Математическое выражение теоремы штейнера. Теорема Штейнера

Момент инерции тела. Теорема Гюйгенса-Штейнера. Примеры вычисления моментов инерции тел

Момент инерции тела аддитивная величина, равная сумме моментов инерции всех частиц тела:

Здесь m i - масса i -той частицы, которую можно связать с плотностью вещества r i и объёмом частицы:

m i = r i DV i .

Тогда .

Если тело однородно, то есть его плотность повсюду одинакова, то r можно вынести за знак суммы:

Разделяя тело на всё более мелкие частицы, сведём задачу отыскания момента инерции к вычислению интеграла:

Интегрирование проводится по всему объёму тела V .

В качестве примера вычислим момент инерции тонкого однородного стержня относительно оси z , проходящей через его центр масс - точку С (рис. 9.3). Длина стержня - l , его масса - M .

На расстоянии x от оси вращения выделим элемент dx , масса которого dm = .


Рис. 9.3

Момент инерции этой частицы стержня равен:

.

Вычислив подобным образом, моменты инерции всех элементов стержня, сложим их, взяв интеграл:

Таким образом:

I z = . (9.7)

Интегрирование проведено по x в пределах от до .

Как изменится момент инерции этого стержня, если ось вращения перенести в другое место? Провести её, например, через край стержня?

В этом случае прежний интеграл нужно рассмотреть в пределах от 0 до l :

. (9.8)

Новое значение момента инерции того же стержня заметно возросло. Связано это с тем, что момент инерции тела определяется не только его массой, но и её распределением относительно оси вращения.

Вычислим момент инерции ещё одного тела: сплошного цилиндра относительно его геометрической оси.

Рис. 9.4

Пусть M - масса, а R - радиус цилиндра (рис. 9.4). Выделим в этом цилиндре цилиндрический слой радиусом r и толщиной dr . Масса этого слоя:

dm = r × dV = r × 2pr × dr × l ,

где: r - плотность материала цилиндра;

l - его длина.

Все частицы этого слоя находятся на одинаковом расстоянии от оси вращения - геометрической оси цилиндра, значит, момент инерции слоя равен:

dI = dm × r 2 = r × 2pr × dr × l × r 2 .

Для отыскания момента инерции цилиндра проинтегрируем последнее выражение:

.

Отметим, что pR 2 l = V - объём цилиндра, а rpR 2 l = rV = M - его масса.

Тогда момент инерции цилиндра относительно его геометрической оси можно окончательно записать в таком виде:

Момент инерции тела относительно произвольной оси (I) равен сумме момента инерции I c относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела М на квадрат расстояния между осями :



I = I c + Ma 2 , (9.9)

где а - расстояние между осями.

На рисунке 9.5 оси вращения перпендикулярны плоскости чертежа: через точку 0 проходит произвольная ось; параллельная ей ось проведена через центр масс тела - точку С . Расстояние между осями - а .

Выделим элемент тела массой Dm i . Его момент инерции относительно оси 0 равен:

Как следует из рисунка , откуда:

. (9.11)

Рис. 9.5

Теперь момент инерции частицы Dm i (9.10) можно представить такой суммой:

Для отыскания момента инерции всего тела, нужно сложить моменты инерции всех его частиц:

Здесь за знак суммы вынесена постоянная величина - расстояние между осями а . Первое слагаемое справа = Ма 2 , так как = М - масса тела. Второе слагаемое = I С - момент инерции тела, относительно оси, проходящей через центр масс. Третье слагаемое равно нулю, так как сумма равна произведению массы тела на вектор , проведённый от оси С к центру масс тела. Но ось С проходит через центр масс, поэтому = 0 и = М = 0.

Собрав эти результаты в уравнение (9.12), получим выражение теоремы Гюйгенса-Штейнера:

I O = I C + Ma 2 .

Эта теорема значительно упрощает задачу вычисления моментов инерции.

Известен, например, момент инерции стержня относительно оси, проходящей через его центр масс (9.7):

Воспользовавшись теоремой Гюйгенса-Штейнера, легко вычислим момент инерции этого же стержня относительно оси z ’, проходящей, например, через край стержня (рис. 9.3):

I z ’ = I z + Ma 2 , a = l /2.

