроизводство остается спорным и по очевидным причинам исследуется очень тяжело. NASA отказалось от попыток подсчета количества сперматозоидов у астронавтов, возвращающихся из космоса, в целях конфиденциальности.

Большинство астронавтов болеют в космосе

Несмотря на достижения в освоении космоса, «космическая болезнь» остается головной болью NASA. Больше половины всех астронавтов, посылаемых в космос, сталкиваются с тошнотой, головной болью, рвотой и общим дискомфортом. Все это причины космической болезни, также называемой синдромом космической адаптации. Из известных астронавтов, столкнувшихся с космической болезнью, можно назвать Джейка Гарна, который почувствовал симптомы еще до отлета с Земли. Когда же он вернулся, он едва мог ходить.

Космическая болезнь Гарна протекала так тяжело, что его имя стало неформальной шкалой измерения степени болезни. Астронавты оценивают тяжесть своих страданий фразами вроде «один гарн», «два гарна», «три гарна» и так далее. Пока NASA ищет решения вопроса космической болезни, силами инженеров агентства было создано устройство раннего предупреждения, если астронавтам станет плохо в космосе.

Все космонавты носят подгузники

NASA кое-что упустило в конструировании первого скафандра. Оказалось, ученые забыли, что астронавтам может потребоваться сходить в туалет в скафандре. Это упущение привело к тому, что Алан Шепард, первый американец в космосе, сходил прямо под себя, пребывая в скафандре. И произошло это только после разрешения, поскольку ученые NASA опасались, что моча может привести к короткому замыканию электрических компонентов скафандра.

Чтобы предотвратить возникновение подобных сценариев в будущих миссиях, в NASA придумали устройство по типу презерватива, который астронавты надевали полностью в скафандре. По очевидным причинам, когда в космос вышли американские женщины в 1970-х годах, у них возникли проблемы, поэтому агентству пришлось разрабатывать систему по распределению мочи и кала под названием DACT. DACT использовали люди обоих полов, хотя делали его специально для женщин.

В 1988 году NASA заменило DACT на MAG - по сути, памперс для взрослых, похожий на шорты. Каждому астронавту выдают три таких MAG на каждую миссию. Один надевается во время выхода в космос, один по возвращении и третий - на всякий случай.

В космосе придется мастурбировать

Астронавты всегда рискуют получить воспаление мочеполовых путей и прочие болезни, находясь в космосе. Мужчины, вероятнее всего, окажутся с простатитом, а женщины получат инфекцию мочевыводящих путей. С 1981 по 1998 год 23 из 508 астронавтов NASA, отправленных в космос, столкнулись с проблемами с мочеиспусканием. Хотя эта статистика свидетельствует о том, что мочеполовые заболевания затрагивают лишь незначительный процент астронавтов, закрывать глаза на эти проблемы не получится, поскольку они могут привести к прекращению космического полета.

Советский Союз выяснил это самым решительным образом, когда в 1985 году космонавту Владимиру Васютину пришлось вернуться на Земля всего через два месяца из запланированных шести. Владимира мучил сильный простатит, который вызывал лихорадку, тошноту и серьезные боли при мочеиспускании.

Марджори Дженкинс, медицинский советник NASA, прояснила, что простатит может быть одним из последствий уменьшения эякуляции. Когда мужчины не эякулируют достаточно часто, бактерии могут накапливаться в предстательной железе и вызывать инфекцию.

Неизвестно, придется ли астронавтам мастурбировать во время космических полетов, но это не значит, что они этого не делали. Один российский космонавт однажды признался, что «занимается сексом с рукой», находясь в космосе. В 2012 году астронавт Рон Гаран рассказал на Reddit, что астронавты действительно получают немного «свободного времени» на Международной космической станции. Когда же его попросили разъяснить, он сказал: «Я могу говорить только за себя, но мы ведь профессионалы».

Неотложной помощи в космосе не существует

У NASA нет никакого мудреного медицинского оборудования на борту космического корабля или даже МКС. Все, что есть, это лекарства и базовое оборудование первой помощи. Астронавтов не лечат ничем, кроме пластыря и подорожника с обезболивающим. Что же делать, если астронавту станет очень плохо или вообще потребуется хирургия?

