Нахождение точки пересечения прямых. Найти точку пересечения прямых

Урок из серии «Геометрические алгоритмы»

Здравствуйте, дорогой читатель!

Продолжим знакомиться с геометрическими алгоритмами. На прошлом уроке мы нашли уравнение прямой линии по координатам двух точек. У нас получилось уравнение вида:

Сегодня мы напишем функцию, которая по уравнениям двух прямых линий будет находить координаты их точки пересечения (если такая имеется). Для проверки равенства вещественных чисел, будем использовать специальную функцию RealEq().

Точки на плоскости описываются парой вещественных чисел. При использовании вещественного типа операции сравнения лучше оформить специальными функциями.

Причина известна: на типе Real в системе программирования Паскаль нет отношения порядка, поэтому записи вида a = b, где a и b вещественные числа, лучше не использовать.
Сегодня мы введем в употребление функцию RealEq() для реализации операции “=” (строго равно) :

Function RealEq(Const a, b:Real):Boolean; {строго равно} begin RealEq:=Abs(a-b)<=_Eps End; {RealEq}

Задача. Заданы уравнения двух прямых: и . Найти точку их пересечения.

Решение. Очевидное решение состоит в том, чтобы решить систему уравнений прямых: Давайте перепишем эту системе несколько иначе:
(1)

Введем обозначения: , , . Здесь D – определитель системы, а - определители, получающиеся в результате замены столбца коэффициентов при соответствующем неизвестном столбцом свободных членов. Если , то система (1) является определенной, то есть имеет единственное решение. Это решение можно найти по следующим формулам: , , которые называются формулами Крамера . Напомню, как вычисляется определитель второго порядка. В определителе различают две диагонали: главную и побочную. Главная диагональ состоит из элементов, взятых по направлению от верхнего левого угла определителя в нижний правый угол. Побочная диагональ – из правого верхнего в нижний левый. Определитель второго порядка равен произведению элементов главной диагонали минус произведение элементов побочной диагонали.

В программном коде для проверки проверка равенства используется функция RealEq(). Вычисления над вещественными числами производятся с точностью до _Eps=1e-7.

Program geom2; Const _Eps: Real=1e-7;{точность вычислений} var a1,b1,c1,a2,b2,c2,x,y,d,dx,dy:Real; Function RealEq(Const a, b:Real):Boolean; {строго равно} begin RealEq:=Abs(a-b)<=_Eps End; {RealEq} Function LineToPoint(a1,b1,c1,a2,b2,c2: real; var x,y:real):Boolean; {Определение координат точки пересечения двух линий. Значение функции равно true, если точка пересечения есть, и false, если прямые параллельны. } var d:real; begin d:=a1*b2-b1*a2; if Not(RealEq(d,0)) then begin LineToPoint:=True; dx:=-c1*b2+b1*c2; dy:=-a1*c2+c1*a2; x:=dx/d; y:=dy/d; end else LineToPoint:=False End;{LineToPoint} begin {main} writeln("Введите коэффициенты уравнений: a1,b1,c1,a2,b2,c2 "); readln(a1,b1,c1,a2,b2,c2); if LineToPoint(a1,b1,c1,a2,b2,c2,x,y) then writeln(x:5:1,y:5:1) else writeln("Прямые параллельны."); end.

Мы составили программу, с помощью которой можно, зная уравнения линий, найти координаты их точки пересечения.

Перпендикулярная прямая

Это задача наверное одна из самых популярных и востребованных в школьных учебниках. Задачи, основанные на эту тему многообразны. Это и определение точки пересечения двух прямых, это и определение уравнения прямой, проходящяя через точку на исходной прямой под каким либо углом.

Эту тему мы раскроем, используя в своих вычислениях данные полученные с помощью

Именно там было рассмотрено преобразование общего уравнения прямой, в уравнение с угловым коэффициентом и обратно, и определения остальных парметров прямой по заданным условиям.

Что же нам не хвататет для того, что бы решать те задачи, которым посвящена эта страница?

1. Формулы вычисления одного из углов между двумя пересекающимися прямыми.

Если мы имеем две прямые которые заданы уравнениями:

то один из углов вычисляется так:

2. Уравнение прямой с угловым коэффициентом, проходящяя через заданную точку

Из формулы 1, мы можем увидеть два пограничных состояния

а) когда тогда и следовательно эти две заданные прямые паралельны (или совпадают)

б) когда , тогда , и следовательно эти прямые перпендикулярны, то есть пересекаются под прямым углом.

Какие могут быть исходные данные для решения подобных задач, кроме заданной прямой?

Точка на прямой и угол под которым вторая прямая его пересекает

Второе уравнение прямой

Какие же задачи может позволить решить бот?

1. Заданы две прямые (явным или не явным образом например по двум точкам). Вычислить точку пересечения и углы по которыми они пересекаются.

2. Задана одна прямая, точка на прямой и один угол. Определить уравнение прямой, перескающую заданную под указанным углом

Примеры

Две прямые заданы уравнениями. Найти точку пересечения этих прямых и углы под которым они пересекаются

line_p A=11;B=-5;C=6,k=3/7;b=-5

Получаем следующий результат

Уравнение первой прямой

y = 2.2 x + (1.2)

Уравнение второй прямой

y = 0.4285714285714 x + (-5)

Угол пересечения двух прямых(в градусах)

-42.357454705937

Точка пересечения двух прямых

x = -3.5

y = -6.5


Не забудьте что параметры двух линий разделяются запятой, а параметры каждой линии точкой с запятой.

