Методы получения наноматериалов. Процессы получения наночастиц и наноматериалов Технологии получение наноматериалов методом напыления

Курс разработан АНО «еНано» совместно с НИТУ «МИСиС» и ориентирован на студентов, обучающихся по направлениям подготовки «Материаловедение и технологии материалов» и «Наноматериалы».

Компания еНано входит в группу РОСНАНО, занимается разработкой курсов и программ, а также обучением в дистанционном формате инженерно-технических и управленческих кадров высокотехнологичной отрасли.

О курсе

Курс дает знания и практические навыки в области физико-химических основ процессов получения наночастиц и наноматериалов, помогает понять взаимосвязь условий их формирования и свойств, знакомит с основами аттестации наночастиц и наноматериалов, проблемами и перспективами их практического применения.

На основе знаний о явлениях, протекающих в гомогенных и гетерогенных системах при изменении температуры и давления, а также внешних механических воздействиях, у студента формируются представления о физико-химических основах процессов получения наночастиц и наноматериалов. В курсе рассказывается о "биографическом" наследовании наноматериалами свойств в зависимости от условий их получения. В результате освоения курса студент получит навыки выполнения расчетов по определению избыточной свободной энергии веществ, связанной с возрастанием их поверхности и дефектности структуры.

Формат

Обучение проходит в дистанционном формате. Еженедельные занятия включают в себя:
просмотр тематических видео-лекций;
изучение иллюстрированных текстовых материалов, включающих 2-3 вопроса на самопроверку для усвоения теоретического материала;
выполнение оцениваемых проверочных заданий после каждого раздела для контроля усвоения материала. Задания идут в зачет для получения сертификата.
Важным элементом обучения на курсе является выполнение 2-х индивидуальных заданий в форме эссе для обсуждений на форуме курса. А также предусмотрено итоговое контрольное тестирование по всему содержанию курса.

Информационные ресурсы

Рыжонков Д.И. и др. Наноматериалы. Учебное пособие. М.БИНОМ.Лаборотория знаний. 2008г., 280с. с ил.
Фахльман Б.Химия новых материалов и нанотехнологии. Учебное пособие. М. ИД Интеллект.2011г., 317с. с ил.
Масуо Хосокава, Кийоши Ноги, МакиоНаито. Справочник по технологии наночастиц. М. Научный мир. 2013г., 769с. с ил.

Требования

Для успешного освоения материалов курса обучающимися предварительно должны быть освоены:
"Химия",
"Фазовые равновесия и структурообразования",
"Физическая химия",
"Физические свойства твердых тел",
"Процессы получения и обработки материалов",
"Диффузия и диффузионно-контролируемые процессы",
"Механические свойства материалов",
"Теория гомогенных и гетерогенных процессов".

Для освоения данного курса обучающиеся
Должны знать: фундаментальные разделы неорганической, органической и физической химии, их законы и методы, свойства химических элементов, соединений и материалов на их основе, закономерности структурообразования и фазовых превращений, влияния структурных характеристик на свойства материалов, основные классы современных материалов.
Должны уметь: проводить расчеты основных физико-химических характеристик реакционных систем для определения возможности и интенсивности протекания в них различных превращений.
Должны владеть навыком: расчета технологических процессов, использования методов структурного анализа и определения физических и физико-механических свойств материалов, техники проведения экспериментов и их статистической обработки.

Программа курса

Часть 1. Классификация процессов получения наночастиц. Физико-химические основы способов получения наноразмерных порошков(НП). Аттестация НП.

  1. Газофазный способ получения наноразмерных порошков (НП). Основные закономерности образования НП методом испарения и конденсации.
  2. Конденсационный рост наночастиц (НЧ). Коагуляция и коалесценция НЧ.
  3. Плазменный переконденсационный метод получения НП.
  4. Плазмохимический способ получения НП.
  5. Процессы получения наночастиц (НЧ) осаждением НП из растворов.
  6. Получение НП термическим разложением и восстановлением металлсодержащих соединений.
  7. Механический способ получения НП. Механосинтез.
  8. Электровзрывной способ получения НП. Сравнительные свойства НП, полученных разными способами. Биографическое наследование ими свойств в зависимости от способа получения.
  9. Аттестация наночастиц. Исследование состава, свойств, дисперсности.

Часть 2. Фуллерены, углеродные и неуглеродные нанотрубки.

  1. История открытия фуллеренов. Механизмы формирования фуллероновой структуры. Модифицированные производные фуллеренов.
  2. Способы получения углеродных нанотрубок (С-НТ) (дуговой, лазерно-термический, пиролитический). Механизмы роста С-НТ.

Часть 3. Физико-химические основы получения объёмных наноматериалов (НМ).

  1. Классификация способов получения объёмных НМ. Наноразмерные пленки и покрытия, осаждаемые на подложке. Химическое осаждение наноструктурных покрытий из газовой фазы (CVD).
  2. Физическое осаждение наноструктурных покрытий из газовой фазы (PVD).
  3. Порошковая металлургия объёмных НМ. Формование НП.
  4. Спекание НП для получения объёмных НМ.
  5. Интенсивная пластическая деформация, как способ получения объёмных НМ. Способ получения объёмных НМ контролируемой кристаллизацией из аморфного состояния.

Результаты обучения

В результате освоения курса «Процессы получения наночастиц и наноматериалов» студент способен:
использовать термодинамический и кинетический анализы реакционных систем для обоснования наиболее вероятного механизма процессов получения наночастиц и наноматериалов;
анализировать возможность разных методов получения наноматериалов для формирования у них заданных свойств и состава;
проводить анализ дисперсности наноматериалов, полученных различными способами;
самостоятельно работать с литературой для поиска информации об отдельных определениях, понятиях и терминах в области наночастиц, включая процессы их получения;
проводить расчеты основных показателей процессов получения наночастиц и наноматериалов (равновесный состав и выход целевого продукта);
подготавливать и проводить процессы получения наночастиц и наноматериалов.

Формируемые компетенции

(28.03.03 Наноматериалы ПК3)
Способность применять основные типы наноматериалов и наносистем неорганической и органической природы для решения производственных задач; владеть навыками выбора этих материалов для заданных условий эксплуатации;
(28.03.03 Наноматериалы ПК2)
Уметь использовать на практике современные представления наук о свойствах веществ и материалов при переходе их в наноразмерное состояние (ноль-, одно-, двух- и трехмерное), о влиянии размера на свойства веществ и материалов, взаимодействия наноматериалов и наносистем с окружающей средой;
(22.03.01 Материаловедение и технологии материалов ПК 1)
Способность проводить под руководством научно-исследовательские работы и (или) опытно-конструкторские разработки в области материаловедения и технологии материалов;
(22.03.01 Материаловедение и технологии материалов ПК 3)
Готовность участвовать в разработке технологических процессов на стадии разработки, внедрения в производство и испытаний материалов и изделий из них.

Классификация физических методов 1. 2. 3. 4. 5. 6. 7. 8. распыление (диспергирование), методы испарения–конденсации, вакуум–сублимационная технология, методы превращений в твёрдом состоянии газофазный синтез электрический взрыв проводников инкапсуляция охлаждение расплава

Методы испарения–конденсации основаны на синтезе нанообъектов порошков в результате фазового перехода пар – твёрдое тело или пар – жидкость – твёрдое тело в газовом объёме либо на охлаждаемой поверхности. Сущность метода состоит в том, что исходное вещество испаряется путём интенсивного нагрева, а затем резко охлаждается.