Когда такое происходит, NASA требует, чтобы астронавта отправили обратно на Землю. У NASA есть соглашение с Роскосмосом, по которому для спасения больных астронавтов с МКС запускаются экстренные «Союзы». Помимо больных астронавтов, ракета вернется еще с двумя космонавтами, поскольку нужен экипаж из трех человек. Такая поездка обойдется в сотни миллионов долларов, а тяжелобольной астронавт, возможно, даже не переживет путешествие.

Если NASA проходит через все это лишь для того, чтобы забрать больного астронавта с «ближайшей» МКС, что будет, когда помощь понадобится астронавту на пути к Марсу? Национальный космический институт биомедицинских исследований (NSBRI) финансирует несколько агентств, создающих уникальное медицинское оборудование, которое сможет справиться с тяжелыми заболеваниями вроде сердечных приступов и аппендицита в космосе.

Лекарства в космосе менее эффективны

Только что мы упоминали, что медицинская помощь, доступная астронавтам в космосе, квалифицируется как первая помощь. Но даже при всем этом большинство доступных препаратов не так эффективны, как на Земле. В ходе одного исследования ученые укомплектовали первые восемь аптечек 35 разными препаратами, включая снотворное и антибиотики. Четыре аптечки были отправлены на Международную космическую станцию, а другие четыре хранили в специальной камере в Космическом центре им. Джонсона в Хьюстоне.

Спустя 28 месяцев препараты, отправленные на МКС, оказались менее эффективны, чем те, что хранились в космическом центре. Шесть препаратов, как выяснилось, также растаяли или изменили цвет. Ученые считают, что потеря эффективно связана с излишком вибрации и излучения, с которыми препараты сталкиваются в открытом космосе. Сейчас NASA снизило серьезность этой проблемы, поставляя свежие лекарства на МКС каждые шесть месяцев. В будущем же космонавтам будут давать все необходимые ингредиенты для производства лекарств в космосе.

Отравление диоксидом углерода может быть проблемой

Концентрация углекислого газа на МКС повышена. На Земле концентрация CO 2 составляет около 0,3 мм рт. ст., но может достигать 6 мм рт. ст. на МКС. Неблагоприятные побочные эффекты, такие как головные боли, раздражение и проблемы со сном, ставшие нормой среди космонавтов, — это лишь несколько последствий повышенной концентрации диоксида углерода. По сути, большинство астронавтов жалуются на головные боли в начале своих миссий.

В отличие от Земли, где углекислый газ, покидающий тело, рассеивается в воздухе, выдыхаемый астронавтами газ образует облако над их головами. На борту МКС имеются специальные вентиляторы, которые выдувают эти облака и рассеивают по объекту. Но концентрация газа все равно превышает рекомендованную. Будем надеяться, что к моменту отправки людей на Марс решение будет найдено.

В древние времена человеку было известно очень мало, относительно знаний на сегодня, и человек стремился к новым знаниям. Конечно же, людей интересовало и то где они живут и что находится за пределами их дома. Через некоторое время у людей появляются аппараты для наблюдений за ночным небом. Тогда человек понимает, что мир гораздо больше, чем он когда-то его себе представлял и сводил его только к масштабам планеты. После долгих изучений космоса человеку открываются новые знания, которые ведут за собой еще большее изучение неизвестного. Человек задается вопросом “Есть ли конец космоса ? или космос бесконечен?”.

Конец космоса. Теории

Сам вопрос о бесконечности космического пространства, конечно, вопрос весьма интересный и мучает всех астрономов и не только астрономов. Много лет назад, когда Вселенная начала интенсивно изучаться, многие философы пытались дать ответ себе и миру о бесконечности космоса. Но тогда это все сводилось лишь на логические рассуждения, а доказательств, подтверждающий что конец космоса существует, как и отрицание этого, не было. Так же в то время люди считали и верили в то, что Земля является центром Вселенной, что все космические звезды и тела обращаются вокруг Земли.