Прямая проходит через две точки (1:-4) и (5:2) . Найти уравнение прямой, которая проходит через точку (-2:-8) и пересекает исходную прямую под углом 30 градусов.

Одна прямая нам известна, так как известны две точки через которые она проходит.

Осталось определить уравнение второй прямой. Одна точка нам известна, а вместо второй указан угол, под которым первая прямая пересекает вторую.

Вроде все известно, но тут главное не ошибится. Речь идет об угле(30 градусов) не между осью абсцисс и линией, а между первой и второй линией.

Для этого мы постим так. Определим параметры первой линии, и узнаем под каким углом она пересекает ось абсцисс.

line xa=1;xb=5;ya=-4;yb=2

Общее уравнение Ax+By+C = 0

Коэффициент А = -6

Коэффициент B = 4

Коэффициент C = 22

Коэффициент a= 3.6666666666667

Коэффициент b = -5.5

Коэффициент k = 1.5

Угол наклона к оси (в градусах) f = 56.309932474019

Коэффициент p = 3.0508510792386

Коэффициент q = 2.5535900500422

Расстояние между точками=7.211102550928

Видим что первая линия пересекает ось под углом 56.309932474019 градусов.

В искходных данных не сказано как именно пересекает вторая линия, первую. Можно ведь построить две линии удовлетворяющих условиям, первая повернутая на 30 градусов ПО часовой стрелке, а вторая на 30 градусов ПРОТИВ часовой стрелке.

Давайте их и посчитаем

Если вторая линия повернута на 30 градусов ПРОТИВ часовой стрелке, то вторая линия будет иметь градус пересечения с осью абсцисс 30+56.309932474019 = 86 .309932474019 градусов

line_p xa=-2;ya=-8;f=86.309932474019

Параметры прямой линии по заданным параметрам

Общее уравнение Ax+By+C = 0

Коэффициент А = 23.011106998916

Коэффициент B = -1.4840558255286

Коэффициент C = 34.149767393603

Уравнение прямой в отрезках x/a+y/b = 1

Коэффициент a= -1.4840558255286

Коэффициент b = 23.011106998916

Уравнение прямой c угловым коэфициентом y = kx + b

Коэффициент k = 15.505553499458

Угол наклона к оси (в градусах) f = 86.309932474019

Нормальное уравнение прямой x*cos(q)+y*sin(q)-p = 0

Коэффициент p = -1.4809790664999

Коэффициент q = 3.0771888256405

Расстояние между точками=23.058912962428

Расстояние от точки до прямой li =

то есть наше уравнение второй линии есть y=15.505553499458x + 23.011106998916

Точка пересечения прямых

Пусть нам даны две прямые, заданные своими коэффициентами и . Требуется найти их точку пересечения, или выяснить, что прямые параллельны.

Решение

Если две прямые не параллельны, то они пересекаются. Чтобы найти точку пересечения, достаточно составить из двух уравнений прямых систему и решить её:

Пользуясь формулой Крамера, сразу находим решение системы, которое и будет искомой точкой пересечения :



Если знаменатель нулевой, т.е.

то система решений не имеет (прямые параллельны и не совпадают) или имеет бесконечно много (прямые совпадают ). Если необходимо различить эти два случая, надо проверить, что коэффициенты прямых пропорциональны с тем же коэффициентом пропорциональности, что и коэффициенты и , для чего достаточно посчитать два определителя, если они оба равны нулю, то прямые совпадают:

Реализация

struct pt {double x, y;}; struct line {double a, b, c;}; constdouble EPS =1e-9; double det (double a, double b, double c, double d){return a * d — b * c;} bool intersect (line m, line n, pt & res){double zn = det (m.a, m.b, n.a, n.b);if(abs(zn)< EPS)returnfalse; res.x=- det (m.c, m.b, n.c, n.b)/ zn; res.y=- det (m.a, m.c, n.a, n.c)/ zn;returntrue;} bool parallel (line m, line n){returnabs(det (m.a, m.b, n.a, n.b))< EPS;} bool equivalent (line m, line n){returnabs(det (m.a, m.b, n.a, n.b))< EPS &&abs(det (m.a, m.c, n.a, n.c))< EPS &&abs(det (m.b, m.c, n.b, n.c))< EPS;}

Урок из серии «Геометрические алгоритмы »

Здравствуйте, дорогой читатель.

Совет 1: Как найти координаты точки пересечения двух прямых

Напишем еще три новые функции.

Функция LinesCross() будет определять, пересекаются ли два отрезка . В ней взаимное расположение отрезков определяется с помощью векторных произведений. Для вычисления векторных произведений напишем функцию – VektorMulti().

Функция RealLess() будет использоваться для реализации операции сравнения “<” (строго меньше) для вещественных чисел.

Задача1. Два отрезка заданы своими координатами. Составить программу, которая определяет, пересекаются ли эти отрезки , не находя точку пересечения.

Решение
. Второй задан точками .



Рассмотрим отрезок и точки и .

Точка лежит слева от прямой , для нее векторное произведение > 0, так как векторы положительно ориентированы.