Классификация методов испарения конденсации 1) по варианту нагрева испаряемого материала: резистивный, лазерный, плазменный, электрической дугой, индукционный, ионный способы 2) cреда: вакуум, нейтральный газ 3) различные методы охлаждения

Схема установки для получения нанопорошка методом испарения конденсации 1 - испаряемое вещество; 2 - нагреватель; 3 - осадительная поверхность; 4 - откачка сосуда Тигельное испарение испаряемое вещество обычно помещается в тигель или лодочку из тугоплавких, химически инертных материалов: вольфрама, тантала, графита или стеклоуглерода Бестигельное испарение с помощью мощных импульсов тока, лазерного или плазменного нагрева. При этом чистота конденсата повышается.

Плазменная технология Плазма - частично или полностью ионизированный газ, образующийся в результате термической ионизации атомов и молекул при высоких температурах. Различают: слабо ионизированную или низкотемпературную плазму, умеренно ионизированную полностью ионизированную или высокотемпературную плазму. В технологических процессах обычно используют низкотемпературную плазму, получаемую при температурах 20000 К и диапазоне давлений 10~5 103 МПа.

Для генерации плазмы используются электродуговые, высокочастотные сверхвысокочастотные плазмотроны большой мощности, которые нагревают газ до очень высоких температур. Стабильную плазму низкого давления можно получить, используя инертный газ с добавкой водорода.

Схема установки для получения нанопорошков способом плазменной струи Нагрев и испарение дипергируемого материала достигаются за счет энергии струи низкотемпературной плазмы, выбрасываемой из плазмотрона Испаряемое вещество вводится в зону плазмы в виде порошка либо расходуемого электрода (анода) Образуется сильно разогретый газ, скорость охлаждения которого имеет решающее значение для дисперсности, структуры порошка, производительности 1 - тигель с образцом; 2 - плазмотрон; 3 - плазма; 4 - зона конденсации; 5 - пластинчатые сборники наноматериала с водяным охлаждением; б - емкость для сбора продукта

Конденсация диспергируемого вещества в плазменных процессах производится потоком газа охладителя охлаждаемыми поверхностями. Скорость охлаждения: более 10 5°С/м достаточен для порошков тугоплавких металлов с размерами частиц 5 100 нм. 105 108 °С/с порошки Аl с размером частиц 0, 5 50 нм и удельной поверхностью Sуд (70 30) 103 м 2 /кг. керамические и интерметаллидные материалы как нитрид бора (синтез из парогазовой фазы с BBr 3, Н 2, N 2); карбид титана (исходные фазы Ti. Cl 4, СН 4, Н 2); композиции Ti Mo C и Fe Ti C (исходные вещества Ti. Cl 4, Мо. С 15, Fe(CO)5). Форма частиц, получаемых в плазме, преимущественно сферическая, иногда с присутствием частиц с ярко выраженной огранкой

Достоинство возможность стабильного испарения материалов с высокой температурой плавления и низким давлением паров (вольфрам, молибден, тантал, оксид кремния, углерод). Недостатки: не до конца решенные вопросы фокусировки плазменной струи при давлениях ниже 25 к. Па ненадежность функционирования плазменной пушки в длительных режимах нагревания (снижает эффективность этого способа получения наноматериалов)

Плазменная установка с вращающимся электродом для получения порошков, модель УЦР Предназначена для получения металлических порошков (гранул) высокореакционных металлов, титановых сплавов методом центробежного распыления заготовок, оплавляемых плазменным нагревателем в среде инертных газов. Производство гранул титановых сплавов направлено на выпуск изделий для газотурбинных установок стационарной энергетики, перекачивающих станций магистральных газопроводов, изготовления пористых насадок (фильтров, катализаторов и т. п.) в химических производствах и др.

Метод комбинированной плазмы Более эффективное испарение диспергируемого вещества. В методе используются две плазмы: 1) плазма постоянного тока для разогрева материала, 2) плазма высокочастотного разряда, которая осуществляет плавление и испарение исходного крупного порошка или стружки. Используется для получения порошков многих металлов и металлических соединений с частицами сферической формы с размером более 50 нм

Метод лазерного нагрева Лазер - оптический квантовый генератор. является источником оптического когерентного излучения, характеризующегося высокой направленностью и большой плотностью энергии. Лазеры бывают: газовые, жидкостные твердотельные. Применение лазерного нагрева позволяет избежать недостатков, присущие плазменному методу, при сохранении уровня рабочих температур. С помощью этой технологии испарения получены нанопорошки Ti, Ni, Mo, Fe, Аl со средним размером частиц в несколько десятков нанометров.

Нагрев электрической дугой Схема реактора с электродуговым плазмотроном постоянного тока: 1 - ввод плазмообразующего газа; 2 - электроды; 3 - плазма; 4 - ввод дисперсного вещества; 5 - ввод запального холодного газа; 6 - вывод продукта

1) Инертная среда 2) Смешанная, инертно водородная среда (Аг Н 2) – более эффективно. В этом случае происходит взаимодействие металла с атомарным водородом, растворимость которого намного выше, чем моле кулярного. Пересыщение расплава водородом приводит к ускорению испарения металла. Производительность процесса возрастает в 10 104 раз по сравнению с традиционным вариантом. Используется для получения нанопорошков Fe, Ni, Со, Си и других металлов, а также двойных композиций, например Fe Cu, Fe Si. Форма частиц близка к сферической.

Электрический взрыв проводников Принципиальная схема установки для получения нанопорошка взрывом проводника: 1 - проводник; 2 - разрядник; 3 - наполнитель Тонкие проволочки металла диаметром 0, 1 1 мм помещают в камеру, где импульсно к ним подают ток большой силы. Продолжительность импульса 10 5 10 7 с, плотность тока 104 106 А/мм 2. Проволочки мгновенно разогреваются и испаряются. Процесс проводится в аргоне или гелии при давлении 0, 1 60 МПа. Электровзрыв проводника сопровождается резким изменением агрегатного состояния металла в резуль тате интенсивного выделения в нем энергии, а также генера цией ударных волн, при этом создаются условия для быстрого (со скоростью более 1 * 107 К/с) нагрева метал лов до высоких температур (Т > 104 К)

На стадии взрыва металл перегревается выше температуры плавления, 3 расширение вещества проис ходит со скоростью до 5*10 м/с, и перегретый металл взрывообразно диспергируется Давление и температура во фронте возникающей ударной волны достигают несколь ких сотен мегапаскалей (тысяч атмосфер) и ~ 4 К Образование частиц происходит в свободном полете. Конденсат металла осаждается на стенках камеры в виде дисперсного порошка. Регулируя условия взрыва, можно получать порошки с размером частиц от 100 мкм до 50 нм. Средний размер частиц монотонно убывает с ростом плотности тока и сокращением длительности импульса Сферические порошки Fe, Ti, W, Mo, Со с размером частиц 40 100 нм – инертная среда, порошки пирофорны (воспламеняются в воздухе), их пассивацию проводят медленным окислением или нанесением покрытий оксидов металлов Аl, Ti, Zr , нитриды, карбиды или их смеси с размером частиц 10 50 нм – среда с воздухом, дистиллированной водой, парафина, технического масла

Диспергирование металла является следствием развития неустойчивостей (магнитогидродинамических, перетяжечных или обуслов ленных силами поверхностного натяжения). Разрушение проводника происходит неоднородно по длине. Испарение локализуется в зонах пе ретяжек. При этом до начала разрушения проводника испаряется отно сительно небольшая его часть. Большая же часть разбрызгивается в ви де капель жидкого металла, которые затем могут испаряться за счет энергии, выделяющейся в дугах, возникающих между каплями. Плотность тока при медленном электровзрыве не более 107 А/см 2.