Сейчас ученые так же не могут дать исчерпывающего ответа на этот вопрос, потому что все сводится к гипотезам и нет научного доказательство того или иного мнения о конце космоса. Даже при современных научных достижениях и технологиях человек не может дать ответ на этот вопрос. Все это из-за всеми известной скорости света. Скорость света является основным помощником в изучении космоса, благодаря которой человек и может смотреть в небо и получать информацию. Скорость света – уникальная величина, которая является неопределимым барьером. Расстояния в космосе настолько огромны, что не укладываются у человека в голове и свету необходимы целые года, а то и миллионы лет, чтобы преодолевать такие расстояния. Поэтому, чем дальше человек смотрит в космос, тем дальше он смотрит в прошлое, потому что свет от туда идет так долго что мы видим какой было или космическое тело миллионы лет назад.

Конец космоса, границы видимого

Конец космоса, конечно же, существует в видении у человека. Есть такой рубеж в космосе за которым нам ничего не видно, потому что свет от тех очень далеких мест еще не дошел до нашей планеты. Ученые там не видят ничего и, наверное, очень не скоро это изменится. Возникает вопрос: “Эта граница и есть конец космоса?”. На этот вопрос сложно дать ответ, потому что не видно ничего, но это не значит что там ничего нет. Возможно, там начинается параллельная Вселенная, а может и продолжение космоса, которого мы пока не видим, и никакого конца космоса нет. Существует еще версия о том, что

Космос привлекает и интригует, мы видим звезды, мы смотрим фильмы о нем, но все равно остается множество интересных вопросов, ответы на которые мы и поможем узнать.

25. Сколько лет Солнцу?

Солнцу около 4,6 миллиарда лет. Миллиард - это тысяча миллионов.

24. Действительно ли астронавты ходят в подгузниках?

Да: во время старта космического корабля, возвращения на Землю и всего того, что они делают за пределами космического корабля или космической станции. Хотя они называются не «подгузниками», а «максимально поглощающим предметом одежды» (Maximum Absorbency Garment, или MAG).

23. Правда ли, что в космосе никто не услышит вашего крика?

Ну, да. То, что мы слышим, это звуковые волны, которые на самом деле представляют собой вибрации в воздухе. В космосе нет воздуха, поэтому вибрировать там нечему. Световые и радиоволны распространяются в космосе, но им не нужен воздух, чтобы распространяться, как звуковые волны.

22. Когда комета Галлея снова пролетит мимо?

Комета Галлея вновь будет видна с Земли в 2061 году. Интересный факт: Марк Твен (Mark Twain) родился в год, когда мимо пролетала комета Галлея (1835), а умер тогда, когда она пролетала мимо Земли в следующий раз (1910). За год до своей смерти Марк Твен сказал: «Я пришёл с кометой Галлея, и должен уйти вместе с ней».

21. Почему космос чёрный?

Потому что в подавляющей части вселенной ничего нет, включая свет. А может, в чёрном пространстве, на которое мы смотрим, есть свет - мы просто не можем разглядеть его человеческим глазом, либо световые волны находятся в сотнях световых лет от нас.

20. Когда мы на самом деле отправимся на Марс?

В настоящее время похоже на то, что запланированная на 2030 год миссия на Марс является нашим самым реалистичным графиком. Одна из главных проблем, связанных с отправкой людей на Марс - это финансы.
Пока всё больше людей требуют деньги для НАСА от правительства, глядя на успех частных программ, таких как Spase X, возможно, что частный сектор или сотрудничество может способствовать тому, чтобы доставить нас на Марс.

19. Действительно ли в космосе есть «спутники-шпионы»?

Можете не сомневаться! На самом деле, Япония только что, в марте, запустила один такой спутник - «Радар 5″ («Radar 5″) - чтобы следить за Северной Кореей. Спасибо за внимание, Япония!

18. Полнолуние каждый месяц выпадает на разные дни, так сколько же длится лунный цикл?

17. Как называются планеты в нашей Солнечной системе, и что означают их названия?