Точка расположена справа от прямой, для нее векторное произведение < 0, так как векторы отрицательно ориентированы.

Для того чтобы точки и , лежали по разные стороны от прямой , достаточно, чтобы выполнялось условие < 0 (векторные произведения имели противоположные знаки).

Аналогичные рассуждения можно провести для отрезка и точек и .

Итак, если , то отрезки пересекаются.

Для проверки этого условия используется функцию LinesCross(), а для вычисления векторных произведений – функция VektorMulti().

ax, ay – координаты первого вектора,

bx, by – координаты второго вектора.

Program geometr4; {Пересекаются ли 2 отрезка?} Const _Eps: Real=1e-4; {точность вычслений} var x1,y1,x2,y2,x3,y3,x4,y4: real; var v1,v2,v3,v4: real;function RealLess(Const a, b: Real): Boolean; {Строго меньше} begin RealLess:= b-a> _Eps end; {RealLess}function VektorMulti(ax,ay,bx,by:real): real; {ax,ay — координаты a bx,by — координаты b } begin vektormulti:= ax*by-bx*ay; end;Function LinesCross(x1,y1,x2,y2,x3,y3,x4,y4:real): boolean; {Пересекаются ли отрезки?} begin v1:=vektormulti(x4-x3,y4-y3,x1-x3,y1-y3); v2:=vektormulti(x4-x3,y4-y3,x2-x3,y2-y3); v3:=vektormulti(x2-x1,y2-y1,x3-x1,y3-y1); v4:=vektormulti(x2-x1,y2-y1,x4-x1,y4-y1); if RealLess(v1*v2,0) and RealLess(v3*v4,0) {v1v2<0 и v3v4<0, отрезки пересекаются} then LinesCross:= true else LinesCross:= false end; {LinesCross}begin {main} writeln(‘Введите координаты отрезков: x1,y1,x2,y2,x3,y3,x4,y4’); readln(x1,y1,x2,y2,x3,y3,x4,y4); if LinesCross(x1,y1,x2,y2,x3,y3,x4,y4) then writeln (‘Да’) else writeln (‘Нет’) end.

Результаты выполнения программы:

Введите координаты отрезков: -1 1 2 2.52 2 1 -1 3
Да.

Мы написали программу, определяющую, пересекаются ли отрезки, заданные своими координатами.

На следующем уроке мы составим алгоритм, с помощью которого можно будет определить, лежит ли точка внутри треугольника.

Уважаемый читатель.

Вы уже познакомились с несколькими уроками из серии «Геометрические алгоритмы». Все ли доступно написано? Я буду Вам очень признательна, если Вы оставите отзыв об этих уроках. Возможно, что-то нужно еще доработать.

С уважением, Вера Господарец.

Пусть даны два отрезка. Первый задан точками P 1 (x 1 ;y 1) и P 2 (x 2 ;y 2) . Второй задан точками P 3 (x 3 ;y 3) и P 4 (x 4 ;y 4) .

Взаимное расположение отрезков можно проверить с помощью векторных произведений:

Рассмотрим отрезок P 3 P 4 и точки P 1 и P 2 .

Точка P 1 лежит слева от прямой P 3 P 4 , для нее векторное произведение v 1 > 0 , так как векторы положительно ориентированы.
Точка P 2 расположена справа от прямой, для нее векторное произведение v 2 < 0 , так как векторы отрицательно ориентированы.

Для того чтобы точки P 1 и P 2 лежали по разные стороны от прямой P 3 P 4 , достаточно, чтобы выполнялось условие v 1 v 2 < 0 (векторные произведения имели противоположные знаки).

Аналогичные рассуждения можно провести для отрезка P 1 P 2 и точек P 3 и P 4 .

Итак, если v 1 v 2 < 0 и v 3 v 4 < 0 , то отрезки пересекаются.

Векторное произведение двух векторов вычисляется по формуле:

где:
ax , ay — координаты первого вектора,
bx , by — координаты второго вектора.

Уравнение прямой, проходящей через две различные точки, заданные своими координатами.

Пусть на прямой заданы две не совпадающие точки:P 1 с координатами (x 1 ;y 1) и P 2 с координатами (x 2 ; y 2) .

Пересечение прямых

Соответственно вектор с началом в точке P 1 и концом в точке P 2 имеет координаты (x 2 -x 1 , y 2 -y 1) . Если P(x, y) – произвольная точка на прямой, то координаты вектора P 1 P равны (x — x 1 , y – y 1).

С помощью векторного произведения условие коллинеарности векторов P 1 P и P 1 P 2 можно записать так:
|P 1 P,P 1 P 2 |=0 , т.е. (x-x 1)(y 2 -y 1)-(y-y 1)(x 2 -x 1)=0
или
(y 2 -y 1)x + (x 1 -x 2)y + x 1 (y 1 -y 2) + y 1 (x 2 -x 1) = 0

Последнее уравнение переписывается следующим образом:
ax + by + c = 0, (1)
где
a = (y 2 -y 1),
b = (x 1 -x 2),
c = x 1 (y 1 -y 2) + y 1 (x 2 -x 1)

Итак, прямую можно задать уравнением вида (1).