Быстрый взрыв - время ввода энергии в проводник меньше времени развития неустойчивостей. В процессе расширения продукты взрыва сохраняют цилиндрическую симметрию без изгибов и перетяжек. При этом обеспечивается однородность нагрева материала проводника при взрыве, что является одним из наиболее существенных факторов, влияющих на образование частиц в условиях ЭВП. 7 Быстрый взрыв про исходит при плотностях тока, больших 10 А/см 2 При этом введенной энергии, как правило, достаточно для полного испарения проводника.

Сверхбыстрый взрыв происходит обычно при плотностях тока более 108 А/см 2 преимущественно на проводниках большого диаметра. В этом режиме процесс разрушения развивается неоднородно по радиу су проводника. Взрываются последовательно только его поверхностные слои, в то время как центральные области могут оставаться относитель но олодными. х

Еще один вид разрушения провод ников, е относящийся к взрыву, н но зачастую имеющий место при про текании разрядного тока через проводник. Это распад проводника на капли после его плавления случай, когда подводимой энергии недос таточно для испарения проводника.

В зависимости от плотности окружающей среды (ϒ) электрические взрывы проводников условно разделяют на три класса: взрывы при малой плотности окружающей среды (в вакууме, ϒ 10 1 г/см 3); взрывы в конденсированных средах (в воде, других жидкостях, твердых телах, ϒ > 0, 6 0, 8 г/см 3) Помещение проводника в более плотную среду задерживает развитие неоднородностей, расширение испаряемого материала

Установка "УДП 150 « для получения нанопорошков методом электровзрыва проводников От высоковольтного источника питания - 1 заряжается ёмкостной накопитель энергии - 2. Механизм подачи проволоки - 3 обеспечивает автоматическую установку взрываемого отрезка проволоки - 4 между двумя электродами. Как только отрезок проволоки займет заданное положение, включается коммутатор - 5, происходит разряд накопителя на этот отрезок проволоки, и он взрывается. Образовавшийся порошок собирается в накопителе - 6, пассивируется и поступает на дальнейшую переработку. Объем камеры - 7 вакуумируется, а затем заполняется газовой атмосферой. Эти функции выполняет система газового снабжения - 8.

Металл проволоки Производительность установки, г/час Al 50 Cu 100 W 80 Микрофотография частиц нанопорошка (100 нм и менее) вольфрама

Среда Процесс в вакууме эффективны для получения порошков с особыми свойствами, а также для большого числа труднолетучих и тугоплавких материалов. Получают нанопорошки металлов Ni, Al, Zn, Pb, Mn, Fe, Co, а также порошки сплавов с размером частиц 50 100 нм. Процесс в среде инертного газа обычно поддерживается давление 10 102 Па. Инертный газ гелий, аргон, ксенон или азот. Получают порошки щелочных и щелочноземельных, т. е. химически активных металлов, давление около 1 атм, в среде аргона. Размер получаемых этим способом частиц составляет 10 100 нм.

Способы охлаждения Эффективны с точки зрения уменьшения размера частиц. охлаждающие поверхности конденсация в вакууме на движущийся масляный подслой позволяет получать частицы диаметром 10 нм, а в ряде случаев даже меньше. Продуктом процесса является взвесь порошка в масле, которая часто может применяться и без последующей сепарации. Также этим методом получены аморфные порошки металлов с удельной поверхностью 10 25 м /г.

Защита наноматериалов от окисления конденсации в различные среды Матричный синтез наночастиц металлов: конденсация атомов металлов в вакууме на поверхность стационарных или растущих органических пленок матриц при низких температурах (~77 К). Для испарения металлов в этом случае используется резистивный и электроннолучевой нагрев. В результате образуются очень мелкие частицы разме ром 1 10 нм либо аморфные осадки. Этим способом получены частицы Cr, Ni, Ап в бензольной матрице. По сравнению с конденсацией металлов на неорганические подложки матричный метод обладает преимуществами: относительно легкое получение металлоорганических композитов, из которых в ряде случаев удается выделять металлические порошки возможность осуществления катализа непосредственно в ходе процесса без промежуточных стадий выделения и приготовления катализатора

Преимущества методов испарения конденсации: высокую производительность; возможность диспергирования без контакта с оборудованием; возможность одностадийного получения пленок, защитных покрытий, эмульсий, композитов. Недостатки методов: необходимость сложного оборудования, высокую трудоемкость; использование в качестве исходного вещества уже готовых металлов или материалов нужного состава; широкое распределение частиц по размерам

Вакуум–сублимационная технология В основе метода лежит изменение агрегатного состояния вещества - возгонка Процесс получения нанопорошков включает 3 основные стадии. 1. Готовится исходный раствор обрабатываемого вещества или нескольких веществ. 2. Замораживания раствора - имеет целью зафиксиро вать равномерное пространственное распределение компо нентов, присущее жидкости, для получения минимально возможного размера кристаллитов в твердой фазе. 3. Третья стадия - удаление из замороженного раствора кристаллитов растворителя путем его возгонки.

В результате проведения всех технологических операций получается пористое тело, образованное кристаллитами растворенных веществ, слабо связанными между собой посредством «мостов» . Незначительное механическое воздействие разрушает пористое тело, в результате чего образуется порошок, размер частиц которого по порядку величины равен размеру частиц растворенных солей, сформировавшихся на стадии замораживания. Эффективность применения вакуум сублимационной тех нологии зависит от 2 й стадии, поскольку именно стадия замораживания раствора исходных веществ предопределяет структуру продукта и его свойства. Например, с повышением скорости замораживания размер образующих ся структурных элементов, как правило, меньшается, а у равномерность пространственного распределения компонен тов возрастает.

Основные способы замораживания исходного раство ра, применяемыми для получения нанопорошков: 1. распыление в криогенные жидкости (обычно в жидкий азот), 2. распыление в вакуум (испарительное замораживание), 3. рас пыление ли тонкослойное нанесение раствора на и охлаждаемую металлическую поверхность (контактная кристал лизация) Достаточная эффективность и устойчивая реализация технологического процесса – для 2 го и 3 го способов

Испарительное замораживание 1 - смеситель; 2 - вакуумная камера и холодильник; 3 - нагреватель; 4 - накопитель Испарительное замораживание (или самозамораживание) растворов реализуется за счет интенсивного испарения растворителя в вакууме, при давлении более низком, чем давление, соответствующее тройной точке В холодильную установку, где поддерживается рабочее давление 0, 05 мм рт. ст. и температура не выше 40 °С, из смесителя подается исходный раствор. При этом струя жид кости диспергируется на капли, которые замораживаются в полете. Образовавшиеся криогранулы заполняют емкость нагревателя, в котором осуществляется процесс сублимации из них растворителя. В результате получается продукт в виде массы сферических гранул, состоящих из растворенного ве щества.