За исключением Земли, все планеты в нашей Солнечной системе названы в честь богов и богинь древнегреческой или древнеримской мифологии.
Плутон был богом подземного царства; Меркурий был посланником богов; Венера была богиней любви и красоты. Уран был богом неба; Сатурн был древнеримским богом сельского хозяйства; Марс был богом войны, Юпитер (крупнейшая планета нашей Солнечной системы) был назван в честь бога-громовержца; Нептун был богом морей.

16. Тогда почему Земле дали именно это название?

На самом деле, неизвестно. Что мы действительно знаем, так это то, что слово «земля» («earth») является производным от английских и немецких слов, означающих «почва, грунт». Наша планета потрясающе красива, в большинстве своём покрыта водой, и мы назвали её… Землёй. Привет, человечество!

15. Существует ли в действительности загадочная «планета Х», которую мы не можем разглядеть в нашей Солнечной системе?

Вероятно. В НАСА обнаружили доказательства существования планеты размером с Нептун на ещё большей орбите Солнца, чем Плутон, которая, по расчётам астрономов, делает одно полное вращение вокруг Солнца за 10.000 лет.

14. Можно ли в действительности заболеть «космическим безумием»?

Нет? Но проблемы с психическим здоровьем на Земле также существовали бы и в космосе, и если бы стресс от полёта в космос был спусковым механизмом, у астронавтов мог быть сбой или случай проявления заболевания в космосе, поэтому… да?
В НАСА провели два отдельных исследования в области психического здоровья астронавтов (одно - на МКС, другое - на уже не существующей космической станции «Мир»), и единственная интересная вещь, которая фигурировала в отчётах, это «некоторое напряжение», что в принципе является тем, что может произойти с ЛЮБЫМ человеком, живущим на работе со своими коллегами. На общем настроении или сплочённости группы это никак негативно не сказалось.
Испытание, имитировавшее год на Марсе, было начато на Земле и завершилось в 2016 году. Участники исследования не могли покидать своё место обитания на расстояние дальше 366 метров, если на них не было скафандров. Наблюдалось некоторое напряжение и стресс, а также некоторые межличностные проблемы.
Как и соседи по комнате в общежитии, одни становятся друзьями всю оставшуюся жизнь, а другие не будут друзьями даже в «Фейсбуке». Так что нет никаких конкретных доказательств того, что время, проведённое в космосе, вызывает какие-то специфические «космические» проблемы психического здоровья. Однако если они есть у человека на Земле, то он будет их иметь и после того, как покинет Землю (теоретически).

13. Что случится, если пукнуть в космосе?

Ну, во-первых, выпущенный газ не будет двигаться, потому что нет гравитации, чтобы более тяжёлый воздух перемещался куда-нибудь, и нет никаких воздушных потоков, чтобы он распространился.
Человек просто остаётся один на один в этом газовом «облаке». К счастью, скафандры сделаны с модификациями, которые фильтруют такие… хм… газы, и астронавты находят собственные способы минимизировать воздействие своих газов на других членов экипажа, такие как, например, делать это в менее используемых отсеках МКС.

12. Почему звёзды кажутся мерцающими или мигающими?

Потому что их свет должен преодолеть различные слои газов в нашей атмосфере. Думайте об этом, как о свете, проходящем через воду, которая искажает свет и заставляет его «сверкать». В данном случае действует тот же основной принцип.

11. Может ли кровь действительно закипеть в космосе, если человек будет без скафандра?

Да. Это связано с тем, как давление влияет на точку кипения жидкостей. Чем ниже давление, тем ниже точка кипения, потому что молекулам легче перемещаться и начинать превращаться из жидкости в газ. Именно поэтому вода на Эльбрусе, например, закипает быстрее, чем на побережье Каспийского моря. Таким образом, в условиях вакуума космического пространства точка кипения крови может опуститься до нормальной температуры тела.

10. Какая в космосе температура?