.

Это значение момента инерции совпадает с результатом (9.8), который был получен методом прямого интегрирования.

Лекция 10 «Механика твёрдого тела»

План лекции:

1. Полная система уравнений, описывающая произвольное движение твердого тела. Условия его равновесия и покоя.

2. Энергия движущегося тела.

2.1. Кинетическая энергия твердого тела, вращающегося вокруг неподвижной оси

2.2. Кинетическая энергия тела при плоском движении.

3. Скатывание тела с наклонной плоскости.

Момент инерции определяется как , если распределение массы равномерно, то заменяется на – элементарный объём, – плотность вещества. .

Теорема Штейнера: момент инерции относительно произвольной оси равен сумме момента инерции относительно оси, параллельной данной и проходящей через центр инерции тела, и произведения массы тала на квадрат расстояния а между осями: .

Момент инерции:

1) однородного тонкого стержня массы , длины относительно оси, проходящей через центр масс и перпендикулярной стержню:

2) однородного тонкого стержня массы , длины относительно оси, проходящей через один из концов стержня:

3) тонкого кольца массы , радиуса R относительно оси симметрии, перпендикулярной плоскости кольца:

4) однородного диска (цилиндра) массы , радиуса R, высоты h относительно оси симметрии, перпендикулярной основанию: .

21. Кинетическая энергия вращающегося твёрдого тела.

При вращении тела с угловой скоростью все его элементарные массы движутся со скоростью они обладают кинетической энергией , – для тела, вращающегося вокруг неподвижной оси. При вращении на материальные точки массы , образующие твёрдое тело, действуют как внешние, так и внутренние силы. За промежуток времени испытывает перемещение ,при этом силы совершают работу . Работа всех сил будет равна . При сложении с учётом 3-его закона Ньютона сумма работ внутренних сил = 0. Следовательно, . В соответствии с теоремой о кинетической энергии, приращение кинетической энергии = работе всех сил, действующих на тело .

Вычислим кинетическую энергию твёрдого тела, совершающего произвольное плоское движение. все точки движутся в параллельных плоскостях. Вращение совершается вокруг оси, перпендикулярно плоскостям, и движется вместе с некоторой точкой О. Скорость материальной точки массы представим в виде . Тело перемещается поступательно, следовательно, , – выражение кинетической энергии тела, совершающего произвольное плоское движение. Если в качестве точки О выбрать центр масс, тогда и .

Гироскопы.

Гироскоп (или волчок) – массивное твёрдое тело, симметричное некоторой оси, совершающее вращения вокруг неё с большой угловой скоростью. В силу симметрии гироскопа выполняется . При попытке повернуть вращающийся гироскоп вокруг некоторой оси наблюдается гироскопический эффект – под действием сил, которые, казалось бы, должны были вызвать поворот оси гироскопа ОО вокруг прямой О’O’, ось гироскопа поворачивается вокруг прямой О’’О’’ (ось ОО и прямая О’O’ предполагаются лежащими в плоскости чертежа, а прямая О’’О’’ и силы f1 и f2 – перпендикулярными к этой плоскости). Объяснение эффекта основано на использование уравнения момента . Момент импульса поворачивается вокруг оси ОХ в силу соотношения . Вместе с вокруг ОХ поворачивается и гироскоп. Вследствие гироскопического эффекта на подшипнике, на котором вращается гироскоп, начинают действовать гироскопические силы . Под действием гироскопических сил ось гироскопа стремиться занять положение, параллельное угловой скорости вращения Земли.

Описанное поведение гироскопа положено в основу гироскопического компаса . Преимущества гироскопа: указывает точное направление на географический северный полюс, его работа не подвержена воздействию металлических предметов.

Прецессия гироскопа – особый вид движения гироскопа имеет место в том случае, если момент действующих на гироскоп внешних сил, оставаясь постоянным по величине, поворачивается одновременно с осью гироскопа, образуя с ней всё время прямой угол. Рассмотрим движение гироскопа с одной закреплённой точкой на оси под действием силы тяжести , – расстояние от закреплённой точки до центра инерции гироскопа, – угол между гироскопом и вертикалью. направлен момент перпендикулярно к вертикальной плоскости, проходящей через ось гироскопа. Уравнение движения: приращение импульса = Следовательно, изменяет своё положение в пространстве таким образом, что его конец описывает окружность в горизонтальной плоскости. За промежуток времени гироскоп повернулся на угол ось гироскопа описывает конус вокруг вертикальной оси с угловой скоростью – угловая скорость прецессии.