Наноматериалы: ферриты, окси ды, нитриды, карбиды, оединения с с высокотемпературной сверхпроводимостью и др. Преимущества вакуум сублимационной технологии: гранулированность продукта, что облегчает его транс портировку при минимальном пылеобразовании и спо собствует длительному хранению без заметного изменения свойств; низкое пылеобразование, что повышает безопасность синтеза наноматериалов; благоприятные предпосылки для организации непре рывного производства. Недостатки: ограничения по растворимости сужают перечень полу чаемых этим методом материалов; для проведения процесса сублимации необходимо спе циальное оборудование.

Получение наноматериалов с использованием твердофазных превращений Диспергирование осуществляется в твердом веществе без изменения агрегатного состояния Контролируемая кристаллизация из аморфного состоя ния один из способов получения массивных на номатериалов. Метод заключается в получении аморфного материала, например, закалкой из жидкого состояния, а за тем его кристаллизацией в условиях контролируемого на грева. Данным способом можно получать наноматериалы, склонные к аморфизации: различные сплавы переходных металлов с неметаллами, например, Fe B, Fe Si B, Fe Cr B, Fe Mo Si B, Ti Ni Si, Ni P, Fe Cn Nb B, а также Se, Fe Zr, Al Cr Ce Co и др.

Получаемые в результате процесса размеры кристаллитов зависят от природы материала и вида термообработки. Например, размер зерна в селене гексагональной модификации в зави симости от температуры отжига имел величину от 3 до 70 нм, 1 а в сплаве Fe Mo Si B - от 15 до 200 нм. Преимущества метода контролируемой кристаллизации из аморфного со стояния возможность получения пленочных и объемных нано и аморфно кристаллических материалов; изготовление беспористых материалов. Огра ничения: по составам, которые доступны аморфизации; по размерам получаемой продукции.

Способ облуче ния сплавов высокоэнергетическими частицами В результате радиационного воздействия происходит формирование дисло кационных петель и их перестройка в субграницы и границы нанокристаллов. Облучение проводится ионами Кг с энер гией 1, 5 Мэ. В при температурах 500 700 °С на установке, сов мещающей электронный микроскоп и ускоритель ионов. Формирование наноструктуры осуществлено на аустенитных сталях Х 15 Н 15 МЗТ 1 и Х 16 Н 8 МЗ. Размер зерен наноматериа лов составил 20 85 нм.

Структура и соответственно свойства наноматериалов формируются на стадии их изготовлёния. Вполне очевидно значение технологии как основы для обеспечения стабильных и оптимальных эксплуатационных характеристик наноматериалов; это важно также с точки зрения их экономичности.

Для технологии наноматериалов в соответствии с многообразием последних характерно сочетание, с одной стороны, металлургических, физических, химических и биологических методов, а с другой стороны, традиционных и принципиально новых приемов. Так, если подавляющее большинство методов получения консолидированных наноматериалов достаточно традиционны, то такие операции, как изготовление, например, «квантовых загонов» с помощью сканирующего туннельного микроскопа, формирование квантовых точек самосборкой атомов или использование ионно-трековой технологии для создания пористых структур в полимерных материалах основаны на принципиально иных технологических приемах.

Весьма разнообразны и методы молекулярной биотехнологии. Все это усложняет изложение основ технологии наноматериалов, учитывая и то, что многие технологические подробности («ноу-хау») авторы описывают только в общих чертах, а зачастую сообщение носит рекламный характер. Далее проанализированы лишь основные и наиболее характерные технологические приемы.

Технология консолидированных материалов

Порошковые технологии

Под порошком понимают совокупность находящихся в соприкосновении индивидуальных твердых тел (или их агрегатов) небольших размеров -- от нескольких нанометров до тысячи микрон [ Порошковое материаловедение/ Андриевский Р.А. - М.: Металлургия, 1991. - 205 с.]. Применительно к изготовлению наноматериалов в качестве исходного сырья используют ультрадисперсные порошки, т.е. частицы размером не более 100 им, а также более крупные порошки, полученные в условиях интенсивного измельчения и состоящие из мелких кристаллитов размером, подобным указанным выше.

Последующие операции порошковой технологии -- прессование, спекание, горячее прессование и т. п. -- призваны обеспечить получение образца (изделия) заданных форм и размеров с соответствующей структурой и свойствами. Совокупность этих операций часто называют, по предложению М.Ю. Бальшина, консолидацией. Применительно к наноматериалам консолидация должна обеспечить, с одной стороны, практически полное уплотнение (т.е. отсутствие в структуре макро- и микропор), а с другой стороны, сохранить наноструктуру, связанную с исходными размерами ультрадисперсного порошка (т. е. размер зерен в спеченных материалах должен быть как можно меньше и во всяком случае менее 100 нм).

Методы получения порошков для изготовления наноматериалов весьма разнообразны; их условно можно разделить на химические и физические, основные, из которых с указанием наиболее характерных ультрадисперсных порошков, приведены в Таблице 1.

Таблица 1. Основные методы получения порошков для изготовления наноматериалов

Вариант метода

Материалы

Физические методы

Испарение и конденсация

В вакууме или в инертном газе

Zn, Cu, Ni, Al, Be, Sn, Pb, Mg, Ag, Cr, MgO, Al 2 O 3 , Y 2 O 3 , ZrO 2 , SiC

В реакционном газе

TiN, AlN, ZrN, NbN, ZrO 3 , Al 2 O 3 , TiO 2 .

Высокоэнергетическое разрушение

Измельчение

Fe-Cr, Be, Al 2 O 3 , TiC, Si 3 N 4 , NiAl, TiAl, AlN

Детонационная обработка

BN, SiN, TiC, Fe, алмаз

Электрический взрыв

Al, Cd, Al 2 O 3 , TiO 2 .

Химические методы

Плазмохимический

TiC, TiN, Ti(C,N), VN, AlN, SiC, Si 3 N 4 , BN, W

Лазерный

Si 3 N 4 , SiC, Si 3 N 4 -SiC

Термический

Fe, Cu, Ni, Mo, W, BN, TiC, WC-Co

Самораспространяю-щийся высокотемпературный

SiC, MoSi 2 , Aln, TaC

Механохимический

TiC, TiN, NiAl, TiB 2 , Fe-Cu, W-Cu

Электрохимический

WC, CeO 2 , ZrO 2 , WB 4

Растворный

Mo 2 C, BN, TiB 2 , SiC

Криохимический

Термическое разложение

Конденсированные прекурсоры

Fe, Ni, Co, SiC, Si 3 N 4 , BN, AlN, ZrO 2 , NbN

Газообразные прекурсоры

ZrB 2 , TiB 2 , BN

Рассмотрим некоторые из методов получения ультрадисперсных порошков.

Конденсационный метод . Этот метод известен давно и в теоретическом плане изучен в наибольшей степени. Различают гомогенное и гетерогенное зарождение зародышей (кластеров).

В первом случае зародыш возникает флуктуационно, причем изменяя пересыщение системы (увеличивая или снижая давление пара, варьируя температуру процесса), можно регулировать значение радиуса критического зародыша и добиваться нужного размера частиц получаемых порошков. Проводя испарение в нейтральных средах и вводя в пространство испарения посторонние поверхности, можно провоцировать гетерогенное зародышеобразование для которого высота потенциального барьера образования критического зародыша гораздо ниже по сравнению с объемной гомогенной конденсацией. Таким образом, существуют, по крайней мере, два необходимых и достаточных условия получения ультрадисперсных порошков конденсационным методами -- большое пересыщение и присутствие в конденсируемом паре молекул нейтрального газа.