Как найти точку пересечения прямых?
Очевидное решение состоит в том, чтобы решить систему уравнений прямых:

ax 1 +by 1 =-c 1
ax 2 +by 2 =-c 2
(2)

Ввести обозначения:

Здесь D – определитель системы, а D x ,D y — определители, получающиеся в результате замены столбца коэффициентов при соответствующем неизвестном столбцом свободных членов. Если D ≠ 0 , то система (2) является определенной, то есть имеет единственное решение. Это решение можно найти по следующим формулам: x 1 =D x /D, y 1 =D y /D , которые называются формулами Крамера. Небольшое напоминание, как вычисляется определитель второго порядка. В определителе различают две диагонали: главную и побочную. Главная диагональ состоит из элементов, взятых по направлению от верхнего левого угла определителя в нижний правый угол. Побочная диагональ – из правого верхнего в нижний левый. Определитель второго порядка равен произведению элементов главной диагонали минус произведение элементов побочной диагонали.


При решении некоторых геометрических задач методом координат приходится находить координаты точки пересечения прямых. Наиболее часто приходится искать координаты точки пересечения двух прямых на плоскости, однако иногда возникает необходимость в определении координат точки пересечения двух прямых в пространстве. В этой статье мы как раз разберемся с нахождением координат точки, в которой пересекаются две прямые.

Навигация по странице.

Точка пересечения двух прямых – определение.

Давайте для начала дадим определение точки пересечения двух прямых.

Таким образом, чтобы найти координаты точки пересечения двух прямых, определенных на плоскости общими уравнениями, нужно решить систему, составленную из уравнений заданных прямых.

Рассмотрим решение примера.

Пример.

Найдите точку пересечения двух прямых, определенных в прямоугольной системе координат на плоскости уравнениями x-9y+14=0 и 5x-2y-16=0 .

Решение.

Нам даны два общих уравнения прямых, составим из них систему: . Решения полученной системы уравнений легко находятся, если разрешить ее первое уравнение относительно переменной x и подставить это выражение во второе уравнение:

Найденное решение системы уравнений дает нам искомые координаты точки пересечения двух прямых.

Ответ:

M 0 (4, 2) x-9y+14=0 и 5x-2y-16=0 .

Итак, нахождение координат точки пересечения двух прямых, определенных общими уравнениями на плоскости, сводится к решению системы из двух линейных уравнений с двумя неизвестными переменными. А как же быть, если прямые на плоскости заданы не общими уравнениями, а уравнениями другого вида (смотрите виды уравнения прямой на плоскости)? В этих случаях можно сначала привести уравнения прямых к общему виду , а уже после этого находить координаты точки пересечения.

Пример.

и .

Решение.

Перед нахождением координат точки пересечения заданных прямых приведем их уравнения к общему виду. Переход от параметрических уравнений прямой к общему уравнению этой прямой выглядит следующим образом:

Теперь проведем необходимые действия с каноническим уравнением прямой :

Таким образом, искомые координаты точки пересечения прямых являются решением системы уравнений вида . Используем для ее решения :

Ответ:

M 0 (-5, 1)

Существует еще один способ нахождения координат точки пересечения двух прямых на плоскости. Его удобно применять, когда одна из прямых задана параметрическими уравнениями вида , а другая – уравнением прямой иного вида. В этом случае в другое уравнение вместо переменных x и y можно подставить выражения и , откуда можно будет получить значение , которое соответствует точке пересечения заданных прямых. При этом точка пересечения прямых имеет координаты .

Найдем координаты точки пересечения прямых из предыдущего примера этим способом.

Пример.

Определите координаты точки пересечения прямых и .

Решение.

Подставим в уравнение прямой выражения :

Решив полученное уравнение, получаем . Это значение соответствует общей точке прямых и . Вычисляем координаты точки пересечения, подставив в параметрические уравнения прямой:
.

Ответ:

M 0 (-5, 1) .

Для полноты картины следует обговорить еще один момент.

Перед нахождением координат точки пересечения двух прямых на плоскости полезно убедиться в том, что заданные прямые действительно пересекаются. Если выяснится, что исходные прямые совпадают или параллельны, то о нахождении координат точки пересечения таких прямых не может быть и речи.

Можно, конечно, обойтись и без такой проверки, а сразу составить систему уравнений вида и решить ее. Если система уравнений имеет единственное решение, то оно дает координаты точки, в которой исходные прямые пересекаются. Если система уравнений решений не имеет, то можно делать вывод о параллельности исходных прямых (так как не существует такой пары действительных чисел x и y , которая бы удовлетворяла одновременно обоим уравнениям заданных прямых). Из наличия бесконечного множества решений системы уравнений следует, что исходные прямые имеют бесконечно много общих точек, то есть, совпадают.

Рассмотрим примеры, подходящие под эти ситуации.

Пример.

Выясните, пересекаются ли прямые и , и если пересекаются, то найдите координаты точки пересечения.

Решение.

Заданным уравнениям прямых соответствуют уравнения и . Решим систему, составленную из этих уравнений .

Очевидно, что уравнения системы линейно выражаются друг через друга (второе уравнение системы получается из первого умножением обеих его частей на 4 ), следовательно, система уравнений имеет бесконечное множество решений. Таким образом, уравнения и определяют одну и ту же прямую, и мы не можем говорить о нахождении координат точки пересечения этих прямых.