Существует ряд геометрических задач, которые околдовывают каждого, кто по воле случая сталкивается с ними. По-видимому, это было характерно для геометрии даже в древнее время. Стоит только вспомнить три знаменитые задачи древности — удвоение куба, трисекцию угла и квадратуру круга. Попытки решить эти задачи привели к развитию новых ветвей математики. Даже сейчас существуют псевдоматематики, которые присылают в редакции «решения» этих задач и требуют публикации или доказательства ложности своих «решений».

Одна всегда возбуждавшая интерес теорема может быть сформулирована следующим образом:

Если в треугольнике две биссектрисы равны, то этот треугольник является равнобедренным.

Это с виду простое утверждение не имеет простого классического доказательства. Этот факт тем более удивителен, что заменив слово "биссектрисы" на "медианы" или "высоты", получаем утверждения, доказательства которых элементарны.

Эта теорема была послана великому шведскому геометру, члену Берлинской академии наук, Якобу Штейнеру в 1840 году Кристианом Лудольфом Лемусом, немецким математиком, профессором Берлинского университете, с просьбой дать чисто геометрическое доказательство.

Якоб Штейнер

(1796-1863 )

Штейнер дал довольно сложное доказательство, которое вдохновило многих других на поиски более простых методов. Работы по теореме Штейнера - Лемуса появлялись в различных журналах в 1842, 1844, 1848 годах и почти каждый год с 1854 года по 1864 год, а также в большом количестве и в течение следующего столетия.

Доказательство теоремы Штейнера - Лемуса

Одно из простейших доказательств опирается на следующие две леммы:

Лемма 1.

Если две хорды окружности стягивают различные острые углы с вершинами на этой окружности, то меньшему углу соответствует меньшая хорда.

Доказательство.

Две равные хорды стягивают равные углы с вершиной в центре окружности и равные углы (как их половины) с вершинами в соответствующих точках на окружности. Из двух неравных хорд более короткая, находясь дальше от центра, стягивает меньший угол с вершиной в центре и, следовательно, меньший острый угол с вершиной на окружности.

Лемма 2.

В треугольнике с двумя различными углами меньший угол обладает большей биссектрисой .

Доказательство.

Пусть ABC — треугольник, в котором угол B меньше угла C , как на рисунке выше; пусть отрезки BM и CN делят пополам углы B и C . Мы хотим доказать, что BM < CN . Возьмем точку M′ на отрезке BM так, чтобы

∠M′CN = 1 / 2 ∠B .

Так как этот угол равен углу M′BN , то четыре точки N, B, C, М′ лежат на одной окружности. Поскольку

∠B < 1 / 2 (∠B + ∠C) < 1 / 2 (∠A + ∠B + ∠C) ,

то

∠CBN < ∠M′CB < 90° .

По лемме 1: CN < M′B . Следовательно, BM > BM′ > CN .

Вернёмся теперь непосредственно к доказательству теоремы Штейнера - Лемуса. Часто случается, что теорема может быть выражена в форме "противоположной к обратной" - эквивалентной первоначальной. Например, вместо того, чтобы сказать: " Все люди смертны" , мы можем также сказать " Бессмертные не есть люди" . Вместо доказательства самой теоремы Штейнера - Лемуса для нас будет достаточно доказать, что

если в треугольнике ABC ∠B ≠ ∠C , то BM ≠ CN .

Но это есть прямое следствие леммы 2.

Лирико-математическое отступление

Вышеприведенное доказательство этой леммы имеет занятную историю. Оно было придумано двумя английскими инженерами Г. Джильбертом и Д. Мак-Доннеллом и опубликовано в 1963 году в журнале American Mathematical Monthly со следующим редакционным примечанием:

Мартин Гарднер в своем обзоре книги Коксетера "Введение в геометрию" описал эту знаменитую теорему столь интересно, что сотни читателей прислали ему свои доказательства. Он взял на себя труд по обработке этого громадного материала и совершенствовал его до тех пор, пока не заблистала, очищенная от наслоений, жемчужина, которую мы приводим здесь.