Лабораторная установка для получения металлических ультрадисперсных порошков была разработана в Институте химической физики Академии наук СССР в 1960-е гг. [ Левитационный метод получения ультрадисперсных порошков металлов /Ген М.Я., Миллер А.В. Поверхность. Физика, химия, механика. - 1983. №2., С. 150-154.]. Капля расплавленного металла, висящая в индукционном поле, обдувается потоком высокочистого аргона, выносящего сконденсировавшиеся наночастицы в специальный порошковый сборник, разгрузка которого осуществляется в контролируемой безокислительной атмосфере. Последующее хранение порошков и соответствующие технологические операции проводятся также в аргоне.

Конденсационный метод был использован в установке Глейтера (Рисунок 1), в которой получение ультрадисперсного порошка в атмосфере разреженного инертного газа совмещается с вакуумным прессованием. Конденсируемые на поверхности охлаждаемого вращающегося цилиндра наночастицы снимаются специальным скребком и собираются в пресс-форме 2 предварительного прессования (давление до 1 ГПа), а затем в специальной пресс-форме 1 проводится компактирование при более высоких (до 3-- 5 ГПа) давлениях. Производительность установки Глейтера невелика, она лимитируется преимущественно невысокими скоростями испарения

Рисунок 1. Схема установки Глейтера: 1 - узел компактирования при высоком давлении; 2 - узел предварительного прессования; 3 - испаритель; 4 - вращающийся коллектор, охлаждаемый жидким азотом; 5 - скребок

Конденсационные методы, в принципе, обеспечивают изготовление ультрадисперсных порошков с размером частиц до нескольких нанометров, но длительность процесса получения таких объектов (и соответственно стоимость) довольно велика. По желанию потребителей на поверхность порошка можно нанести тонкие полимерные пленки, предотвращающие агломерацию и коррозионное воздействие.

Высокоэнергетическое измельчение . Механохимический синтез . Измельчение - это типичный пример технологий типа «сверху - вниз». Измельчение в мельницах, дезинтеграторах, аттриторах и других диспергирующих установках происходит за счет раздавливания, раскалывания, разрезания, истирания, распиливания, удара или в результате комбинации этих действий. На Рисунок 2 показаны схема аттритора, в котором за счет вращения измельчаемой шихты и шаров совмещаются ударное и истирающее воздействия, и схема вибрационной мельницы, конструкция которой обеспечивает высокую скорость движения шаров и частоту ударов. Для провоцирования разрушения измельчение часто проводится в условиях низких температур. На эффективность измельчения оказывает влияние соотношение массы шаров и измельчаемой смеси, которое обычно поддерживается в интервале от 5:1 до 40:1.

Рисунок 2 Схема установок для измельчения:

а -- аттритор (1 -- корпус, 2 -- шары, 3 -- вращающаяся крыльчатка); б -- вибрационная мельница (1 -- двигатель, 2 -- вибратор, 3 -- пружины, 4 -- барабаны с шарами и измельчаемой шихтой)

Обеспечивая, в принципе, приемлемую производительность, измельчение, однако, не приводит к получению очень тонких порошков, поскольку существует некоторый предел измельчения, отвечающий достижению своеобразного равновесия между процессом разрушения частиц и их агломерацией. Даже при измельчении хрупких материалов размер получаемых частиц обычно не ниже примерно 100 нм; частицы состоят из кристаллитов размером не менее 10--20 нм. Следует считаться и с тем, что в процессе измельчения практически всегда происходит загрязнение продукта материалом шаров и футеровки, а также кислородом.

Плазмохимический синтез [ Троицкий В.Н Получение ультрадисперсных порошков в плазме СВЧ-разрядв// СВЧ-генераторы плазмы: физика, техника, применение/ Батенин В.М. и др. - М.: Энергоатомиздат, 1988. - С. 175-221.]. Синтез в низкотемпературной плазме осуществляют при высоких температурах (до 6000-8000 К), что обеспечивает высокий уровень пересыщения, большие скорости реакций и конденсационных процессов. Используются как дуговые плазмотроны, так и высоко- и сверхвысокочастотные (СВЧ) генераторы плазмы. Дуговые аппараты более производительны и доступны, однако СВЧ-установки обеспечивают получение более тонких и более чистых порошков. Схема такой установки приведена на Рисунок 3. В качестве исходных продуктов для плазмохимического синтеза используются хлориды металлов, металлические порошки, кремний и металлоорганические соединения.

Рисунок 3 Схема СВЧ-установки плазмохимического синтеза :

I - силовое оборудование (1 - микроволыовый генератор); II - основное технологическое оборудование (2 - плазмотрон, 3 - устройство ввода реагентов, 4 - реактор, 5 - теплообменник, 6 - фильтр, 7 - сборник порошка, 8 - дозатор реагентов, 9 - испаритель); III, IV - соответственно вспомогательное технологическое оборудование и блок управления (10 - вентили, 11 - ротаметры, 12 - манометры, 13 - система очистки газов, 14 - скруббер, 15 - ввод плазмообразующего газа, 16 - ввод газа-носителя, 17 - вывод газов)

В силу особенностей плазмохимического синтеза (неизотермичность процесса, возможность коагуляции частиц и др.) распределение получаемых частиц по размерам в большинстве случаев достаточно широкое.

Синтез в условиях ультразвукового воздействия [ Applications of ultrasound to materials chemistry/ Suslick K.S., Price G.J. Annual Review Materials Science. - 1999. V.2., P. 295-326.]. Этот метод известен как сонохимический синтез, в основе которого лежит эффект кавитации микроскопических пузырьков. При кавитации в малом объеме развиваются аномально высокое давление (до 50 - 100 МН/м 2) и высокая температура (до 3000 К и выше), а также достигаются огромные скорости нагрева и охлаждения (до 10 10 К/с). В условиях кавитации пузырек становится как бы нанореактором. С использованием экстремалъных условий внутри кавитационных пузырьков получено много нанокристаллических (аморфных) металлов, сплавов и тугоплавких соедине ний (например, наночастицы Fe, Ni и Со и их сплавов из карбонилов, коллоиды золота и меди, нанооксид Zr и др.).

Электрический взрыв проволочек [ Нанопорошки, получаемые с использованием импульсных методов нагрева мишеней/ Котов Ю.А. Перспективные материалы. - 2003. №4., С. 79-81.]. Уже давно было замечено, что при пропускании через относительно тонкие проволочки импульсов тока плотностью 10 4 -10 6 А/мм 2 происходит взрывное испарение металла с конденсацией его паров в виде частиц различной дисперености. В зависимости от окружающей среды может происходить образование металлических частиц (инертные среды) или оксидных (нитридных) порошков (окислительные или азотные среды). Требуемый размер частиц и производительность процесса регулируются параметрами разрядного контура и диаметром используемой проволоки. Форма наночастиц преимущественно сферическая, распределение частиц по размерам нормально-логарифмическое, но достаточно широкое. Для наночастиц размером 50-100 нм таких металлов, как Аl, Сu, Fе и Ni, производительность установки составляет 50-200 г/ч при энергозатратах до 25-50 кВтч/кг. Нанопорошки оксидов (Аl 2 O 3 , TiO 2 , ZrO 2 , MgAl2O 4 и др.) также могут быть изготовлены, причем после седиментационной обработки размер частиц может быть весьма малым (20-30 нм).