Ответ:

Уравнения и определяют в прямоугольной системе координат Oxy одну и ту же прямую, поэтому мы не можем говорить о нахождении координат точки пересечения.

Пример.

Найдите координаты точки пересечения прямых и , если это возможно.

Решение.

Условие задачи допускает, что прямые могут быть не пересекающимися. Составим систему из данных уравнений. Применим для ее решения , так как он позволяет установить совместность или несовместность системы уравнений, а в случае ее совместности найти решение:

Последнее уравнение системы после прямого хода метода Гаусса обратилось в неверное равенство, следовательно, система уравнений не имеет решений. Отсюда можно сделать вывод, что исходные прямые параллельны, и мы не можем говорить о нахождении координат точки пересечения этих прямых.

Второй способ решения.

Давайте выясним, пересекаются ли заданные прямые.

- нормальный вектор прямой , а вектор является нормальным вектором прямой . Проверим выполнение и : равенство верно, так как , следовательно, нормальные векторы заданных прямых коллинеарны. Тогда, эти прямые параллельны или совпадают. Таким образом, мы не можем найти координаты точки пересечения исходных прямых.

Ответ:

Координаты точки пересечения заданных прямых найти невозможно, так как эти прямые параллельны.

Пример.

Найдите координаты точки пересечения прямых 2x-1=0 и , если они пересекаются.

Решение.

Составим систему из уравнений, которые являются общими уравнениями заданных прямых: . Определитель основной матрицы этой системы уравнений отличен от нуля , поэтому система уравнений имеет единственное решение, что свидетельствует о пересечении заданных прямых.

Для нахождения координат точки пересечения прямых нам нужно решить систему:

Полученное решение дает нам координаты точки пересечения прямых, то есть, 2x-1=0 и .

Ответ:

Нахождение координат точки пересечения двух прямых в пространстве.

Координаты точки пересечения двух прямых в трехмерном пространстве находятся аналогично.

Рассмотрим решения примеров.

Пример.

Найдите координаты точки пересечения двух прямых, заданных в пространстве уравнениями и .

Решение.

Составим систему уравнений из уравнений заданных прямых: . Решение этой системы даст нам искомые координаты точки пересечения прямых в пространстве. Найдем решение записанной системы уравнений.

Основная матрица системы имеет вид , а расширенная - .

Определим А и ранг матрицы T . Используем

Для того, чтобы решить геометрическую задачу методом координат, необходима точка пересечения, координаты которой используются при решении. Возникает ситуация, когда требуется искать координаты пересечения двух прямых на плоскости или определить координаты тех же прямых в пространстве. Данная статья рассматривает случаи нахождения координат точек, где пересекаются заданные прямые.

Yandex.RTB R-A-339285-1

Необходимо дать определение точкам пересечения двух прямых.

Раздел взаимного расположения прямых на плоскости показывает, что они могут совпадать, быть параллельными, пересекаться в одной общей точке или скрещивающимися. Две прямые, находящиеся в пространстве, называют пересекающимися, если они имеют одну общую точку.

Определение точки пересечения прямых звучит так:

Определение 1

Точка, в которой пересекаются две прямые, называют их точкой пересечения. Иначе говоря, что точка пересекающихся прямых и есть точка пересечения.

Рассмотрим на рисунке, приведенном ниже.

Перед нахождением координат точки пересечения двух прямых, необходимо рассмотреть предлагаемый ниже пример.

Если на плоскости имеется система координат О х у, то задаются две прямые a и b . Прямой a соответствует общее уравнение вида A 1 x + B 1 y + C 1 = 0 , для прямой b - A 2 x + B 2 y + C 2 = 0 . Тогда M 0 (x 0 , y 0) является некоторой точкой плоскости необходимо выявить, будет ли точка М 0 являться точкой пересечения этих прямых.

Чтобы решить поставленную задачу, необходимо придерживаться определения. Тогда прямые должны пересекаться в точке, координаты которой являются решением заданных уравнений A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 . Значит, координаты точки пересечения подставляются во все заданные уравнения. Если они при подстановке дают верное тождество, тогда M 0 (x 0 , y 0) считается их точкой пересечения.

Пример 1

Даны две пересекающиеся прямые 5 x - 2 y - 16 = 0 и 2 x - 5 y - 19 = 0 . Будет ли точка М 0 с координатами (2 , - 3) являться точкой пересечения.

Решение

Чтобы пересечение прямых было действительным, необходимо, чтобы координаты точки М 0 удовлетворяли уравнениям прямых. Это проверяется при помощи их подстановки. Получаем, что

5 · 2 - 2 · (- 3) - 16 = 0 ⇔ 0 = 0 2 · 2 - 5 · (- 3) - 19 = 0 ⇔ 0 = 0

Оба равенства верные, значит М 0 (2 , - 3) является точкой пересечения заданных прямых.

Изобразим данное решение на координатной прямой рисунка, приведенного ниже.

Ответ: заданная точка с координатами (2 , - 3) будет являться точкой пересечения заданных прямых.

Пример 2

Пересекутся ли прямые 5 x + 3 y - 1 = 0 и 7 x - 2 y + 11 = 0 в точке M 0 (2 , - 3) ?