Некоторые читатели могут испытать чувство неудовлетворенности потому, что "воздушное" доказательство Джильберта и Мак-Доннелла является косвенным: вместо самой теоремы Штейнера - Лемуса они доказывают теорему, противоположную к обратной (лемма 2).

Было предложено несколько якобы прямых доказательств; но каждое из них в действительности является в скрытой форме косвенным. Это несложно понять, если вспомнить, что практически только самые элементарные теоремы доказываются полностью. Все остальные доказываются с помощью других, уже известных теорем, которые выстраиваются в ряд, ведущий к аксиомам. Нельзя, строго говоря, утверждать, что некое доказательство - прямое, если хоть одна из этих вспомогательных теорем имеет косвенное доказательство. Более того, некоторые из самых простых и самых основных теорем имеют косвенные доказательства; следовательно, если бы мы настаивали на абсолютно прямом доказательстве, то существующее великое множество теорем свелось бы к небольшому числу тривиальных.

Стоит ли об этом сожалеть? Великий английский математик Годфри Харольд Харди (1877-1947) говорил по этому поводу:

Reductio ad absurdum (лат. приведение к абсурду), столь любимое Евклидом , является тончайшим инструментом математика. Оно является намного более тонким гамбитом, чем любой шахматный гамбит: шахматист может предложить в жертву пешку или другую фигуру, а математик предлагает в жертву всю игру.

Алгебраическое доказательство теоремы Штейнера - Лемуса

Приведем полное прямое, хотя и несколько тяжеловесное, доказательство теоремы Штейнера - Лемуса. Для этого воспользуемся следующей теоремой:

Пусть Х - точка на стороне АС треугольника АВС, причём АВ = с , ВС = а , АС = b , ВХ = р , АХ = m , XC = n . Тогда

b (p 2 + mn) = a 2 m + c 2 n .

Этот результат называется теоремой Стюарта в честь английского математика М. Стюарта, который сформулировал её в труде «Некоторые общие теоремы» (1746, Эдинбург). Теорему сообщил Стюарту его учитель Роберт Симсон (1687-1768) который опубликовал и доказал эту теорему лишь в 1749 году (по другим сведениям, - в 1751 году).

Доказательство.

По теореме косинусов из треугольников АВХ и ВСХ имеем:

c 2 = р 2 + m 2 - 2рm · cos α ,

а 2 = р 2 + n 2 - 2рn · cos (π - α ) = р 2 + n 2 + 2рn · cos α .

Тогда

c 2 n = р 2 n + m 2 n - 2рmn · cos α ,

а 2 m = р 2 m + n 2 m + 2рmn · cos α

c 2 n + а 2 m = р 2 (m + n) + mn (m + n) ,

c 2 n + а 2 m = (m + n) (р 2 + mn) ,

c 2 n + а 2 m = b (р 2 + mn) ,

что и требовалось доказать.

Продолжим рассуждения. Если р - биссектриса, то легко получить, что

m = bc и n = ab .
a + c a + c

Тогда по теореме Стюарта

c 2 · ab + а 2 · bc
= b (р 2 + ab 2 c ) ,
a + c a + c (a + c) 2
ac 2 + а 2 c = р 2 + ab 2 c ,
a + c (a + c) 2
ac (c + a ) = р 2 + ab 2 c ,
a + c (a + c) 2
р 2 = ac (1 - b 2 ) . (*)
(a + c) 2

Приступим к непосредственному доказательству теоремы Штейнера - Лемуса.