Разная. В некоторых частях космического пространства, как например, возле звёзд, довольно горячо: там можно мгновенно испариться, превратившись в горячий пепел. Тогда как в других частях, в глубокой тьме и на поверхности некоторых планет, смотрящих в сторону от солнц или находящихся вдали от них, довольно холодно.
На самом деле, всё зависит от того, где вы находитесь. Для справки, МКС (без системы термоконтроля!), будучи на солнечной стороне, нагрелся бы до температуры 121°С, и имел бы температуру -157°С, находясь в тени от Солнца.

9. Сколько мусора мы оставили в космосе?

Хм, ну, нам, людям, мало засорять нашу собственную планету, поэтому мы начали мусорить и за её пределами. В настоящее время на орбите Земли находится более 500.000 единиц «космического мусора», которые отслеживаются, поскольку могут нанести ущерб космическим кораблям.
В то время как некоторые из них - это небольшие кусочки метеоров и т.п., попавшие на орбиту, большая часть «космического мусора» представляет собой то, что мы (человечество) подняли в космос и не вернули обратно на Землю.

8. Действительно ли мы отправили золотую пластинку инопланетянам?

Да. Или, по крайней мере, мы отправили её туда, где они могли бы её взять, если бы существовали. Самый дальний искусственный объект в космосе - это «Вояджер-1″ (Voyager 1), и его запустили в 1977 году вместе с «Вояджером-2″ (Voyager 2).
Оба автоматических зонда должны были исследовать дальние планеты Солнечной системы, и «Вояджер-1″ в ходе выполнения своей миссии отправился в межзвёздное пространство.
Оба «Вояджера» на своём борту несут золотую пластинку с приветствиями, музыкой (например, в исполнении Луи Армстронга, а также некоторые мелодии, исполненные на перуанской свирели - в общей сложности 27 различных произведений разных стилей и направлений), шум моря и разговор людей, а также изображения.

7. Действительно ли космос выглядит так, как «космический узор», который мы видим повсюду?

Не совсем. По крайней мере, не для невооружённого человеческого глаза, извините. Эти суперфантастические снимки обычно либо обрабатываются в диапазоне волн светового излучения, который обычно не различим для человеческого глаза, как, например, инфракрасный или ультрафиолетовый, либо их цветовая гамма улучшается. Но это совсем не означает, что космос не фантастичен и не красив.

6. Сколько космических станций находится в космосе?

В настоящее время - две. Международная космическая станция (МКС) и космический аппарат «Тяньгун-1″ (Tiangong-1), который принадлежит Китаю. В то время как на борту МКС всегда есть команда, на «Тяньгуне-1″ обычно людей нет. МКС делят между собой астронавты из России, США, Японии, Канады и Европейского космического агентства (European Space Agency).

5. Насколько далеко от нас находится ближайшая звезда, кроме нашего Солнца (являющегося звездой)?

4,24 светового года. Она называется Проксима Центавра. Лучший способ визуализировать это расстояние: если уменьшить размер Солнца и Проксимы Центавра до размеров грейпфрутов, то они всё равно находились бы друг от друга на расстоянии примерно 4023 км (почти как от Москвы до Красноярска). В реальности Солнце достаточно велико, чтобы внутри него могло поместиться более 1 миллиона Земель.

4. Существует ли у каких-нибудь частных компаний, таких как Space X, планы отправиться на Марс?

Да! На самом деле, Илон Маск (Elon Musk) (основатель компаний Space X, Tesla и PayPal) в 2050-2100 гг. хочет основать колонию людей на Марсе, состоящую из миллиона человек. В то время как это звучит как сумасшествие, компания Space X делает потрясающие вещи, и графики работы показывают, что это не шутка - это реальная цель.

3. Плутон был «понижен» в звании с планеты до карликовой планеты, так в чём же между ними разница?

Существует всего одно различие, и оно в том, что рассматриваемое небесное тело очищает пространство вокруг своей орбиты. Планета очищает окружающее её пространство, карликовая планета - нет.
Два других требования, применяемые к планетам и карликовым планетам, состоят в следующем: 1) рассматриваемая планета находится на орбите вокруг звезды, при этом сама не является спутником; 2) имеет достаточную массу, чтобы быть круглой.