Рассмотренные выше в общем виде некоторые из методов получения нанопорошков, конечно, нуждаются в детализации. Выбор оптимального метода должен основываться на требованиях, предъявляемых к нанопорошку и наноматериалу, с учетом экономических и экологических соображений.

Методы консолидации. Практически все известные в порошковой технологии методы: прессование и спекание, различные варианты горячего прессования, горячее экструдирование и т.д. - применимы и к ультрадисперсным порошкам. В установках типа изображенной на Рисунок 1, несмотря на использование довольно высоких давлений прессования (до 2-5 ГПа) даже в вакуумных условиях и при небольшой высоте образцов (до 1мм), удается получить образцы пористостью не менее 10-15%. Для ультрадисперсных порошков характерна низкая уплотняемость при прессовании в силу значительного влияния характеристик трения между частицами. В технологии прессования нанопорошков при комнатных температурах эффективно применение ультразвуковых колебаний, которые уменьшают упругое последействие после снятия нагрузки при прессовании и несколько повышают относительную плотность спрессованных изделий, расширяя возможности их изготовления в виде втулок и других форм [ Ультразвуковое прессование керамических ультрадисперсных порошков/ Хасанов О.Л. Известия вузов. Физика. - 2000. №5., С. 121-127.].

Для устранения остаточной пористости необходима термическая обработка спрессованных образцов - спекание. Однако применительно к изготовлению наноматериалов обычные режимы спекания порошковых объектов не позволяют сохранить исходную наноструктуру. Процессы роста зерен (рекристаллизадия) и уплотнения при спекании (усадка), являясь диффузионно-контролируемыми, идут параллельно, накладываясь друг на друга, и совместить высокую скорость уплотнения с предотвращением рекристаллизации нелегко.

Таким образом, использование высокоэнергетических методов консолидации, предполагающих применение высоких статических и динамических давлений и умеренных температур, позволяет в известной степени задержать рост зерен.

Обычные режимы прессования и спекання ультрадисперсных порошков могут использоваться для получения наноструктурных пористых полуфабрикатов, подвергаемых затем для полной консолидации операциям обработки давлением. Так, медные порошки, полученные конденсационным методом, с размером частиц 35 нм с оксидной (Сu 2 O 3) пленкой толщиной 3,5 нм после прессования при давлении 400 МПа и неизотермического спекания в водороде до 230 єС (скорость нагрева 0,5 єС/мин) приобретали относительную плотность 90% с размером зерна 50 нм [ Fabrication of bulk nanostructured materials from metallic nanopowders: structure and mechanical behaviour/ Champion Y., Guerin-Mailly S., Bonnentien J.-L. Scripta Materialia. - 2001. V.44. N8/9., P. 1609-1613.]. Последующая гидростатическая экструзия приводила к получению беспористых макрообразцов, обладающих высокой прочностью и пластичностью (предел текучести при сжатии 605 МПа, относительное удлинение 18 %).

Задержать рост зерен при обычном спекании можно, используя специальные неизотермические режимы нагрева. В этом случае удается за счет конкуренции механизмов усадки и роста зерен оптимизировать процессы уплотнения, исключив в значительной степени рекристаллизационные явления [ Фiзико-хiмiчна кiнетика в наноструктурних системах/ Скороход В.В., Уварова И.В., Рагуля А.В. - Киiв: Академперодiика, 2001. - 180 с.]. Электроразрядное спекание, осуществляемое пропусканием тока через спекаемый образец, и горячая обработка давлением порошковых объектов (например, ковка или экструзия) могут также способствовать торможению рекристаллизации и использоваться для получения наноматериалов. Спекание керамических наноматериалов в условиях микроволнового нагрева, приводящего к равномерному распределению температуры по сечению образцов, также способствует сохранению наноструктуры. Однако размер кристаллитов в перечисленных вариантах консолидации обычно на уровне верхнего предела размера зерен наноструктуры, т.е. обычно не ниже 50--100 нм.

К настоящему времени разработано большое количество методов и способов получения наноматериалов. Это обусловлено разнообразием состава и свойств наноматериалов, с одной стороны, а с другой - позволяет расширить ассортимент данного класса веществ, создавать новые и, уникальные образцы. Формирование наноразмерных структур может происходить в ходе таких процессов, как фазовые превращения, химическое взаимодействие, рекристаллизация, аморфизация, высокие механические нагрузки, биологический синтез. Как правило, формирование наноматериалов возможно при наличии существенных отклонений от равновесных условий существования вещества, что требует создания специальных условий и, зачастую, сложного и прецизионного оборудования. Совершенствование ранее известных и разработка новых методов получения наноматериалов определило основные требования, которым они должны соответствовать, а именно:

метод должен обеспечивать получение материала контролируемого состава с воспроизводимыми свойствами;

метод должен обеспечивать временную стабильность наноматериалов, т.е. в первую очередь защиту поверхности частиц от самопроизвольного окисления и спекания в процессе изготовления;

метод должен иметь высокую производительность и экономичность;

метод должен обеспечивать получение наноматериалов с определенным размером частиц или зерен, причем их распределение по размерам должно быть, при необходимости, достаточно узким.