Пусть k и l - равные биссектрисы треугольника АВС , проведённые к сторонам АВ = с и ВС = а . Тогда

k 2 = l 2

и, согласно полученному выше равенству (*), имеем:

bc (1 - a 2 ) = ab (1 - c 2 ) ,
(b + c ) 2 (a + b ) 2
c ( 1 - a ) (1 + a ) = a (1 - c ) (1 + c ) ,
b + c b + c a + b a + b
c (b + c - a ) (a +b + c ) = a (a + b - c ) (a +b + c ) ,
(b + c ) 2 (a + b ) 2
c (b + c - a ) = a (a + b - c ) ,
(b + c ) 2 (a + b ) 2

a ((a - c ) + b ) (b + c ) 2 + c ((a - c ) - b ) (a + b ) 2 = 0 ,

a (a - c ) (b + c ) 2 + ab (b + c ) 2 + c (a - c ) (a + b ) 2 - bc (a + b ) 2 = 0 ,

(a - c ) (a (b + c ) 2 + c (a + b ) 2 ) + (ab (b + c ) 2 - bc (a + b ) 2 ) = 0 ,

(a - c ) (b 2 (a + c ) + ac (a + c ) + 4abc ) + b 3 (a - c ) - abc (a - c ) = 0 ,

(a - c ) ((a + c ) (b 2 + ab ) + 3abc + b 3 ) = 0 ,

откуда

a - c = 0

и, следовательно,

а = с ,

что и требовалось доказать.

P. S.

1. Ещё с одним прямым доказательством теоремы Штейнера - Лемуса можно познакомиться на сайте Математика, которая мне нравится .

2. В советской и российской литературе распространено доказательство, основанное на следующем признаке равенства треугольников:

если сторона, противолежащий этой стороне угол и биссектриса этого угла одного треугольника равны соответствующим элементам другого треугольника, то такие треугольники равны .

Использованные источники: Г.С.М. Коксетер, С.Л. Грейтцер "Новые встречи с геометрией" (Москва, "Наука" ГРФМЛ, 1978) и Википедия.

Предположим, что мы умеем вычислять моменты инерции относительно любой оси, проходящей через центр масс. Теперь возникает задача вычисления момента инерции тела относительно произвольной оси. Она решается с помощью теоремы Штейнера.

Эта теорема утверждает, чтомомент инерции тела относительно любой оси вращения равен моменту инерции относительно параллельной ей оси, проходящей через центр масс, сложенному с произведением массы тела на квадрат расстояния центра масс тела от оси вращения.

Для доказательства теоремы рассмотрим некую ось С , проходящую через центр масс и параллельную ей ось О , отстоящую от оси С на расстоянии а. Ось О может находиться и вне тела. Обе оси перпендикулярны плоскости чертежа (рис. 2.12).

Рис. 2.12. К доказательству теоремы Штейнера

Из рис. 2.12 видно, что положение элемента массы относительно этих осей определяется векторами и , связь между которыми имеет вид:

Квадрат расстояния равен скалярному произведению

Тогда момент инерции тела относительно оси О можно представить в следующем виде:

Последнее слагаемое в этом выражении есть момент инерции тела относительно оси, проходящей через центр масс. Обозначим его через Сумма . Напомним, что оси О и С параллельны и следовательно, вектор перпендикулярен оси С. Поэтому скалярное произведение Таким образом, мы получаем:

(2.10.1)

\ 2.11. Уравнение движения твердого тела.

Абсолютно твердое тело имеет шесть степеней свободы и, следовательно, его движение описывается с помощью шести дифференциальных уравнений второго порядка. Три из них описывают движение центра масс твердого тела:

, , , (2.11.1)

где - координаты центра масс тела, - проекции внешних сил на оси координат, m - масса тела. Три других являются уравнениями моментов относительно осей ОХ , ОУ и ОZ в декартовой системе координат:

, , , (2.11.2)

где L x , L y , L z - моменты импульса системы относительно осей ОХ , ОУ , ОZ , а M x , M y , M z - моменты внешних сил относительно этих же осей.

Если перемещать точку приложения силы вдоль линии ее действия, то моменты сил и результирующие силы не будут меняться, если мы имеем дело с абсолютно твердым телом. В этом случае не будут меняться и уравнения движения (2.11.1), (2.11.2).

Если найдены решения уравнений (2.11.1), (2.11.2), при известных начальных условиях, то определены и шесть координат, характеризующих движение твердого тела. Эти координаты являются функциями времени. Однако системы уравнений (2.11.1) и (2.11.2) не всегда позволяют получить решение в аналитической форме. В этом случае говорят, что уравнение движения не удается проинтегрировать, и решение уравнений находят путем численного интегрирования.