2. Поскольку Плутон теперь является карликовой планетой, существуют ли в нашей Солнечной системе другие карликовые планеты?

Да, в нашей Солнечной системе существует всего 5 карликовых планет: Церера (Ceres), Плутон (Pluto), Эрида (Eris), Макемаке (Makemake) и Хаумеа (Haumea).
Плутон даже не является самым большим из них. Крупнейшая карликовая планета нашей Солнечной системы - это Эрида. Она почти на 27% больше Плутона. Бонусный факт: Эрида - богиня раздора в греческой мифологии.

1. Возможно ли вторжение инопланетян на Землю?

Да! Это может произойти? Не совсем. И на то есть несколько причин: ОГРОМНЫЕ расстояния между звёздами и галактиками в космосе. (Большинство из нас осознать это по-настоящему не может.)
Кроме того, у нас есть немало ужасных проблем человечества. Зачем значительно продвинутой цивилизации тратить годы и ресурсы на то, чтобы к нам прилететь?

Где на самом деле летает МКС? Развенчание мифов May 15th, 2017


Оригинал взят у uchvatovsb в Где на самом деле летает МКС? Развенчание мифов

Международная космическая станция — один из самых известных искусственных объектов, когда-либо запущенных в космическое пространство. Ее часто показывают в фильмах, а прямые включения с МКС стали неотъемлемым элементом крупных спортивных, культурных, общественно-политических событий. В сознании обывателей МКС летает где-то очень далеко от Земли, в самом что ни на есть темном космосе. Так ли это на самом деле?
Конечно, фильмы и красивые фоточки делают свое дело. Космонавты на МКС для нас — чуть ли не Стражи галактики. Но если разобраться, то высота полета МКС не такая и большая. Она незначительно меняется от года к году, и сейчас это около 400 километров над уровнем моря. Это верхние слои атмосферы, если быть точным — термосфера. Конечно же, это космос. Ведь линия Картмана, условно являющаяся границей между атмосферой и космосом, находится на расстоянии всего 100 километров над уровнем моря. Однако это не тот космос, каким он нам представляется при упоминании этого романтического слова. Чтобы лучше понять обсуждаемые рсстояния, достаточно сказать, что полярное сияние (красное свечение кислорода) может наблюдаться на высоте даже выше той, на которой летает МКС. Речь, опять же, идет примерно о 400 километрах над уровнем моря.

Конечно, множество космических объектов летают на высоте гораздо выше высоты движения МКС. Например, метеорологический спутник NOAA-16 находится на высоте 849 километров. Ну а геостационарные спутнки вообще обращаются на высоте 35 786 км над уровнем моря. Вот там космос так космос.

Космонавты потому и могут достаточно долго находиться на станции, потому что верхние слои атмосферы спасают их от радиации. Выше 500 км простираются радиационные пояса, оказывающие на людей сверхвредное действие. Для задач МКС высоты в 400 км более чем достаточно. Чтобы запустить что-то выше, необходимы очень большие ресурсы. Хотя и МКС содержать очень дорого.

Кстати, станцию можно наблюдать с Земли даже невооруженным глазом. МКС наблюдается как достаточно яркая звезда, довольно быстро идущая по небу приближенно с запада на восток. На сайте www.heavens-above.com можно узнать расписание пролётов МКС над определенным населенным пунктом планеты.

Так что космос гораздо ближе, чем кажется.

Смотрите - что это в небе? Это птица! Это самолет! Это Супермен! Что за фигня пролетела через небо Австралии? На прошлой неделе австралийцы из городов Мельбурн и Брисбен сообщили - и даже сняли - о том, что большой горящий объект пролетел по небу (на фото выше). В отличие от метеора, который поразил Россию в феврале 2013 года, этот объект был создан руками людей.

Очень скоро ученые поняли, что это была третья ступень российской ракеты «Союз», с помощью которой 8 июля были запущены метеорологические спутники.

Хотя фейерверк был достаточно серьезным, чтобы вызвать тревогу, большая часть космического мусора падает на Землю совершенно незамеченной.