Следует отметить, что в настоящее время не существует метода, отвечающего в полной мере всей совокупности требований. В зависимости от способа получения такие характеристики наноматериалов, как средний размер и форма частиц, их гранулометрический состав, величина удельной поверхности, содержание в них примесей и др., могут колебаться в весьма широких пределах. Например, нанопорошки в зависимости от метода и условий изготовления могут иметь сферическую, хлопьевидную, игольчатую или губчатую форму; аморфную или мелкокристаллическую структуру. Методы получения наноматериалов делятся на механические, физические, химические и биологические. Т.е. в основе данной классификации лежит природа процесса синтеза наноматериалов. В основе механических методов получения лежит воздействие больших деформирующих нагрузок: трения, давления, прессования, вибрации, кавитационные процессы и т.п. Физические методы получения основываются на физических превращениях: испарении, конденсации, возгонке, резком охлаждении или нагреве, распылении расплава и т.п. К химическим относятся методы, основным диспергирующим этапом которых являются: электролиз, восстановление, термическое разложение. Биологические методы получения основаны на использовании биохимических процессов, происходящих в белковых телах. Методы механического измельчения применительно к наноматериалам часто называют механосинтезом. Основой механосинтеза является механическая обработка твёрдых веществ. Механическое воздействие при измельчении материалов является импульсным, т.е. возникновение поля напряжений и его последующая релаксация происходят не в течение всего времени пребывания частиц в реакторе, а только в момент соударения частиц и в короткое время после него. Механическое воздействие является также и локальным, так как происходит не во всей массе твёрдого вещества, а там, где возникает и затем релаксирует поле напряжений. Благодаря импульсности и локальности в небольших областях материала в течение короткого времени сосредотачиваются большие нагрузки. Это приводит к возникновению в материале дефектов, напряжений, полос сдвига, деформаций, трещин. В результате происходит измельчение вещества, ускоряется массоперенос и перемешивание компонентов, активируется химическое взаимодействие твёрдых реагентов. В результате механического истирания и механического сплавления может быть достигнута более высокая взаимная растворимость некоторых элементов в твёрдом состоянии, чем возможна в равновесных условиях. Размол проводится в шаровых, планетарных, вибрационных, вихревых, гироскопических, струйных мельницах, аттриторах. Измельчение в этих устройствах происходит в результате ударов и истирания. Разновидностью метода механического измельчения является механохимический способ. При тонком измельчении смеси различных компонентов между ними ускоряется взаимодействие. Кроме того, возможно протекание химических реакций, которые при контакте, не сопровождающемся измельчением, вообще не происходят при таких температурах. Эти реакции называются механохимическими. С целью формирования наноструктуры в объемных материалах используют специальные механические схемы деформирования, которые позволяют достичь больших искажений структуры образцов при относительно низких температурах. Соответственно, к интенсивной пластической деформации относятся следующие методы: - кручение под высоким давлением; - равноканальное угловое прессование (РКУ-прессование); - метод всесторонней ковки; - равноканальная угловая вытяжка (РКУ-вытяжка); - метод «песочных часов»; - метод интенсивного трения скольжением. В настоящее время большинство результатов получено первыми двумя методами. В последнее время разрабатываются методы получения наноматериалов с использованием механического воздействия различных сред. К этим способам относятся кавитационно-гидродинамический, вибрационный способы, способ ударной волны, измельчение ультразвуком и детонационный синтез. Кавитационно-гидродинамический метод служит для получения суспензий нанопорошков в различных дисперсионных средах. Кавитация - от лат. слова «пустота» - образование в жидкости полостей (кавитационных пузырьков или каверн), заполненных газом, паром или их смесью. В ходе процесса кавитационные эффекты, вызванные образованием и разрушением парогазовых микропузырьков в жидкости в течение 10-3 - 10-5 с при давлениях порядка 100 - 1000 МПа, приводят к разогреву не только жидкостей, но и твёрдых тел. Это воздействие вызывает измельчение частиц твёрдого вещества. Измельчение ультразвуком также основано на расклинивающем действии кавитационных ударов. В основе вибрационного метода получения наноматериалов лежит резонансная природа эффектов и явлений, которые обеспечивают минимальные энергозатраты при проведении процессов и высокую степень гомогенизации многофазных сред. Принцип действия заключается в том, что какой-либо сосуд подвергается вибрационному воздействию с определённой частотой и амплитудой. Наночастицы алмаза можно получать детонационным синтезом. В способе используется энергия взрыва, при этом достигается давление в сотни тысяч атмосфер и температуры до нескольких тысяч градусов. Эти условия соответствуют области термодинамической устойчивости фазы алмаза. К физическим методам получения УД материалов относятся методы распыления, процессы испарения-конденсации, вакуум-сублимационная технология, методы превращений в твёрдом состоянии. Метод распыления струи расплава жидкостью или газом заключается в том, что тонкая струя жидкого материала подается в камеру, где разбивается в мелкие капли потоком сжатого инертного газа или струей жидкости. В качестве газов в этом методе используют аргон или азот; в качестве жидкостей - воду, спирты, ацетон, ацетальдегид. Формирование наноструктур возможно способом закалки из жидкого состояния или спиннингованием. Способ состоит в получении тонких лент с помощью быстрого (не менее 106 К/с) охлаждения расплава на поверхности вращающегося диска или барабана. Физические методы. Методы испарения-конденсации основаны на получении порошков в результате фазового перехода пар - твёрдое тело или пар - жидкость - твёрдое тело в газовом объёме либо на охлаждаемой поверхности. Сущность метода состоит в том, что исходное вещество испаряется путём интенсивного нагрева, а затем резко охлаждается. Нагрев испаряемого материала может осуществляться различными способами: резистивным, лазерным, плазменным, электрической дугой, индукционным, ионным. Процесс испарения-конденсации можно проводить в вакууме или среде нейтрального газа. Электрический взрыв проводников проводят в аргоне или гелии при давлении 0,1 - 60 МПа. В этом методе тонкие проволочки металла диаметром 0,1 - 1 мм помещают в камеру и импульсно подают к ним ток большой силы. Продолжительность импульса 10-5 - 10-7 с, плотность тока 104 - 106 А/мм 2 . При этом проволочки мгновенно разогреваются и взрываются. Образование частиц происходит в свободном полёте. Вакуум-сублимационная технология получения наноматериалов включает три основные стадии. На первой стадии готовится исходный раствор обрабатываемого вещества или нескольких веществ. Вторая стадия - замораживания раствора - имеет целью зафиксировать равномерное пространственное распределение компонентов, присущее жидкости для получения минимально возможного размера кристаллитов в твёрдой фазе. Третья стадия - удаление из замороженного раствора кристаллитов растворителя путём его возгонки. Существует ряд методов получения наноматериалов, в которых диспергирование осуществляется в твёрдом веществе без изменения агрегатного состояния. Одним из способов получения массивных наноматериалов является способ контролируемой кристаллизации из аморфного состояния. Метод предполагает получение аморфного материала закалкой из жидкого состояния, а затем в условиях контролируемого нагрева проводится кристаллизация вещества. В настоящее время наиболее распространенным методом получения углеродных нанотрубок является метод термического распыления графитовых электродов в плазме дугового разряда. Процесс синтеза осуществляется в камере, заполненной гелием под высоким давлением. При горении плазмы происходит интенсивное термическое испарение анода, при этом на торцевой поверхности катода образуется осадок, в котором формируются нанотрубки углерода. Образующиеся многочисленные нанотрубки имеют длину порядка 40 мкм. Они нарастают на катоде перпендикулярно плоской поверхности его торца и собраны в цилиндрические пучки диаметром около 50 мкм. Пучки нанотрубок регулярно покрывают поверхность катода, образуя сотовую структуру. Ее можно обнаружить, рассматривая осадок на катоде невооруженным глазом. Пространство между пучками нанотрубок заполнено смесью неупорядоченных наночастиц и одиночных нанотрубок. Содержание нанотрубок в углеродном осадке (депозите) может приближаться к 60%. Химические методы получения наноразмерных материалов можно разделить на группы, в одну из которых можно отнести методы, где наноматериал получают по той или иной химической реакции, в которых участвуют определённые классы веществ. В другую можно отнести различные варианты электрохимических реакций. Метод осаждения заключается в осаждении различных соединений металлов из растворов их солей с помощью осадителей. Продуктом осаждения являются гидроксиды металлов. Регулированием рН и температуры раствора возможно создание оптимальных для получения наноматериалов условий осаждения, при которых повышаются скорости кристаллизации и образуется высокодисперсный гидроксид. Затем продукт прокаливают и, при необходимости, восстанавливают. Получаемые нанопорошки металлов имеют размер частиц от 10 до 150 нм. Форма отдельных частиц обычно близка к сферической. Однако, этим методом, варьируя параметры процесса осаждения, можно получать порошки игольчатой, чешуйчатой, неправильной формы. Золь-гельный метод первоначально был разработан для получения порошка железа. Он сочетает процесс химической очистки с процессом восстановления и основан на осаждении из водных растворов нерастворимых металлических соединений в виде геля, получаемого с помощью модификаторов (полисахаридов), с последующим их восстановлением. В частности, содержание Fe в порошке составляет 98,5 - 99,5 %. В качестве сырья можно использовать соли железа, а также отходы металлургического производства: лом металлов или отработанный травильный раствор. Благодаря использованию вторичного сырья, метод обеспечивает возможность производства чистого и дешёвого железа. Этим методом можно получать и другие классы материалов в наносостоянии: оксидную керамику, сплавы, соли металлов и др. Восстановление оксидов и других твердых соединений металлов является одним из наиболее распространенных и экономичных способов. В качестве восстановителей используются газы - водород, монооксид углерода, конвертированный природный газ, твёрдые восстановители - углерод (кокс, сажа), металлы (натрий, калий), гидриды металлов. Исходным сырьем могут быть оксиды, различные химические соединения металлов, руды и концентраты после соответствующей подготовки (обогащение, удаление примесей и т.п.), отходы и побочные продукты металлургического производства. На размер и форму получаемого порошка оказывают влияние состав и свойства исходного материала, восстановителя, а также температура и время восстановления. Сущность способа химического восстановления металлов из растворов заключается в восстановлении ионов металла из водных растворов их солей различными восстановителями: Н2, СО, гидразин, гипофосфит, формальдегид и др. В методе газофазных химических реакций синтез наноматериалов осуществляется за счёт химического взаимодействия, протекающего в атмосфере паров легколетучих соединений. Нанопорошки изготавливают также с помощью процессов термической диссоциации или пиролиза. Разложению подвергаются соли низкомолекулярных органических кислот: формиаты, оксалаты, ацетаты металлов, а также карбонаты и карбонилы металлов. Температурный интервал диссоциации составляет 200 - 400 о С. Метод электроосаждения заключаются в осаждении металлического порошка из водных растворов солей при пропускании постоянного тока. Методом электролиза получают примерно 30 металлов. Они имеют высокую чистоту, поскольку в ходе электролиза происходит рафинирование. Осаждающиеся на катоде металлы в зависимости от условий электролиза могут получаться в виде порошка или губки, дендритов, которые легко поддаются механическому измельчению. Такие порошки хорошо прессуются, что важно при производстве изделий. Наноматериалы могут производиться и в биологических системах. Как оказалось, природа использует материалы наноразмеров миллионы лет. Например, во многих случаях живые системы (некоторые бактерии, простейшие организмы и млекопитающие) производят минеральные вещества с частицами и микроскопическими структурами в нанометровом диапазоне размеров. Было установлено, что биологические наноматериалы отличаются от других, поскольку их свойства вырабатывались эволюционным путём в течение длительного времени. В процессе биоминерализации действуют механизмы тонкого биологического контроля, в результате чего производятся материалы с чётко определёнными характеристиками. Это обеспечило высокий уровень оптимизации их свойств по сравнению со многими синтетическими наноразмерными материалами. Живые организмы могут быть использованы как прямой источник наноматериалов, свойства которых могут быть изменены путём варьирования биологических условий синтеза или при переработке после извлечения. Наноматериалы, полученные биологическими методами, могут быть исходным материалом для некоторых стандартных методов синтеза и обработки наноматериалов, а также в ряде технологичеких процессов. Пока ещё работ в этой области немного, но уже есть ряд примеров, которые показывают, что в этом направлении существует значительный потенциал для будущих достижений. В настоящее время наноматериалы могут быть получены из ряда биологических объектов, а именно:

  • 1) ферритинов и связанных с ними белков, содержащих железо;
  • 2) магнетотактических бактерий;
  • 3) псевдозубов некоторых моллюсков;
  • 4) с помощью микроорганизмов путём извлечения некоторых металлов из природных соединений.

Ферритины - это класс белков, обеспечивающих для живых организмов возможность синтезировать частицы гидроксидов и оксифосфатов железа нанометрового размера. Возможно также получение нанометаллов с помощью микроорганизмов. Процессы использования микроорганизмов можно условно разделить на три группы. К первой группе относятся процессы, нашедшие применение в промышленности. Сюда входят: бактериальное выщелачивание меди из сульфидных материалов, бактериальное выщелачивание урана из руд, отделение примесей мышьяка от концентратов олова и золота. В некоторых странах в настоящее время до 5 % меди, большое количество урана и цинка получают микробиологическими методами. Ко второй группе относятся микробиологические процессы, достаточно хорошо изученные в лабораторных условиях, но не доведённые до промышленного использования. Сюда относятся процессы извлечения марганца, висмута, свинца, германия из бедных карбонатных руд. Как оказалось, с помощью микроорганизмов можно вскрывать тонко вкраплённое золото в арсенопиритных концентратах. Золото, которое относится к трудно окисляемым металлам, под воздействием некоторых бактерий образует соединения, и за счёт этого может быть извлечено из руд. К третьей группе относятся теоретически возможные процессы, требующие дополнительного изучения. Это процессы получения никеля, молибдена, титана, таллия. Считается, что в определённых условиях применение микроорганизмов может быть использовано при переработке бедных руд, отвалов, «хвостов» обогатительных фабрик, шлаков.

Ограничения в использовании наноматериалов

Оказалось, что материалы с наноразмерным зерном отличаются хрупкостью. Важным ограничением для использования наноструктурных конструкционных материалов является их склонность к межкристаллитной коррозии из-за очень большой объемной доли границ зерен. В связи с этим они не могут быть рекомендованы для работы в условиях способствующих такой коррозии. Другим важным ограничением является нестабильность структуры наноматериалов, а, следовательно, нестабильность их физико-химических и физико-механических свойств. Так при термических, радиационных, деформационных и т.п. воздействиях неизбежны релаксационные, сегрегационные и гомогенизационные процессы. При формовании изделий из нанопорошков достаточно остро встает также проблема комкования (слипания наночастиц) в агломераты, что может осложнить получение материалов с заданной структурой и распределением компонентов.

Следует отметить, что на коммерческом рынке в настоящее время

наиболее широко представлены такие наноматериалы, как нанопорошки

металлов и сплавов, нанопорошки оксидов (кремния, железа, сурьмы, алюминия, титана), нанопорошки ряда карбидов, углеродные нановолокна, фуллереновые материалы.

Нанодисперсные объекты получают в виде золя, геля, концентрированно дисперсии или порошка, тонкой пленки, нанопористого тела. Диапазон методов их получения чрезвычайно широк. Существующие методы получения нанообъектов классифицируют по следующим признакам:

Стратегия синтеза: получение может быть основано либо на процессе диспергирования либо на процессе конденсации - в зарубежной литературе эти методы делятся на две груп­пы: «top-down» - «сверху вниз», т.е. уменьшение размеров, измель­чение, и «bottom-uр» - «снизу вверх», т.е. создание наноструктур из более мелких исходных компонентов, точнее из атомов и моле­кул (наглядно оба подхода иллюстрирует рис. 2.2);

Природа процесса синтеза (физическая, химическая или биологическая);

Исполььзуемые в процессе синтеза источники энергии (лазер, плазма, нагревание, замораживание, механическая, гидротермальная, горение и т.д.);

Среда, в которой формируются наночастицы или нанокристаллы (НК) (газ, жидкость или твердоетело).

Выбор той или иной технологии определяется рядом факторов, к числу которых относятся физко-химические свойства получаемых частиц, производительность, энергоемкость процесса, экологичность и т.д.

Основные методы получения наноматериалов можно разделить на ряд технологических групп (рис. 2.3): методы на основе порошковой

металлургии, методы, в основе которых лежит получение аморфных прекурсоров, поверхностные технологии (создание покрытий и модифицированных слоев с наноструктурой), методы, основанные на использовании интенсивной пластической деформации, и комплексные методы, использующие последовательно или параллельно несколько разных технолгий.