Решение

Для решения задачи необходимо подставить координаты точки во все уравнения. Получим, что

5 · 2 + 3 · (- 3) - 1 = 0 ⇔ 0 = 0 7 · 2 - 2 · (- 3) + 11 = 0 ⇔ 31 = 0

Второе равенство не является верным, значит, что заданная точка не принадлежит прямой 7 x - 2 y + 11 = 0 . Отсюда имеем, что точка М 0 не точка пересечения прямых.

Чертеж наглядно показывает, что М 0 - это не точка пересечения прямых. Они имеют общую точку с координатами (- 1 , 2) .

Ответ: точка с координатами (2 , - 3) не является точкой пересечения заданных прямых.

Переходим к нахождению координат точек пересечения двух прямых при помощи заданных уравнений на плоскости.

Задаются две пересекающиеся прямые a и b уравнениями вида A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 , расположенных в О х у. При обозначении точки пересечения М 0 получим, что следует продолжить поиск координат по уравнениям A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 .

Из определения очевидно, что М 0 является общей точкой пересечения прямых. В этом случае ее координаты должны удовлетворять уравнениям A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 . Иными словами это и есть решение полученной системы A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 y + C 2 = 0 .

Значит, для нахождения координат точки пересечения, необходимо все уравнения добавить в систему и решить ее.

Пример 3

Заданы две прямые x - 9 y + 14 = 0 и 5 x - 2 y - 16 = 0 на плоскости. необходимо найти их пересечение.

Решение

Данные по условию уравнения необходимо собрать в систему, после чего получим x - 9 y + 14 = 0 5 x - 2 y - 16 = 0 . Чтобы решить его, разрешается первое уравнение относительно x , подставляется выражение во второе:

x - 9 y + 14 = 0 5 x - 2 y - 16 = 0 ⇔ x = 9 y - 14 5 x - 2 y - 16 = 0 ⇔ ⇔ x = 9 y - 14 5 · 9 y - 14 - 2 y - 16 = 0 ⇔ x = 9 y - 14 43 y - 86 = 0 ⇔ ⇔ x = 9 y - 14 y = 2 ⇔ x = 9 · 2 - 14 y = 2 ⇔ x = 4 y = 2

Получившиеся числа являются координатами, которые необходимо было найти.

Ответ: M 0 (4 , 2) является точкой пересечения прямых x - 9 y + 14 = 0 и 5 x - 2 y - 16 = 0 .

Поиск координат сводится к решению системы линейных уравнений. Если по условию дан другой вид уравнения, тогда следует привести его к нормальному виду.

Пример 4

Определить координаты точек пересечения прямых x - 5 = y - 4 - 3 и x = 4 + 9 · λ y = 2 + λ , λ ∈ R .

Решение

Для начала необходимо привести уравнения к общему виду. Тогда получаем, что x = 4 + 9 · λ y = 2 + λ , λ ∈ R преобразуется таким образом:

x = 4 + 9 · λ y = 2 + λ ⇔ λ = x - 4 9 λ = y - 2 1 ⇔ x - 4 9 = y - 2 1 ⇔ ⇔ 1 · (x - 4) = 9 · (y - 2) ⇔ x - 9 y + 14 = 0

После чего беремся за уравнение канонического вида x - 5 = y - 4 - 3 и преобразуем. Получаем, что

x - 5 = y - 4 - 3 ⇔ - 3 · x = - 5 · y - 4 ⇔ 3 x - 5 y + 20 = 0

Отсюда имеем, что координаты – это точка пересечения

x - 9 y + 14 = 0 3 x - 5 y + 20 = 0 ⇔ x - 9 y = - 14 3 x - 5 y = - 20

Применим метод Крамера для нахождения координат:

∆ = 1 - 9 3 - 5 = 1 · (- 5) - (- 9) · 3 = 22 ∆ x = - 14 - 9 - 20 - 5 = - 14 · (- 5) - (- 9) · (- 20) = - 110 ⇒ x = ∆ x ∆ = - 110 22 = - 5 ∆ y = 1 - 14 3 - 20 = 1 · (- 20) - (- 14) · 3 = 22 ⇒ y = ∆ y ∆ = 22 22 = 1

Ответ: M 0 (- 5 , 1) .

Имеется еще способ для нахождения координат точки пересечения прямых, находящихся на плоскости. Он применим, когда одна из прямых задается параметрическими уравнениями, имеющими вид x = x 1 + a x · λ y = y 1 + a y · λ , λ ∈ R . Тогда вместо значения x подставляется x = x 1 + a x · λ и y = y 1 + a y · λ , где получим λ = λ 0 , соответствующее точке пересечения, имеющей координаты x 1 + a x · λ 0 , y 1 + a y · λ 0 .

Пример 5

Определить координаты точки пересечения прямой x = 4 + 9 · λ y = 2 + λ , λ ∈ R и x - 5 = y - 4 - 3 .

Решение

Необходимо выполнить подстановку в x - 5 = y - 4 - 3 выражением x = 4 + 9 · λ , y = 2 + λ , тогда получим:

4 + 9 · λ - 5 = 2 + λ - 4 - 3

При решении получаем, что λ = - 1 . Отсюда следует, что имеется точка пересечения между прямыми x = 4 + 9 · λ y = 2 + λ , λ ∈ R и x - 5 = y - 4 - 3 . Для вычисления координат необходимо подставить выражение λ = - 1 в параметрическое уравнение. Тогда получаем, что x = 4 + 9 · (- 1) y = 2 + (- 1) ⇔ x = - 5 y = 1 .