Некоторые части космических аппаратов падают в течение нескольких дней после запуска, но большинство - спустя более длительное время. За шестьдесят лет после запуска «Спутника», который стал первым спутником Земли в 1957 году, люди запустили более 7500 спутников на орбиту.

Те, которые находятся на низкой околоземной орбите - в пределах 500 километров - проходят через очень тонкий слой атмосферы, который действует как постепенный тормоз на траекторию спутника. При отсутствии вмешательства людей эти спутники медленно движутся к Земле по спирали в течение 10-20 лет, в зависимости от точной орбиты и формы.

Космический телескоп Хаббл находится на низкой околоземной орбите в течение 24 лет и продержался столько только благодаря тому, что астронавты возвращали его на более высокую орбиту при каждом визите для обслуживания.

Более тысячи активных спутников находятся на земной орбите прямо сейчас. Чуть больше половины из них выведены на низкую околоземную орбиту. Почти все остальные находятся на геостационарной орбите, то есть обращаются вокруг Земли со скоростью ее вращения. Для телекоммуникационных компаний, обслуживающих страну, это важно, поскольку спутник все время находится над страной.

Геосинхронный 24-часовой период обращения требует очень высокой орбиты. Согласно 400-летнему закону тяготения Ньютона, орбитальная скорость зависит только от массы тела, вокруг которого находится орбита (в данном случае - Земли) и радиуса орбиты (радиус Земли плюс высота спутника над Землей). Вот почему Хаббл, довольно большие космические станции, небольшие ранние спутники и другие спутники на низкой околоземной орбите облетают наш земной шар всего за 90 минут.

Геосинхронные спутники работают иначе. Их орбита еще долго будет стабильной. Скорее упадут спутники на НОО или космический мусор и мертвые спутники, которыми не могут управлять инженеры и космические агентства. Активные спутники могут управляться с Земли.

Как показал фильм «Гравитация», неконтролируемый космический мусор может быть очень опасен. В фильме, если кто не смотрел, русская ракета уничтожает нерабочий спутник, начиная разрушительную и смертоносную цепную реакцию: мусор уничтожает другие спутники, набирает обороты и в конечном счете разрушает космическую станцию, на которой обосновались астронавты.

В 1985 году США поиграли мышцами, продемонстрировав противоракетные возможности в стиле «Звездных войн», взорвав солнечную обсерваторию P78. Помимо голой науки, это привело к созданию мелких обломков. Китай повторил успех США в 2007 году. Но, согласно законам физики, ничто не исчезает бесследно. Просто на орбите Земли появляется больше крошечных осколков, которые могут разогнаться до запредельных скоростей. И меньшие обломки труднее отслеживать, чем крупные.

За космическими объектами следят. Силами США каталогизировано более 39 000 искусственных объектов на орбите. Около 60% из них повторно вошли в атмосферу; 16 000 остаются на орбите и сегодня. Из них только 5% представлены работающими спутниками или полезным грузом, которым можно управлять, в то время как 95% - неактивный космический мусор.

По оценкам NASA, на орбите Земли плавает около полумиллиона деталей космического мусора, который намного меньше, чем тот, что можно отследить. Но даже обломок мусора размером с гайку может нанести серьезный ущерб.

Спутниковые технологии сделали возможной работу телефонов по всему миру. Побочный эффект - они могут упасть обратно на Землю.

К счастью, только самые крупные и твердые обломки не сгорают по пути к Земле. В 1979 году космическая станция NASA Skylab упала на Землю и вызвала определенные беспокойства. Несколько обломков были обнаружены в Австралии. Обломки немецкой рентгеновской астрономической обсерватории ROSAT тоже достигали Земли.

Достаточно просто вычислить путь повторного входа космического корабля в атмосферу, поскольку его движение отслеживается. Но с ростом скорости падения могут появляться детали, которые сложно предугадать. Есть определенная разница между тем, как объект горит и как он разваливается на части. Большие обломки продолжают мчаться вниз, пока меньшие попросту сгорают в атмосфере. Куда упадет основная часть мусора - как правило, непонятно.