Ответ: M 0 (- 5 , 1) .

Для полного понимания темы, необходимо знать некоторые нюансы.

Предварительно необходимо понять расположение прямых. При их пересечении мы найдем координаты, в других случаях решения существовать не будет. Чтобы не делать эту проверку, можно составлять систему вида A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 + C 2 = 0 При наличии решения делаем вывод о том, что прямые пересекаются. Если решение отсутствует, то они параллельны. Когда система имеет бесконечное множество решений, тогда говорят, что они совпадают.

Пример 6

Даны прямые x 3 + y - 4 = 1 и y = 4 3 x - 4 . Определить, имеют ли они общую точку.

Решение

Упрощая заданные уравнения, получаем 1 3 x - 1 4 y - 1 = 0 и 4 3 x - y - 4 = 0 .

Следует собрать уравнения в систему для последующего решения:

1 3 x - 1 4 y - 1 = 0 1 3 x - y - 4 = 0 ⇔ 1 3 x - 1 4 y = 1 4 3 x - y = 4

Отсюда видно, что уравнения выражаются друг через друга, тогда получим бесконечное множество решений. Тогда уравнения x 3 + y - 4 = 1 и y = 4 3 x - 4 определяют одну и ту же прямую. Поэтому нет точек пересечения.

Ответ: заданные уравнения определяют одну и ту же прямую.

Пример 7

Найти координаты точки пересекающихся прямых 2 x + (2 - 3) y + 7 = 0 и 2 3 + 2 x - 7 y - 1 = 0 .

Решение

По условию возможно такое, прямые не будут пересекаться. Необходимо составить систему уравнений и решать. Для решения необходимо использовать метод Гаусса, так как с его помощью есть возможность проверить уравнение на совместимость. Получаем систему вида:

2 x + (2 - 3) y + 7 = 0 2 (3 + 2) x - 7 y - 1 = 0 ⇔ 2 x + (2 - 3) y = - 7 2 (3 + 2) x - 7 y = 1 ⇔ ⇔ 2 x + 2 - 3 y = - 7 2 (3 + 2) x - 7 y + (2 x + (2 - 3) y) · (- (3 + 2)) = 1 + - 7 · (- (3 + 2)) ⇔ ⇔ 2 x + (2 - 3) y = - 7 0 = 22 - 7 2

Получили неверное равенство, значит система не имеет решений. Делаем вывод, что прямые являются параллельными. Точек пересечения нет.

Второй способ решения.

Для начала нужно определить наличие пересечения прямых.

n 1 → = (2 , 2 - 3) является нормальным вектором прямой 2 x + (2 - 3) y + 7 = 0 , тогда вектор n 2 → = (2 (3 + 2) , - 7 - нормальный вектор для прямой 2 3 + 2 x - 7 y - 1 = 0 .

Необходимо выполнить проверку коллинеарности векторов n 1 → = (2 , 2 - 3) и n 2 → = (2 (3 + 2) , - 7) . Получим равенство вида 2 2 (3 + 2) = 2 - 3 - 7 . Оно верное, потому как 2 2 3 + 2 - 2 - 3 - 7 = 7 + 2 - 3 (3 + 2) 7 (3 + 2) = 7 - 7 7 (3 + 2) = 0 . Отсюда следует, что векторы коллинеарны. Значит, прямые являются параллельными и не имеют точек пересечения.

Ответ: точек пересечения нет, прямые параллельны.

Пример 8

Найти координаты пересечения заданных прямых 2 x - 1 = 0 и y = 5 4 x - 2 .

Решение

Для решения составляем систему уравнений. Получаем

2 x - 1 = 0 5 4 x - y - 2 = 0 ⇔ 2 x = 1 5 4 x - y = 2

Найдем определитель основной матрицы. Для этого 2 0 5 4 - 1 = 2 · (- 1) - 0 · 5 4 = - 2 . Так как он не равен нулю, система имеет 1 решение. Отсюда следует, что прямые пересекаются. Решим систему для нахождения координат точек пересечения:

2 x = 1 5 4 x - y = 2 ⇔ x = 1 2 4 5 x - y = 2 ⇔ x = 1 2 5 4 · 1 2 - y = 2 ⇔ x = 1 2 y = - 11 8

Получили, что точка пересечения заданных прямых имеет координаты M 0 (1 2 , - 11 8) .

Ответ: M 0 (1 2 , - 11 8) .

Нахождения координат точки пересечения двух прямых в пространстве

Таким же образом находятся точки пересечения прямых пространства.

Когда заданы прямые a и b в координатной плоскости О х у z уравнениями пересекающихся плоскостей, то имеется прямая a , которая может быть определена при помощи заданной системы A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 1 = 0 а прямая b - A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 .

Когда точка М 0 является точкой пересечения прямых, тогда ее координаты должны быть решениями обоих уравнений. Получим линейные уравнения в системе:

A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0

Рассмотрим подобные задания на примерах.

Пример 9

Найти координаты точки пересечения заданных прямых x - 1 = 0 y + 2 z + 3 = 0 и 3 x + 2 y + 3 = 0 4 x - 2 z - 4 = 0

Решение

Составляем систему x - 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x - 2 z - 4 = 0 и решим ее. Чтобы найти координаты, необходимо решать через матрицу. Тогда получим основную матрицу вида   A = 1 0 0 0 1 2 3 2 0 4 0 - 2 и расширенную T = 1 0 0 1 0 1 2 - 3 4 0 - 2 4 . Определяем ранг матрицы по Гауссу.

Получаем, что

1 = 1 ≠ 0 , 1 0 0 1 = 1 ≠ 0 , 1 0 0 0 1 2 3 2 0 = - 4 ≠ 0 , 1 0 0 1 0 1 2 - 3 3 2 0 - 3 4 0 - 2 4 = 0

Отсюда следует, что ранг расширенной матрицы имеет значение 3 . Тогда система уравнений x - 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x - 27 - 4 = 0 в результате дает только одно решение.

Базисный минор имеет определитель 1 0 0 0 1 2 3 2 0 = - 4 ≠ 0 , тогда последнее уравнение не подходит. Получим, что x - 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x - 2 z - 4 = 0 ⇔ x = 1 y + 2 z = - 3 3 x + 2 y - 3 . Решение системы x = 1 y + 2 z = - 3 3 x + 2 y = - 3 ⇔ x = 1 y + 2 z = - 3 3 · 1 + 2 y = - 3 ⇔ x = 1 y + 2 z = - 3 y = - 3 ⇔ ⇔ x = 1 - 3 + 2 z = - 3 y = - 3 ⇔ x = 1 z = 0 y = - 3 .

Значит, имеем, что точка пересечения x - 1 = 0 y + 2 z + 3 = 0 и 3 x + 2 y + 3 = 0 4 x - 2 z - 4 = 0 имеет координаты (1 , - 3 , 0) .

Ответ: (1 , - 3 , 0) .

Система вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 имеет только одно решение. Значит, прямые a и b пересекаются.

В остальных случаях уравнение не имеет решения, то есть и общих точек тоже. То есть невозможно найти точку с координатами, так как ее нет.

Поэтому система вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 решается методом Гаусса. При ее несовместимости прямые не являются пересекающимися. Если решений бесконечное множество, то они совпадают.

Можно произвести решение при помощи вычисления основного и расширенного ранга матрицы, после чего применить теорему Кронекера-Капелли. Получим одно, множество или полное отсутствие решений.

Пример 10

Заданы уравнения прямых x + 2 y - 3 z - 4 = 0 2 x - y + 5 = 0 и x - 3 z = 0 3 x - 2 y + 2 z - 1 = 0 . Найти точку пересечения.

Решение

Для начала составим систему уравнений. Получим, что x + 2 y - 3 z - 4 = 0 2 x - y + 5 = 0 x - 3 z = 0 3 x - 2 y + 2 z - 1 = 0 . решаем ее методом Гаусса:

1 2 - 3 4 2 - 1 0 - 5 1 0 - 3 0 3 - 2 2 1 ~ 1 2 - 3 4 0 - 5 6 - 13 0 - 2 0 - 4 0 - 8 11 - 11 ~ ~ 1 2 - 3 4 0 - 5 6 - 13 0 0 - 12 5 6 5 0 0 7 5 - 159 5 ~ 1 2 - 3 4 0 - 5 6 - 13 0 0 - 12 5 6 5 0 0 0 311 10

Очевидно, что система не имеет решений, значит прямые не пересекаются. Точки пересечения нет.

Ответ: нет точки пересечения.

Если прямые заданы при помощи кононических или параметрических уравнений, нужно привести к виду уравнений пересекающихся плоскостей, после чего найти координаты.

Пример 11

Заданы две прямые x = - 3 - λ y = - 3 · λ z = - 2 + 3 · λ , λ ∈ R и x 2 = y - 3 0 = z 5 в О х у z . Найти точку пересечения.

Решение

Задаем прямые уравнениями двух пересекающихся плоскостей. Получаем, что

x = - 3 - λ y = - 3 · λ z = - 2 + 3 · λ ⇔ λ = x + 3 - 1 λ = y - 3 λ = z + 2 3 ⇔ x + 3 - 1 = y - 3 = z + 2 3 ⇔ ⇔ x + 3 - 1 = y - 3 x + 3 - 1 = z + 2 3 ⇔ 3 x - y + 9 = 0 3 x + z + 11 = 0 x 2 = y - 3 0 = z 5 ⇔ y - 3 = 0 x 2 = z 5 ⇔ y - 3 = 0 5 x - 2 z = 0

Находим координаты 3 x - y + 9 = 0 3 x + z + 11 = 0 y - 3 = 0 5 x - 2 z = 0 , для этого посчитаем ранги матрицы. Ранг матрицы равен 3 , а базисный минор 3 - 1 0 3 0 1 0 1 0 = - 3 ≠ 0 , значит, что из системы необходимо исключить последнее уравнение. Получаем, что

3 x - y + 9 = 0 3 x + z + 11 = 0 y - 3 = 0 5 x - 2 z = 0 ⇔ 3 x - y + 9 = 0 3 x + z + 11 = 0 y - 3 = 0

Решим систему методом Крамер. Получаем, что x = - 2 y = 3 z = - 5 . Отсюда получаем, что пересечение заданных прямых дает точку с координатами (- 2 , 3 , - 5) .

Ответ: (- 2 , 3 , - 5) .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter