Польза и вред радиоактивного излучения.

Под словом «радиация» чаще понимают ионизирующее излучение, связанное с радиоактивным распадом. При этом человек испытывает действие и неионизирующих видов излучения: электромагнитного и ультрафиолетового.

Основными источниками радиации являются:

  • природные радиоактивные вещества вокруг и внутри нас - 73%;
  • медицинские процедуры (рентгеноскопия и прочие) - 13%;
  • космическое излучение - 14%.

Конечно, существуют техногенные источники загрязнений, появившиеся в результате крупных аварий. Это наиболее опасные для человечества события, поскольку, как и при ядерном взрыве, в таком случае может выделяться йод (J-131), цезий (Cs-137) и стронций (в основном Sr-90). Оружейный плутоний (Pu-241) и продукты его распада не менее опасны.

Также не стоит забывать, что последние 40 лет атмосфера Земли очень сильно загрязнялась радиоактивными продуктами атомных и водородных бомб. Конечно, на данный момент радиоактивные осадки выпадают только в связи с природными катаклизмами, например при извержении вулканов. Но, с другой стороны, при делении ядерного заряда в момент взрыва образуется радиоактивный изотоп углерода-14 с периодом полураспада 5 730 лет. Взрывы изменили равновесное содержание в атмосфере углерода-14 на 2,6%. В настоящее время средняя мощность эффективной эквивалентной дозы, обусловленная продуктами взрывов, составляет около 1 мбэр/год, что равно примерно 1% от мощности дозы, обусловленной естественным радиационным фоном.

mos-rep.ru

Энергетика - это ещё одна причина серьёзного накопления радионуклидов в организме человека и животных. Каменные угли, используемые для работы ТЭЦ, содержат естественные радиоактивные элементы, такие как калий-40, уран-238 и торий-232. Годовая доза в районе ТЭЦ на угле составляет 0,5–5 мбэр/год. Кстати, атомные электростанции характеризуются значительно меньшими выбросами.

Медицинским процедурам с использованием источников ионизирующего излучения подвергаются почти все жители Земли. Но это более сложный вопрос, к которому мы вернёмся чуть позже.

В каких единицах измеряется радиация

Для измерения количества энергии излучения используют различные единицы. В медицине основной является зиверт - эффективная эквивалентная доза, полученная за одну процедуру всем организмом. Именно в зивертах на единицу времени измеряют уровень радиационного фона. Беккерель служит единицей измерения радиоактивности воды, почвы и так далее на единицу объёма.

С прочими единицами измерения можно ознакомиться в таблице.

Термин

Единицы измерения

Соотношение единиц

Определение

В системе СИ

В старой системе

Активность

Беккерель, Бк

1 Ки = 3,7 × 10 10 Бк

Число радиоактивных распадов в единицу времени

Мощность дозы

Зиверт в час, Зв/ч

Рентген в час, Р/ч

1 мкР/ч = 0,01 мкЗв/ч

Уровень излучения в единицу времени

Поглощённая доза

Радиан, рад

1 рад = 0,01 Гр

Количество энергии ионизирующего излучения, переданное определённому объекту

Эффективная доза

Зиверт, Зв

1 рем = 0,01 Зв

Доза облучения, учитывающая различную

чувствительность органов к радиации

Последствия облучения

Воздействие радиации на человека называют облучением. Основное его проявление - острая лучевая болезнь, которая имеет различные степени тяжести. Лучевая болезнь может проявиться при облучении дозой, равной 1 зиверту. Доза в 0,2 зиверта увеличивает риск раковых заболеваний, а в 3 зиверта - угрожает жизни облучённого.

Лучевая болезнь проявляется в виде следующих симптомов: потеря сил, понос, тошнота и рвота; сухой, надсадный кашель; нарушения сердечной деятельности.

Кроме этого, облучение вызывает лучевые ожоги. Очень большие дозы приводят к отмиранию кожи, вплоть до повреждения мышц и костей, что лечится гораздо хуже, чем химические или тепловые ожоги. Вместе с ожогами могут появиться нарушения обмена веществ, инфекционные осложнения, лучевое бесплодие, лучевая катаракта.

Последствия облучения могут проявить себя через длительное время - это так называемый стохастический эффект. Он выражается в том, что среди облучённых людей может увеличиваться частота определённых онкологических заболеваний. Теоретически возможны также генетические эффекты, однако даже среди 78 тысяч детей японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не обнаружили увеличения числа случаев наследственных болезней. И это несмотря на то, что последствия облучения сильнее сказываются на делящихся клетках, поэтому для детей облучение гораздо опаснее, чем для взрослых.

Кратковременное облучение малыми дозами, применяемое для обследований и лечения некоторых заболеваний, порождает интересный эффект под названием гормезис. Это стимуляция какой-либо системы организма внешними воздействиями, имеющими силу, недостаточную для проявления вредных факторов. Данный эффект позволяет организму мобилизовать силы.

Статистически радиация может повышать уровень онкологии, однако очень сложно выявить прямое влияние излучения, отделив его от действия химически вредных веществ, вирусов и прочего. Известно, что после бомбардировки Хиросимы первые эффекты в виде учащения заболеваемости стали проявляться только через 10 лет и более. Напрямую с облучением связан рак щитовидной железы, молочной железы и определённых частей .


chornobyl.in.ua

Естественный радиационный фон составляет порядка 0,1–0,2 мкЗв/ч. Считается, что постоянный фоновый уровень выше 1,2 мкЗв/ч опасен для человека (нужно различать мгновенно поглощённую дозу облучения и постоянную фоновую). Много ли это? Для сравнения: уровень радиации на расстоянии 20 км от японской атомной электростанции «Фукусима-1» в момент аварии превысил норму в 1 600 раз. Максимальный зафиксированный уровень излучения на этом расстоянии - 161 мкЗв/ч. После взрыва на уровень радиации доходил до нескольких тысяч микрозивертов в час.

За время 2–3-часового перелёта над экологически чистой территорией человек получает облучение в 20–30 мкЗв. Та же доза облучения грозит в том случае, если человеку в один день делают 10–15 снимков современным рентгенографическим аппаратом - визиографом. Пара часов перед электронно-лучевым монитором или телевизором дают ту же дозу облучения, что и один такой снимок. Годовая доза от курения по одной сигарете в день - 2,7 мЗв. Одна флюорография - 0,6 мЗв, одна рентгенография - 1,3 мЗв, одна рентгеноскопия - 5 мЗв. Излучение от бетонных стен - до 3 мЗв в год.

При облучении всего тела и для первой группы критических органов (сердце, лёгкие, мозг, поджелудочная железа и прочие) нормативные документы устанавливают максимальное значение дозы в 50 000 мкЗв (5 бэр) в год.

Острая лучевая болезнь развивается при дозе однократного облучения в 1 000 000 мкЗв (25 000 цифровых флюорографий, 1 000 рентгенографий позвоночника в один день). Большие дозы влияют ещё сильнее:

  • 750 000 мкЗв - кратковременное незначительное изменение состава крови;
  • 1 000 000 мкЗв - лёгкая степень лучевой болезни;
  • 4 500 000 мкЗв - тяжёлая степень лучевой болезни (погибает 50% облучённых);
  • около 7 000 000 мкЗв - смерть.

Опасны ли рентгенологические исследования


Чаще всего с облучением мы сталкиваемся во время медицинских исследований . Однако дозы, которые мы получаем в процессе, настолько малы, что бояться их не стоит. Время облучения старинным рентгеновским аппаратом составляет 0,5–1,2 секунды. А с современным визиографом всё происходит в 10 раз быстрее: за 0,05–0,3 секунды.

Согласно медицинским требованиям, изложенным в СанПиН 2.6.1.1192-03 , при проведении профилактических медицинских рентгенологических процедур доза радиации не должна превышать 1 000 мкЗв в год. Сколько это в снимках? Довольно много:

  • 500 прицельных снимков (2–3 мкЗв), полученных с помощью радиовизиографа;
  • 100 таких же снимков, но с использованием хорошей рентгеновской плёнки (10–15 мкЗв);
  • 80 цифровых ортопантомограмм (13–17 мкЗв);
  • 40 плёночных ортопантомограмм (25–30 мкЗв);
  • 20 компьютерных томограмм (45–60 мкЗв).

То есть если каждый день в течение всего года делать по одному снимку на визиографе, добавить к этому пару-тройку компьютерных томограмм и столько же ортопантомограмм, то даже в этом случае мы не выйдем за пределы разрешённых доз.

Кому нельзя облучаться

Однако существуют люди, которым даже такие виды облучения строго запрещены. Согласно утверждённым в России стандартам (СанПиН 2.6.1.1192-03), облучение в виде рентгенографии можно проводить только во второй половине беременности за исключением случаев, когда должен решаться вопрос об аборте или необходимости оказания скорой или неотложной помощи.

Пункт 7.18 документа гласит: «Рентгенологические исследования беременных проводятся с использованием всех возможных средств и способов защиты таким образом, чтобы доза, полученная плодом, не превысила 1 мЗв за два месяца невыявленной беременности. В случае получения плодом дозы, превышающей 100 мЗв, врач обязан предупредить пациентку о возможных последствиях и рекомендовать прервать беременность».

Молодым людям, которым в будущем предстоит стать родителями, необходимо закрывать от облучения брюшную область и половые органы. Рентгеновское излучение наиболее негативно действует на клетки крови и половые клетки. У детей вообще должно быть экранировано всё тело, кроме исследуемой области, а проводиться исследования должны только при необходимости и по назначению врача.

Сергей Нелюбин, заведующий отделением рентгенодиагностики РНЦХ им. Б. В. Петровского, кандидат медицинских наук, доцент

Как защититься

Главных методов защиты от рентгеновского излучения три: защита временем, защита расстоянием и экранирование. То есть чем меньше вы находитесь в зоне действия рентгеновских лучей и чем дальше вы от источника излучения, тем меньше доза облучения.

Хотя безопасная доза лучевой нагрузки рассчитана на год, всё же не стоит в один день делать несколько рентгенологических исследований, например флюорографию и . Ну и у каждого больного должен быть радиационный паспорт (он вкладывается в медицинскую карточку): в него врач-рентгенолог заносит информацию о полученной при каждом обследовании дозе.

Рентгенография прежде всего влияет на железы внутренней секреции, лёгкие. То же касается и небольших доз облучения при авариях и выбросах активных веществ. Поэтому в качестве профилактики врачи рекомендуют дыхательные упражнения. Они помогут очистить лёгкие и активизировать резервы организма.

Для нормализации внутренних процессов организма и вывода вредных веществ стоит употреблять больше антиоксидантов: витаминов А, С, Е (красное вино, виноград). Полезны сметана, творог, молоко, зерновой хлеб, отруби, необработанный рис, чернослив.

В том случае, если продукты питания внушают определённые опасения, можно воспользоваться рекомендациями для жителей регионов, затронутых в результате аварии на Чернобыльской АЭС.

»
При реальном облучении вследствие аварии или в заражённой зоне необходимо сделать довольно много. Сначала нужно провести дезактивацию: быстро и аккуратно снять одежду и обувь с носителями радиации, правильно утилизировать её или хотя бы удалить радиоактивную пыль со своих вещей и окружающих поверхностей. Достаточно помыть тело и одежду (по отдельности) под проточной водой с использованием моющих средств.

До или после воздействия радиации используют пищевые добавки и препараты против радиации. Наиболее известны лекарства с высоким содержанием йода, который помогает эффективно бороться с негативным воздействием его радиоактивного изотопа, локализующегося в щитовидной железе. Для блокировки накопления радиоактивного цезия и недопущения вторичного поражения используют «Калия оротат». Добавки с кальцием дезактивируют радиоактивный препарат стронция на 90%. Для защиты клеточных структур и показан диметилсульфид.

Кстати, всем известный активированный уголь может нейтрализовать действие радиации. Да и польза употребления водки сразу после облучения вовсе не миф. Это действительно помогает вывести радиоактивные изотопы из организма в простейших случаях.

Только не стоит забывать: самостоятельное лечение должно проводиться только при невозможности своевременно обратиться к врачу и только в случае реального, а не выдуманного облучения. Рентген-диагностика, просмотр телевизора или полёт на самолёте не влияют на здоровье среднестатистического жителя Земли.

Ионизирующее излучение (далее - ИИ) - это излучение, взаимодействие которого с веществом приводит к ионизации атомов и молекул, т.е. это взаимодействие приводит к возбуждению атома и отрыву отдельных электронов (отрицательно заряженных частиц) из атомных оболочек. В результате, лишенный одного или нескольких электронов, атом превращается в положительно заряженный ион - происходит первичная ионизация. К ИИ относят электромагнитное излучение (гамма-излучение) и потоки заряженных и нейтральных частиц - корпускулярное излучение (альфа-излучение, бета-излучение, а также нейтронное излучение).

Альфа-излучение относится к корпускулярным излучениям. Это поток тяжелых положительно заряженных а-частиц (ядер атомов гелия), возникающее в результате распада атомов тяжелых элементов, таких как уран, радий и торий. Поскольку частицы тяжелые, то пробег альфа-частиц в веществе (то есть путь, на котором они производят ионизацию) оказывается очень коротким: сотые доли миллиметра в биологических средах, 2,5—8 см в воздухе. Таким образом, задержать эти частицы способен обычный лист бумаги или внешний омертвевший слой кожи.

Однако вещества, испускающие альфа-частицы, являются долгоживущими. В результате попадания таких веществ внутрь организма с пищей, воздухом или через ранения, они разносятся по телу током крови, депонируются в органах, отвечающих за обмен веществ и защиту организма (например, селезенка или лимфатические узлы), вызывая, таким образом, внутреннее облучение организма. Опасность такого внутреннего облучения организма высока, т.к. эти альфа-частицы создают очень большое число ионов (до нескольких тысяч пар ионов на 1 микрон пути в тканях). Ионизация, в свою очередь, обуславливает ряд особенностей тех химических реакций, которые протекают в веществе, в частности, в живой ткани (образование сильных окислителей, свободного водорода и кислорода и др.).

Бета-излучение (бета-лучи, или поток бета-частиц) также относится к корпускулярному типу излучения. Это поток электронов (β--излучение, или, чаще всего, просто β -излучение) или позитронов (β+-излучение), испускаемых при радиоактивном бета-распаде ядер некоторых атомов. Электроны или позитроны образуются в ядре при превращении нейтрона в протон или протона в нейтрон соответственно.

Электроны значительно меньше альфа-частиц и могут проникать вглубь вещества (тела) на 10-15 сантиметров (ср. с сотыми долями миллиметра у а-частиц). При прохождении через вещество бета-излучение взаимодействует с электронами и ядрами его атомов, расходуя на это свою энергию и замедляя движение вплоть до полной остановки. Благодаря таким свойствам для защиты от бета-излучения достаточно иметь соответствующей толщины экран из органического стекла. На этих же свойствах основано применение бета-излучения в медицине для поверхностной, внутритканевой и внутриполостной лучевой терапии.

Нейтронное излучение - еще один вид корпускулярного типа излучений. Нейтронное излучение представляет собой поток нейтронов (элементарных частиц, не имеющих электрического заряда). Нейтроны не оказывают ионизирующего действия, однако весьма значительный ионизирующий эффект происходит за счет упругого и неупругого рассеяния на ядрах вещества.

Облучаемые нейтронами вещества могут приобретать радиоактивные свойства, то есть получать так называемую наведенную радиоактивность. Нейтронное излучение образуется при работе ускорителей элементарных частиц, в ядерных реакторах, промышленных и лабораторных установках, при ядерных взрывах и т. д. Нейтронное излучение обладает наибольшей проникающей способностью. Лучшими для защиты от нейтронного излучения являются водородсодержащие материалы.

Гамма излучение и рентгеновское излучение относятся к электромагнитным излучениям.

Принципиальная разница между двумя этими видами излучения заключается в механизме их возникновения. Рентгеновское излучение - внеядерного происхождения, гамма излучение - продукт распада ядер.

Рентгеновское излучение, открыто в 1895 году физиком Рентгеном. Это невидимое излучение, способное проникать, хотя и в разной степени, во все вещества. Представляет собой электромагнитное излучение с длиной волны порядка от - от 10 -12 до 10 -7 . Источник рентгеновских лучей - рентгеновская трубка, некоторые радионуклиды (например, бета-излучатели), ускорители и накопители электронов (синхротронное излучение).

В рентгеновской трубке есть два электрода - катод и анод (отрицательный и положительный электроды соответственно). При нагреве катода происходит электронная эмиссия (явление испускания электронов поверхностью твёрдого тела или жидкости). Электроны, вылетающие из катода, ускоряются электрическим полем и ударяются о поверхность анода, где происходит их резкое торможение, вследствие чего возникает рентгеновское излучение. Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это одно его из свойств, основное для медицины - то, что оно является проникающим излучением и соответственно пациента можно просвечивать с его помощью, а т.к. разные по плотности ткани по-разному поглощают рентгеновское излучение - то мы можем диагностировать на самой ранней стадии многие виды заболеваний внутренних органов.

Гамма излучение имеет внутриядерное происхождение. Оно возникает при распаде радиоактивных ядер, переходе ядер из возбужденного состояния в основное, при взаимодействии быстрых заряженных частиц с веществом, аннигиляции электронно-позитронных пар и т.д.

Высокая проникающая способность гамма-излучения объясняется малой длиной волны. Для ослабления потока гамма-излучения используются вещества, отличающиеся значительным массовым числом (свинец, вольфрам, уран и др.) и всевозможные составы высокой плотности (различные бетоны с наполнителями из металла).

" мы узнаем: "
Радиа́ция (от лат. radiātiō «сияние», «излучение»):


  • Радиация (в радиотехнике) — исходящий от любого источника поток энергии в форме радиоволн (в отличие от излучения — процесса испускания энергии);

  • Радиация — ионизирующее излучение;

  • Радиация — тепловое излучение;

  • Радиация — синоним излучения;

  • Адаптивная радиация (в биологии) — явление различной адаптации родственных групп организмов к изменениям условий окружающей среды, выступающее как одна из основных причин дивергенции;

  • Солнечная радиация — излучение Солнца (электромагнитной и корпускулярной природы). "

Как мы видим, понятие достаточно "объемное" и включает в себя много разделов.
Обратимся к морфологическому значение слов (ссылка): "ионизирующее излучение, поток микрочастиц или высокочастотное электромагнитное поле, способные вызвать ионизацию ".
Как мы видим, добавлено еще упоминание об электромагнитном поле!
Обратимся к этимологии слова (ссылка): "Происходит от лат. radiātio «сияние, блеск, излучение», из radiāre «испускать лучи, сиять, сверкать», далее от radius «палочка, спица, луч, радиус», дальнейшая этимология неясна "
Как уже успели убедиться, штампы, связывающие слово "радиация" с альфа-, бета- и гамма- излучением не совсем корректны. Они используют только одно из значений.
Для того, чтобы "говорить на одном языке", необходимо заложить базовые понятия:
1. Давайте будем использовать упрощенное определение. "Радиация" - это излучение . Необходимо помнить, что излучение может быть совершенно различным (корпускулярное или волновое, тепловое или ионизирующее и тд)и происходить по разным физическим законам. В некоторых случаях, для упрощения понимания можно это слово заменить словом "воздействие".
...........................
Теперь, давайте поговорим о штампах.

Как уже упоминалось выше, многие наверняка слышали про альфа-, бета- и гамма- радиацию. Что же это такое?
Это виды ионизирующего излучения.

"Причиной радиоактивности вещества являются нестабильные ядра, входящие в состав атомов, которые при распаде выделяют в окружающую среду невидимые излучения или частицы. В зависимости от различных свойств (состав, проникающая способность, энергия), сегодня выделяют множество видов ионизирующего излучения, из которых наиболее значимыми и распространенными являются:


  • Альфа-излучение. Источником радиации в нем являются частицы с положительным зарядом и сравнительно большим весом. Альфа-частицы (2 протона + 2 нейтрона) довольно громоздки и потому легко задерживаются даже незначительными преградами: одеждой, обоями, оконными занавесками и т.д. Даже если альфа-излучение попадает на обнаженного человека, в этом нет ничего страшного, дальше поверхностных слоев кожи оно не пройдет. Однако, несмотря на малую проникающую способность, альфа-излучение обладает мощной ионизацией, что особо опасно, если вещества-источники альфа-частиц попадают непосредственно в организм человека, например в легкие или пищеварительный тракт.

  • Бета-излучение. Представляет собой поток заряженных частиц (позитронов или электронов). Такое излучение обладает более значительной проникающей способностью, чем альфа-частицы, задержать его может деревянная дверь, оконное стекло, кузов автомобиля и т.д. Для человека опасно при воздействии на незащищенные кожные покровы, а также при попадании внутрь радиоактивных веществ.

  • Гамма-излучение и близкое к нему рентгеновское излучение. Ещё одна разновидность ионизирующей радиации, которая является родственной световому потоку, но с лучшей способностью к проникновению в окружающие предметы. По своему характеру это высокоэнергетическое коротковолновое электромагнитное излучение. Для того, чтобы задержать гамма-излучение в отдельных случаях может потребоваться стена из нескольких метров свинца, или нескольких десятков метров плотного железобетона. Для человека такое излучение является самым опасным. Основным источником этого вида излучения в природе является Солнце, однако, до человека смертоносные лучи не доходят благодаря защитному слою атмосферы.

Схема образования радиации различных типов "


"Различают несколько видов радиации:

  • Альфа-частицы — это относительно тяжелые частицы, заряженные положительно, представляют собой ядра гелия.

  • Бета-частицы — обычные электроны.

  • Гамма-излучение — имеет ту же природу, что и видимый свет, однако гораздо большую проникающую способность.

  • Нейтроны — это электрически нейтральные частицы, возникающие в основном рядом с работающим атомным реактором, доступ туда должен быть ограничен.

  • Рентгеновские лучи — похожи на гамма-излучение, но имеют меньшую энергию. Кстати, Солнце — один из естественных источников таких лучей, но защиту от солнечной радиации обеспечивает атмосфера Земли.

Как мы видим на рисунке выше, излучение, оказывается, бывает не только 3-х видов. Эти излучения создаются (в большинстве случаев) вполне определенными веществами, которые имеют свойство самопроизвольно или после определенного воздействия (или католизатора) совершать "самопроизвольное превращение" или "распад" с сопутствующим видом излучения.
Кроме радиации от таких элементов выделяют еще и солнечную радиацию .
Обратимся к "Википедия ": "Со́лнечная радиа́ция — электромагнитное и корпускулярное излучение Солнца."
Т.е. излучение как частиц, так и волн. Корпускулярно-волновой дуализм физики и попытки "латать в нем дыры" оставим для очередной нобелевки соостветствующим академикам!
"Солнечная радиация измеряется по её тепловому действию (калории на единицу поверхности за единицу времени) и интенсивности (ватты на единицу поверхности). В целом, Земля получает от Солнца менее 0,5×10 −9 от его излучения.

Электромагнитная составляющая солнечной радиации распространяется со скоростью света и проникает в земную атмосферу. До земной поверхности солнечная радиация доходит в виде прямых и рассеянных лучей. Всего Земля получает от Солнца менее одной двухмиллиардной его излучения. Спектральный диапазон электромагнитного излучения Солнца очень широк — от радиоволн до рентгеновских лучей — однако максимум его интенсивности приходится на видимую (жёлто-зелёную) часть спектра.

Существует также корпускулярная часть солнечной радиации, состоящая преимущественно из протонов, движущихся от Солнца со скоростями 300—1500 км/с (см. Солнечный ветер). Во время солнечных вспышек образуются также частицы больших энергий (в основном протоны и электроны), образующие солнечную компоненту космических лучей.

Энергетический вклад корпускулярной составляющей солнечной радиации в её общую интенсивность невелик по сравнению с электромагнитной. Поэтому в ряде приложений термин «солнечная радиация» используют в узком смысле, имея в виду только её электромагнитную часть ."
Пропускаем слова про "используют в узком смысле" и запоминаем, что "спектральный диапазон"..."от радиоволн до рентгеновских лучей"!
По сути, кроме уже упомянутых веществ, способных к образованию ионизирующего излучения, будем учитывать и вклад нашего Солнца в этот процесс.
Посмотрим, что такое "тепловая радиация "...

" Тепловая радиация характеризуется теплообменом с помощью электромагнитных волн между телами на расстоянии, определяющем тепловую энергию. Большая часть радиации находится в инфракрасном спектре."
"ТЕПЛОВОЕ ИЗЛУЧЕНИЕ, тепловая радиация - электромагнитные волны, вызванные тепловыми колебаниями молекул и переходящие в теплоту при поглощении."
"Например, при тепловой радиации твердые тела излучают электромагнитные волны с непрерывной частотой длин волн Я 4004 - 0 8 мкм. В отличие от твердых тел излучение газов является селективным, прерывистым, состоящим из отдельных полос с небольшим диапазоном длин волн.
"

Как мы видим, это полностью волновое излучение, большая часть которого инфракрасное. Запомним очень интересную особенность "излучение газов является селективным, прерывистым, состоящим из отдельных полос с небольшим диапазоном длин волн", она пригодится чуть позже.

Кроме разделения радиации на виды излучения "корпускулярное" и "волновое", делят на "альфа-", "бета-", "гамма-", "рентген-", "инфракрасное-", "ультрафиолетовое-", "видимое-", "микроволновое-", "радио-" излучения. Теперь понимаете оговорку выше, про использование слова радиация в общем смысле?
Но этого деления маловато. Еще делят радиацию на естественную и искусственную, при этом искажая значение этих слов. Я не буду подробно останавливаться, а приведу, с моей точки зрения, более правильную классификацию.
Что такое "естественная радиация"?

"Естественной радиоактивностью обладает почва, вода, атмосфера, некоторые продукты и вещи, многие космические объекты. Первоисточником естественной радиации во многих случаях служит излучение Солнца и энергия распада некоторых элементов земной коры. Естественной радиоактивностью обладает даже сам человек. В организме каждого из нас имеются такие вещества как рубидий-87 и калий-40, создающие персональный радиационный фон. "
Под искусственной радиацией мы будем понимать то, к чему "прикоснулась рука человека". Т.е. изменение "радиационного фона" произошло под действием человека (в результате его действий).
"Источником радиационного излучения может быть здание, стройматериалы, предметы обихода, в которые входят вещества с нестабильными атомными ядрами. "
Такое разделение способствует тому, что понятие "естественный радиационный фон" уже больше не применимо. Изначально введенное понятие только для маскировки множества явлений уже можно не учитывать. Разделить излучение, исходящее в конкретном месте на "естественную" и "искусственную" не возможно. Поэтому понятие "естественный радиационный фон" мы уменьшим до правильного "радиационный фон". Почему так можно? Простейший пример:
В некоторой местности до воздействия на эту местность человеком (тот самый "сферический в вакууме") "естественный радиационный фон" составлял 5 ед. В результате нахождения там одного человека (а мы помним, что каждый человек имеет радиоактивный фон) прибор уже намерил 6 ед. Какое значение "естественного радиационного фона" будет 5 или 6 ед? Далее...этот человек на подошве своих ботинок принес пару десятков радиоактивных атомов на эту местность. В результате "естественный радиоактивный фон" стал 6,5 ед. Человеку понадобилось уйти с этого места и прибор уже показал 5,5 ед. "Естественный радиоактивный фон" будет составлять 5,5 ед. Но мы с вами помним, что до вмешательства человека, фон был 5 ед! В рассматриваемой ситуации мы смогли заметить, что человек своими действиями повысил "фон" на 0,5 ед.
Что же в реальности? А в реальности "естественный радиоактивный фон" измерить нельзя. Его значение будет все время меняться и зависить от множества факторов, принебречь которыми, нельзя. Ну например, вспомним про солнечную радиацию. Ее значение очень сильно зависит от времени года. От времени года, от температуры зависит и природная радиоактивность. Посему, можно измерить лишь "радиоактивный фон". В некоторых случаях возможно выделить из "радиоактивного фона" нечто близкое к "естественному радиоактивному фону".
Посему, договоримся использовать термин "радиоактивный фон" вместо "естественного уровня радиации" или "естественный радиоактивный фон". Будем считать под этим термином величину радиации, которую измерили в данной местности.
Что такое "искусственная радиация"?
Как уже говорилось выше, будем использовать этот термин для обозначения радиоактивного фона от тех действий, которые произвел человек.
Источники радиации.
Не будем разделять источники по видам радиации. Попробуем перечислить основные и часто встречаемые...

"В настоящее время на Земле сохранилось 23 долгоживущих радиоактивных элемента с периодами полураспада от 10 7 лет и выше. "

"Цепочки радиоактивного распада (радиоактивные ряды), родоначальниками которых являются радионуклиды, обладают значительной устойчивостью и большим периодом полураспада, они получили название радиоактивных семейств. Различают 4-е радиоактивных семейства:

Родоначальником 1-ого является уран,
2-ого - торий,
3-его - актиний (актиноуран),
4-ого - нептуний.
"


"Основные радиоактивные изотопы, встречающиеся в горных породах Земли, - это калий-40, рубидий-87 и члены двух радиоактивных семейств, берущих начало соответственно от урана-238 и тория-232 - долгоживущих изотопов, входящих в состав Земли с самого ее рождения. Значение радиоактивного изотопа калий-40 особенно велико для обитателей почвы - микрофлоры, корней растений, почвенной фауны. Соответственно заметно его участие во внутреннем облучении организма, его оганов и тканей, поскольку калий является незаменимым элементом, участвующим в ряде метаболических процессов.
Уровни земной радиации неодинаковы, поскольку зависят от концентрации радиоактивных изотопов на конкретном участке земной коры.
"..."Большая часть поступления связана с радионуклидами ряда урана и тория, которые содержатся в почве. Следует учитывать, что до попадания в организм человека радиоактивные вещества проходят по сложным маршрутам в окружающей среде. "

"Входит в состав радиоактивных рядов 238 U, 235 U и 232 Th. Ядра радона постоянно возникают в природе при радиоактивном распаде материнских ядер. Равновесное содержание в земной коре 7·10 −16 % по массе. Ввиду химической инертности радон относительно легко покидает кристаллическую решётку «родительского» минерала и попадает в подземные воды, природные газы и воздух. Поскольку наиболее долгоживущим из четырёх природных изотопов радона является 222 Rn, именно его содержание в этих средах максимально.
Концентрация радона в воздухе зависит, в первую очередь, от геологической обстановки (так, граниты, в которых много урана, являются активными источниками радона, в то же время над поверхностью морей радона мало), а также от погоды (во время дождя микротрещины, по которым радон поступает из почвы, заполняются водой; снежный покров также препятствует доступу радона в воздух). Перед землетрясениями наблюдалось повышение концентрации радона в воздухе, вероятно, благодаря более активному обмену воздуха в грунте ввиду роста микросейсмической активности. "

"Уголь содержит незначительное количество природных радионуклидов, которые после его сжигания концентрируются в зольной пыли и поступают в окружающую среду с выбросами, несмотря на совершенствование систем очистки "
"Некоторые страны эксплуатируют подземные ресурсы пара и горячей воды для производства электроэнергии и теплоснабжения. При этом происходит значительное поступление радона в окружающую среду. "

"В качестве удобрений ежегодно используются несколько десятков млн. тонн фосфатов. Большинство разрабатываемых в настоящее время фосфатных месторождений содержит уран, присутствующий в довольно высокой концентрации. Содержащиеся в удобрениях радиоизотопы проникают из почвы в пищевые продукты, приводят к повышению радиоактивности молока и других продуктов питания. "

" Космическое излучение складывается из частиц, захваченных магнитным полем Земли, галактического космического излучения и корпускулярного излучения Солнца. В его состав входят в основном электроны, протоны и альфа-частицы."
"Космическому внешнему облучению подвергается вся поверхность Земли. Однако облучение это неравномерно. Интенсивность космического излучения зависит от солнечной активности, географического положения объекта и возрастает с высотой над уровнем моря. Наиболее интенсивно оно на Северном и Южном полюсах, менее интенсивно в экваториальных областях. Причина этого - магнитное поле Земли, отклоняющее заряженные частицы космического излучения. Наибольший эффект действия космического внешнего облучения связан с зависимостью космического излучения от высоты (рис.4).
Солнечные вспышки представляют большую радиационную опасность во время космических полетов. Космические лучи, идущие от Солнца, в основном состоят из протонов широкого энергетического спектра (энергия протонов до 100 МзВ), Заряженные частицы от Солнца способны достигать Земли через 15-20 мин после того, как вспышка на его поверхности становится видимой. Длительность вспышки может достигать нескольких часов.

Рис.4. Величина солнечного излучения во время максимальной и минимальной активности солнечного цикла в зависимости от высоты местности над уровнем моря и географической широты. "
Интересные картинки:

Основные литературные источники,

II. Что такое радиация?

III. Основные термины и единицы измерения.

IV. Влияние радиации на человеческий организм.

V. Источники радиационного излучения:

1) естественные источники

2) источники, созданные человеком (техногенные)

I. Введение

Радиация играет огромную роль в развитии цивилизации на данном историческом этапе. Благодаря явлению радиоактивности был совершен существенный прорыв в области медицины и в различных отраслях промышленности, включая энергетику. Но одновременно с этим стали всё отчётливее проявляться негативные стороны свойств радиоактивных элементов: выяснилось, что воздействие радиационного излучения на организм может иметь трагические последствия. Подобный факт не мог пройти мимо внимания общественности. И чем больше становилось известно о действии радиации на человеческий организм и окружающую среду, тем противоречивее становились мнения о том, насколько большую роль должна играть радиация в различных сферах человеческой деятельности.

К сожалению, отсутствие достоверной информации вызывает неадекватное восприятие данной проблемы. Газетные истории о шестиногих ягнятах и двухголовых младенцах сеют панику в широких кругах. Проблема радиационного загрязнения стала одной из наиболее актуальных. Поэтому необходимо прояснить обстановку и найти верный подход. Радиоактивность следует рассматривать как неотъемлемую часть нашей жизни, но без знания закономерностей процессов, связанных с радиационным излучением, невозможно реально оценить ситуацию.

Для этого создаются специальные международные организации, занимающиеся проблемами радиации, в их числе существующая с конца 1920-х годов Международная комиссия по радиационной защите (МКРЗ), а также созданный в 1955 году в рамках ООН Научный Комитет по действию атомной радиации (НКДАР). В данной работе автор широко использовал данные, изложенные в брошюре «Радиация. Дозы, эффекты, риск», подготовленные на основе материалов исследований комитета.

II . Что такое радиация?

Радиация существовала всегда. Радиоактивные элементы входили в состав Земли с начала ее существования и продолжают присутствовать до настоящего времени. Однако само явление радиоактивности было открыто всего сто лет назад.

В 1896 году французский ученый Анри Беккерель случайно обнаружил, что после продолжительного соприкосновения с куском минерала, содержащего уран, на фотографических пластинках после проявки появились следы излучения. Позже этим явлением заинтересовались Мария Кюри (автор термина «радиоактивность») и ее муж Пьер Кюри. В 1898 году они обнаружили, что в результате излучения уран превращается в другие элементы, которые молодые ученые назвали полонием и радием. К сожалению люди, профессионально занимающиеся радиацией, подвергали свое здоровье, и даже жизнь опасности из-за частого контакта с радиоактивными веществами. Несмотря на это исследования продолжались, и в результате человечество располагает весьма достоверными сведениями о процессе протекания реакций в радиоактивных массах, в значительной мере обусловленных особенностями строения и свойствами атома.

Известно, что в состав атома входят три типа элементов: отрицательно заряженные электроны движутся по орбитам вокруг ядра – плотно сцепленных положительно заряженных протонов и электрически нейтральных нейтронов. Химические элементы различают по количеству протонов. Одинаковое количество протонов и электронов обуславливает электрическую нейтральность атома. Количество нейтронов может варьироваться, и в зависимости от этого меняется стабильность изотопов.

Большинство нуклидов (ядра всех изотопов химических элементов) нестабильны и постоянно превращаются в другие нуклиды. Цепочка превращений сопровождается излучениями: в упрощенном виде, испускание ядром двух протонов и двух нейтронов (a-частицы) называют альфа-излучением, испускание электрона – бета-излучением, причем оба этих процесса происходят с выделением энергию. Иногда дополнительно происходит выброс чистой энергии, называемый гамма-излучением.

III . Основные термины и единицы измерения.

(терминология НКДАР)

Радиоактивный распад – весь процесс самопроизвольного распада нестабильного нуклида

Радионуклид – нестабильный нуклид, способный к самопроизвольному распаду

Период полураспада изотопа – время, за которое распадается в среднем половина всех радионуклидов данного типа в любом радиоактивном источнике

Радиационная активность образца – число распадов в секунду в данном радиоактивном образце; единица измерения – беккерель (Бк)

«Поглощенная доза* – энергия ионизирующего излучения, поглощенная облучаемым телом (тканями организма), в пересчете на единицу массы

Эквивалентная доза** – поглощенная доза, умноженная на коэффициент, отражающий способность данного вида излучения повреждать ткани организма

Эффективная эквивалентная доза*** – эквивалентная доза, умноженная на коэффициент, учитывающий разную чувствительность различных тканей к облучению

Коллективная эффективная эквивалентная доза**** – эффективная эквивалентная доза, полученная группой людей от какого-либо источника радиации

Полная коллективная эффективная эквивалентная доза – коллективная эффективная эквивалентная доза, которую получат поколения людей от какого-либо источника за все время его дальнейшего существования» («Радиация…», с.13)

IV . Влияние радиации на человеческий организм

Воздействие радиации на организм может быть различным, но почти всегда оно негативно. В малых дозах радиационное излучение может стать катализатором процессов, приводящих к раку или генетическим нарушениям, а в больших дозах часто приводит к полной или частичной гибели организма вследствие разрушения клеток тканей.

————————————————————————————–

* грэй (Гр)

** единица измерения в системе СИ – зиверт (Зв)

*** единица измерения в системе СИ – зиверт (Зв)

**** единица измерения в системе СИ – человеко-зиверт (чел-Зв)

Сложность в отслеживании последовательности процессов, вызванных облучением, объясняется тем, что последствия облучения, особенно при небольших дозах, могут проявиться не сразу, и зачастую для развития болезни требуются годы или даже десятилетия. Кроме того, вследствие различной проникающей способности разных видов радиоактивных излучений они оказывают неодинаковое воздействие на организм: альфа-частицы наиболее опасны, однако для альфа-излучения даже лист бумаги является непреодолимой преградой; бета-излучение способно проходить в ткани организма на глубину один-два сантиметра; наиболее безобидное гамма-излучение характеризуется наибольшей проникающей способностью: его может задержать лишь толстая плита из материалов, имеющих высокий коэффициент поглощения, например, из бетона или свинца.

Также различается чувствительность отдельных органов к радиоактивному излучению. Поэтому, чтобы получить наиболее достоверную информацию о степени риска, необходимо учитывать соответствующие коэффициенты чувствительности тканей при расчете эквивалентной дозы облучения:

0,03 – костная ткань

0,03 – щитовидная железа

0,12 – красный костный мозг

0,12 – легкие

0,15 – молочная железа

0,25 – яичники или семенники

0,30 – другие ткани

1,00 – организм в целом.

Вероятность повреждения тканей зависит от суммарной дозы и от величины дозировки, так как благодаря репарационным способностям большинство органов имеют возможность восстановиться после серии мелких доз.

Тем не менее, существуют дозы, при которых летальный исход практически неизбежен. Так, например, дозы порядка 100 Гр приводят к смерти через несколько дней или даже часов вследствие повреждения центральной нервной системы, от кровоизлияния в результате дозы облучения в 10-50 Гр смерть наступает через одну-две недели, а доза в 3-5 Гр грозит обернуться летальным исходом примерно половине облученных. Знания конкретной реакции организма на те или иные дозы необходимы для оценки последствий действия больших доз облучения при авариях ядерных установок и устройств или опасности облучения при длительном нахождении в районах повышенного радиационного излучения, как от естественных источников, так и в случае радиоактивного загрязнения.

Следует более подробно рассмотреть наиболее распространенные и серьезные повреждения, вызванные облучением, а именно рак и генетические нарушения.

В случае рака трудно оценить вероятность заболевания как следствия облучения. Любая, даже самая малая доза, может привести к необратимым последствиям, но это не предопределено. Тем не менее, установлено, что вероятность заболевания возрастает прямо пропорционально дозе облучения.

Среди наиболее распространенных раковых заболеваний, вызванных облучением, выделяются лейкозы. Оценка вероятности летального исхода при лейкозе более надежна, чем аналогичные оценки для других видов раковых заболеваний. Это можно объяснить тем, что лейкозы первыми проявляют себя, вызывая смерть в среднем через 10 лет после момента облучения. За лейкозами «по популярности» следуют: рак молочной железы, рак щитовидной железы и рак легких. Менее чувствительны желудок, печень, кишечник и другие органы и ткани.

Воздействие радиологического излучения резко усиливается другими неблагоприятными экологическими факторами (явление синергизма). Так, смертность от радиации у курильщиков заметно выше.

Что касается генетических последствий радиации, то они проявляются в виде хромосомных аберраций (в том числе изменения числа или структуры хромосом) и генных мутаций. Генные мутации проявляются сразу в первом поколении (доминантные мутации) или только при условии, если у обоих родителей мутантным является один и тот же ген (рецессивные мутации), что является маловероятным.

Изучение генетических последствий облучения еще более затруднено, чем в случае рака. Неизвестно, каковы генетические повреждения при облучении, проявляться они могут на протяжении многих поколений, невозможно отличить их от тех, что вызваны другими причинами.

Приходится оценивать появление наследственных дефектов у человека по результатам экспериментов на животных.

При оценке риска НКДАР использует два подхода: при одном определяют непосредственный эффект данной дозы, при другом – дозу, при которой удваивается частота появления потомков с той или иной аномалией по сравнению с нормальными радиационными условиями.

Так, при первом подходе установлено, что доза в 1 Гр, полученная при низком радиационном фоне особями мужского пола (для женщин оценки менее определенны), вызывает появление от 1000 до 2000 мутаций, приводящих к серьезным последствиям, и от 30 до 1000 хромосомных аберраций на каждый миллион живых новорожденных.

При втором подходе получены следующие результаты: хроническое облучение при мощности дозы в 1 Гр на одно поколение приведет к появлению около 2000 серьезных генетических заболеваний на каждый миллион живых новорожденных среди детей тех, кто подвергся такому облучению.

Оценки эти ненадежны, но необходимы. Генетические последствия облучения выражаются такими количественными параметрами, как сокращение продолжительности жизни и периода нетрудоспособности, хотя при этом признается, что эти оценки не более чем первая грубая прикидка. Так, хроническое облучение населения с мощностью дозы в 1 Гр на поколение сокращает период трудоспособности на 50000 лет, а продолжительность жизни – также на 50000 лет на каждый миллион живых новорожденных среди детей первого облученного поколения; при постоянном облучении многих поколений выходят на следующие оценки: соответственно 340000 лет и 286000 лет.

V. Источники радиационного излучения

Теперь, имея представление о воздействии радиационного облучения на живые ткани, необходимо выяснить, в каких ситуациях мы наиболее подвержены этому воздействию.

Существует два способа облучения: если радиоактивные вещества находятся вне организма и облучают его снаружи, то речь идет о внешнем облучении. Другой способ облучения – при попадании радионуклидов внутрь организма с воздухом, пищей и водой – называют внутренним.

Источники радиоактивного излучения весьма разнообразны, но их можно объединить в две большие группы: естественные и искусственные (созданные человеком). Причем основная доля облучения (более 75% годовой эффективной эквивалентной дозы) приходится на естественный фон.

Естественные источники радиации

Естественные радионуклиды делятся на четыре группы: долгоживущие (уран-238, уран-235, торий-232); короткоживущие (радий, радон); долгоживущие одиночные, не образующие семейств (калий-40); радионуклиды, возникающие в результате взаимодействия космических частиц с атомными ядрами вещества Земли (углерод-14).

Разные виды излучения попадают на поверхность Земли либо из космоса, либо поступают от радиоактивных веществ, находящихся в земной коре, причем земные источники ответственны в среднем за 5/6 годовой эффективной эквивалентной доз, получаемой населением, в основном вследствие внутреннего облучения.

Уровни радиационного излучения неодинаковы для различных областей. Так, Северный и Южный полюсы более, чем экваториальная зона, подвержены воздействию космических лучей из-за наличия у Земли магнитного поля, отклоняющего заряженные радиоактивные частицы. Кроме того, чем больше удаление от земной поверхности, тем интенсивнее космическое излучение.

Иными словами, проживая в горных районах и постоянно пользуясь воздушным транспортом, мы подвергаемся дополнительному риску облучения. Люди, живущие выше 2000м над уровнем моря, получают в среднем из-за космических лучей эффективную эквивалентную дозу в несколько раз большую, чем те, кто живет на уровне моря. При подъеме с высоты 4000м (максимальная высота проживания людей) до 12000м (максимальная высота полета пассажирского авиатранспорта) уровень облучения возрастает в 25 раз. Примерная доза за рейс Нью-Йорк – Париж по данным НКДАР ООН в 1985 году составляла 50 микрозивертов за 7,5 часов полета.

Всего за счет использование воздушного транспорта население Земли получало в год эффективную эквивалентную дозу около 2000 чел-Зв.

Уровни земной радиации также распределяются неравномерно по поверхности Земли и зависят от состава и концентрации радиоактивных веществ в земной коре. Так называемые аномальные радиационные поля природного происхождения образуются в случае обогащения некоторых типов горных пород ураном, торием, на месторождениях радиоактивных элементов в различных породах, при современном привносе урана, радия, радона в поверхностные и подземные воды, геологическую среду.

По данным исследований, проведенных во Франции, Германии, Италии, Японии и США, около 95% населения этих стран проживает в районах, где мощность дозы облучения колеблется в среднем от 0,3 до 0,6 миллизиверта в год. Эти данные можно принять за средние по миру, поскольку природные условия в вышеперечисленных странах различны.

Есть, однако, несколько «горячих точек», где уровень радиации намного выше. К ним относятся несколько районов в Бразилии: окрестности города Посус-ди-Калдас и пляжи близ Гуарапари, города с населением 12000 человек, куда ежегодно приезжают отдыхать примерно 30000 курортников, где уровень радиации достигает 250 и 175 миллизивертов в год соответственно. Это превышает средние показатели в 500-800 раз. Здесь, а также в другой части света, на юго-западном побережье Индии, подобное явление обусловлено повышенным содержанием тория в песках. Вышеперечисленные территории в Бразилии и Индии являются наиболее изученными в данном аспекте, но существует множество других мест с высоким уровнем радиации, например во Франции, Нигерии, на Мадагаскаре.

По территории России зоны повышенной радиоактивности также распределены неравномерно и известны как в европейской части страны, так и в Зауралье, на Полярном Урале, в Западной Сибири, Прибайкалье, на Дальнем Востоке, Камчатке, Северо-востоке.

Среди естественных радионуклидов наибольший вклад (более 50%) в суммарную дозу облучения несет радон и его дочерние продукты распада (в т.ч. радий). Опасность радона заключается в его широком распространении, высокой проникающей способности и миграционной подвижности (активности), распаде с образованием радия и других высокоактивных радионуклидов. Период полураспада радона сравнительно невелик и составляет 3,823 суток. Радон трудно идентифицировать без использования специальных приборов, так как он не имеет цвета или запаха.

Одним из важнейших аспектов радоновой проблемы является внутреннее облучение радоном: образующиеся при его распаде продукты в виде мельчайших частиц проникают в органы дыхания, и их существование в организме сопровождается альфа-излучением. И в России, и на западе радоновой проблеме уделяется много внимания, так как в результате проведенных исследований выяснилось, что в большинстве случаев содержание радона в воздухе в помещениях и в водопроводной воде превышает ПДК. Так, наибольшая концентрация радона и продуктов его распада, зафиксированная в нашей стране, соответствует дозе облучения 3000-4000 бэр в год, что превышает ПДК на два-три порядка. Полученная в последние десятилетия информация показывает, что в Российской федерации радон широко распространен также в приземном слое атмосферы, подпочвенном воздухе и подземных водах.

В России проблема радона еще слабо изучена, но достоверно известно, что в некоторых регионах его концентрация особенно высока. К их числу относятся так называемое радоновое «пятно», охватывающее Онежское, Ладожское озера и Финский залив, широкая зона, простирающаяся от Среднего Урала к западу, южная часть Западного Приуралья, Полярный Урал, Енисейский кряж, Западное Прибайкалье, Амурская область, север Хабаровского края, Полуостров Чукотка («Экология,…», 263).

Источники радиации, созданные человеком (техногенные)

Искусственные источники радиационного облучения существенно отличаются от естественных не только происхождением. Во-первых, сильно различаются индивидуальные дозы, полученные разными людьми от искусственных радионуклидов. В большинстве случаев эти дозы невелики, но иногда облучение за счет техногенных источников гораздо более интенсивно, чем за счет естественных. Во-вторых, для техногенных источников упомянутая вариабельность выражена гораздо сильнее, чем для естественных. Наконец, загрязнение от искусственных источников радиационного излучения (кроме радиоактивных осадков в результате ядерных взрывов) легче контролировать, чем природно обусловленное загрязнение.

Энергия атома используется человеком в различных целях: в медицине, для производства энергии и обнаружения пожаров, для изготовления светящихся циферблатов часов, для поиска полезных ископаемых и, наконец, для создания атомного оружия.

Основной вклад в загрязнение от искусственных источников вносят различные медицинские процедуры и методы лечения, связанные с применением радиоактивности. Основной прибор, без которого не может обойтись ни одна крупная клиника – рентгеновский аппарат, но существует множество других методов диагностики и лечения, связанных с использованием радиоизотопов.

Неизвестно точное количество людей, подвергающихся подобным обследованиям и лечению, и дозы, получаемые ими, но можно утверждать, что для многих стран использование явления радиоактивности в медицине остается чуть ли не единственным техногенным источником облучения.

В принципе облучение в медицине не столь опасно, если им не злоупотреблять. Но, к сожалению, часто к пациенту применяются неоправданно большие дозы. Среди методов, способствующих снижению риска, — уменьшение площади рентгеновского пучка, его фильтрация, убирающая лишнее излучение, правильная экранировка и самое банальное, а именно исправность оборудования и грамотная его эксплуатация.

Из-за отсутствия более полных данных НКДАР ООН был вынужден принять за общую оценку годовой коллективной эффективной эквивалентной дозы, по крайней мере, от рентгенологических обследований в развитых странах на основе данных, представленных в комитет Польшей и Японией к 1985 году, значение 1000 чел-Зв на 1 млн. жителей. Скорее всего, для развивающихся стран эта величина окажется ниже, но индивидуальные дозы могут быть значительнее. Подсчитано также, что коллективная эффективная эквивалентная доза от облучения в медицинских целях в целом (включая использование лучевой терапии для лечения рака) для всего населения Земли равна примерно 1 600 000 чел-Зв в год.

Следующий источник облучения, созданный руками человека – радиоактивные осадки, выпавшие в результате испытания ядерного оружия в атмосфере, и, несмотря на то, что основная часть взрывов была произведена еще в 1950-60е годы, их последствия мы испытываем на себе и сейчас.

В результате взрыва часть радиоактивных веществ выпадает неподалеку от полигона, часть задерживается в тропосфере и затем в течение месяца перемещается ветром на большие расстояния, постепенно оседая на землю, при этом оставаясь примерно на одной и той же широте. Однако большая доля радиоактивного материала выбрасывается в стратосферу и остается там более продолжительное время, также рассеиваясь по земной поверхности.

Радиоактивные осадки содержат большое количество различных радионуклидов, но из них наибольшую роль играют цирконий-95, цезий-137, стронций-90 и углерод-14, периоды полураспада которых составляют соответственно 64 суток, 30 лет (цезий и стронций) и 5730 лет.

По данным НКДАР, ожидаемая суммарная коллективная эффективная эквивалентная доза от всех ядерных взрывов, произведенных к 1985 году, составляла 30 000 000 чел-Зв. К 1980 году население Земли получило лишь 12% этой дозы, а остальную часть получает до сих пор и будет получать еще миллионы лет.

Один из наиболее обсуждаемых сегодня источников радиационного излучения является атомная энергетика. На самом деле, при нормальной работе ядерных установок ущерб от них незначительный. Дело в том, что процесс производства энергии из ядерного топлива сложен и проходит в несколько стадий.

Ядерный топливный цикл начинается с добычи и обогащения урановой руды, затем производится само ядерное топливо, а после отработки топлива на АЭС иногда возможно вторичное его использование через извлечение из него урана и плутония. Завершающей стадией цикла является, как правило, захоронение радиоактивных отходов.

На каждом этапе происходит выделение в окружающую среду радиоактивных веществ, причем их объем может сильно варьироваться в зависимости от конструкции реактора и других условий. Кроме того, серьезной проблемой является захоронение радиоактивных отходов, которые еще на протяжении тысяч и миллионов лет будут продолжать служить источником загрязнения.

Дозы облучения различаются в зависимости от времени и расстояния. Чем дальше от станции живет человек, тем меньшую дозу он получает.

Из продуктов деятельности АЭС наибольшую опасность представляет тритий. Благодаря своей способности хорошо растворяться в воде и интенсивно испаряться тритий накапливается в использованной в процессе производства энергии воде и затем поступает в водоем-охладитель, а соответственно в близлежащие бессточные водоемы, подземные воды, приземной слой атмосферы. Период его полураспада равен 3,82 суток. Распад его сопровождается альфа-излучением. Повышенные концентрации этого радиоизотопа зафиксированы в природных средах многих АЭС.

До сих пор речь шла о нормальной работе атомных электростанций, но на примере Чернобыльской трагедии мы можем сделать вывод о чрезвычайно большой потенциальной опасности атомной энергетики: при любом минимальном сбое АЭС, особенно крупная, может оказать непоправимое воздействие на всю экосистему Земли.

Масштабы Чернобыльской аварии не могли не вызвать оживленного интереса со стороны общественности. Но мало кто догадывается о количестве мелких неполадок в работе АЭС в разных странах мира.

Так, в статье М.Пронина, подготовленной по материалам отечественной и зарубежной печати в 1992 году, содержатся следующие данные:

«…С 1971 по 1984 гг. На атомных станциях ФРГ произошла 151 авария. В Японии на 37 действующих АЭС с 1981 по 1985 гг. зарегистрировано 390 аварий, 69% которых сопровождались утечкой радиоактивных веществ.… В 1985 г. в США зафиксировано 3 000 неисправностей в системах и 764 временные остановки АЭС…» и т.д.

Кроме того, автор статьи указывает на актуальность, по крайней мере на 1992 год, проблемы намеренного разрушения предприятий ядерного топливного энергетического цикла, что связано с неблагоприятной политической обстановкой в ряде регионов. Остается надеяться на будущую сознательность тех, кто таким образом «копает под себя».

Осталось указать несколько искусственных источников радиационного загрязнения, с которыми каждый из нас сталкивается повседневно.

Это, прежде всего, строительные материалы, отличающиеся повышенной радиоактивностью. Среди таких материалов – некоторые разновидности гранитов, пемзы и бетона, при производстве которого использовались глинозем, фосфогипс и кальциево-силикатный шлак. Известны случаи, когда стройматериалы производились из отходов ядерной энергетики, что противоречит всем нормам. К излучению, исходящему от самой постройки, добавляется естественное излучение земного происхождения. Самый простой и доступный способ хотя бы частично защититься от облучения дома или на работе – чаще проветривать помещение.

Повышенная ураноносность некоторых углей может приводить к значительным выбросам в атмосферу урана и других радионуклидов в результате сжигания топлива на ТЭЦ, в котельных, при работе автотранспорта.

Существует огромное количество общеупотребительных предметов, являющихся источником облучения. Это, прежде всего, часы со светящимся циферблатом, которые дают годовую ожидаемую эффективную эквивалентную дозу, в 4 раза превышающую ту, что обусловлена утечками на АЭС, а именно 2 000 чел-Зв («Радиация…», 55). Равносильную дозу получают работники предприятий атомной промышленности и экипажи авиалайнеров.

При изготовлении таких часов используют радий. Наибольшему риску при этом подвергается, прежде всего, владелец часов.

Радиоактивные изотопы используются также в других светящихся устройствах: указателях входа-выхода, в компасах, телефонных дисках, прицелах, в дросселях флуоресцентных светильников и других электроприборах и т.д.

При производстве детекторов дыма принцип их действия часто основан на использовании альфа-излучения. При изготовлении особо тонких оптических линз применяется торий, а для придания искусственного блеска зубам используют уран.

Очень незначительны дозы облучения от цветных телевизоров и рентгеновских аппаратов для проверки багажа пассажиров в аэропортах.

VI. Заключение

Во вступлении автор указывал на тот факт, что одним из серьезнейших упущений сегодня является отсутствие объективной информации. Тем не менее, уже проделана огромная работа по оценке радиационного загрязнения, и результаты исследований время от времени публикуются как в специальной литературе, так и в прессе. Но для понимания проблемы необходимо располагать не обрывочными данными, а ясно представлять целостную картину.

А она такова.
Мы не имеем права и возможности уничтожить основной источник радиационного излучения, а именно природу, а также не можем и не должны отказываться от тех преимуществ, которые нам дает наше знание законов природы и умение ими воспользоваться. Но необходимо
Список использованной литературы

1. Лисичкин В.А., Шелепин Л.А., Боев Б.В. Закат цивилизации или движение к ноосфере (экология с разных сторон). М.; «ИЦ-Гарант», 1997. 352 с.

2. Миллер Т. Жизнь в окружающей среде/Пер. с англ. В 3 т. Т.1. М., 1993; Т.2. М., 1994.

3. Небел Б. Наука об окружающей среде: Как устроен мир. В 2 т./Пер. с англ. Т. 2. М., 1993.

4. Пронин М. Бойтесь! Химия и жизнь. 1992. №4. С.58.

5. Ревелль П., Ревелль Ч. Среда нашего обитания. В 4 кн. Кн. 3. Энергетические проблемы человечества/Пер. с англ. М.; Наука, 1995. 296с.

6. Экологические проблемы: что происходит, кто виноват и что делать?: Учебное пособие/Под ред. проф. В.И. Данилова-Данильяна. М.: Изд-во МНЭПУ, 1997. 332 с.

7. Экология, охрана природы и экологическая безопасность.: Учебное пособие/Под ред. проф. В.И.Данилова-Данильяна. В 2 кн. Кн. 1. — М.: Изд-во МНЭПУ, 1997. – 424 с.

Международный Независимый

Эколого-Политологический Университет

А.А. Игнатьева

РАДИАЦИОННАЯ ОПАСНОСТЬ

И ПРОБЛЕМА ИСПОЛЬЗОВАНИЯ АЭС.

Очное отделение экологического факультета

Москва 1997

Что такое радиация?
Термин «радиация» происходит от лат. radius — луч, и в самом широком смысле охватывает все виды излучений вообще. Видимый свет и радиоволны – тоже, строго говоря, радиация, но принято подразумевать под радиацией только ионизирующие излучения, то есть те, взаимодействие которых с веществом приводит к образованию в нем ионов.
Различают несколько видов ионизирующих излучений:
— альфа-излучение – представляет собой поток ядер гелия
— бета-излучение – поток электронов или позитронов
— гамма-излучение – электромагнитное излучение с частотой порядка 10^20 Гц.
— рентгеновское излучение – также электромагнитное излучение с частотой порядка 10^18 Гц.
— нейтронное излучение – поток нейтронов.

Что такое альфа-излучение?
Это тяжелые положительно заряженные частицы, состоящие из двух протонов и двух нейтронов, крепко связанных между собой. В природе альфа-частицы возникают в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более пяти сантиметров и, как правило, полностью задерживается листом бумаги или внешним омертвевшим слоем кожи. Однако если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или вдыхаемым воздухом, оно облучает внутренние органы и становится потенциально опасным.

Что такое бета-излучение?
Электроны либо позитроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Если вещество, испускающие бета-частицы, попадет в организм, оно будет облучать внутренние ткани.

Что такое нейтронное излучение?
Поток нейтронов, нейтрально заряженных частиц. Нейтронное излучение образуется в процессе деления атомного ядра и обладает высокой проникающей способностью. Нейтроны можно остановить толстым бетонным, водяным или парафиновым барьером. К счастью, в мирной жизни нигде, кроме как непосредственно вблизи ядерных реакторов, нейтронное излучение практически не существует.

Что такое гамма-излучение?
Электромагнитная волна, несущая энергию. В воздухе оно может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани.

А какой вид излучения используется при рентгеноскопии?
Рентгеновское излучение — электромагнитное излучение с частотой порядка 10^18 Гц.
Возникает при взаимодействии электронов, движущихся с большими скоростями, с веществом. Когда электроны соударяются с атомами какого-либо вещества, они быстро теряют свою кинетическую энергию. При этом большая ее часть переходит в тепло, а небольшая доля, обычно менее 1%, преобразуется в энергию рентгеновского излучения.
В отношении рентгеновского и гамма-излучения часто употребляют определения «жёсткое» и «мягкое». Это относительная характеристика его энергии и связанной с ней проникающей способности излучения: «жёсткое» — большие энергия и проникающая способность, «мягкое» -меньшие. Рентгеновское излучение — мягкое, гамма-излучение — жесткое.

Существует ли место без радиации вообще?
Практически нет. Радиация — древний фактор окружающей среды. Существует множество естественных источников излучения: это природные радионуклиды, содержащиеся в земной коре, строительных материалах, воздухе, пище и воде, а также космические лучи. В среднем они определяют более чем 80% годовой эффективной дозы, получаемой населением, в основном вследствие внутреннего облучения.

Что такое радиоактивность?
Радиоактивность – свойство атомов какого-либо элемента самопроизвольно превращаться в атомы других элементов. Этот процесс сопровождается ионизирующим излучением, т.е. радиацией.

В чем измеряется радиация?
С учетом того, что «радиация» сама по себе измеримой величиной не является, существуют различные единицы для измерения различных видов излучений, а также загрязнения.
Отдельно используются понятия поглощенной, экспозиционной, эквивалентной и эффективной дозы, а также понятие мощности эквивалентной дозы и фона.
Кроме того, для каждого радионуклида (радиоактивного изотопа элемента) измеряется активность радионуклида, удельная активность радионуклида и период полураспада.

Что такое поглощенная доза и в чем она измеряется?
Доза, поглощённая доза (от греческого — доля, порция) – определяет величину энергии ионизирующего излучения, поглощённую облучаемым веществом. Характеризует физический эффект облучения в любой среде, включая биологическую ткань, и часто рассчитывается на единицу массы этого вещества.
Измеряется в единицах энергии, которая выделяется в веществе (поглощается веществом) при прохождении через него ионизирующего излучения.
Единицы измерения рад, грэй.
Рад (rad – сокращение от radiation absorbed dose) — внесистемная единица поглощённой дозы. Соответствует энергии излучения 100 эрг, поглощённой веществом массой 1 грамм
1 рад = 100 эрг/г = 0,01 Дж/кг = 0,01 Гр = 2,388 x 10-6 кал/г
При экспозиционной дозе в 1 рентген поглощённая доза в воздухе будет 0,85 рад (85 эрг/г).
Грэй (Гр.) — единица поглощённой дозы в системе единиц СИ. Соответствует энергии излучения в 1 Дж, поглощённой 1 кг вещества.
1 Гр. = 1 Дж/кг = 104 эрг/г = 100 рад.

Что такое экспозиционная доза и в чем она измеряется?
Экспозиционная доза определяется по ионизации воздуха, то есть по суммарному заряду ионов, образовавшихся в воздухе при прохождении через него ионизирующего излучения.
Единицы измерения рентген, кулон на килограмм.
Рентген (Р) — внесистемная единица экспозиционной дозы. Это такое количество гамма- или рентгеновского излучения, которое в 1 см3 сухого воздуха (имеющего при нормальных условиях вес 0,001293 г) образует 2,082 х 109 пар ионов. При пересчёте на 1 г воздуха это составит 1,610 х 1012 пар ионов или 85 эрг/г сухого воздуха. Таким образом физический энергетический эквивалент рентгена равен 85 эрг/г для воздуха.
1 Кл/кг — единица экспозиционной дозы в системе СИ. Это такое количество гамма- или рентгеновского излучения, которое в 1 кг сухого воздуха образует 6,24 х 1018 пар ионов, которые несут заряд в 1 кулон каждого знака. Физический эквивалент 1 Кл/кг равен 33 Дж/кг (для воздуха).
Соотношения между рентгеном и Кл/кг следующие:
1 Р = 2,58 х 10-4 Кл/кг — точно.
1 Кл/кг = 3,88 х 103 Р — приблизительно.

Что такое эквивалентная доза и в чем она измеряется?
Эквивалентная доза равна поглощенной дозе, рассчитанной для человека с учётом коэффициентов, учитывающих различную способность разных видов излучения повреждать ткани организма.
Например, для рентгеновского, гамма, бета-излучения, этот коэффициент (его называют коэффициент качества излучения) равен 1, а для альфа-излучения – 20. То есть при одной и той же поглощенной дозе альфа-излучение нанесет организму в 20 раз больший вред, чем, например гамма-излучение.
Единицы измерения бэр и зиверт.
Бэр — биологический эквивалент рада (ранее — рентгена). Внесистемная единица измерения эквивалентной дозы. В общем случае:
1 бэр = 1 рад * К = 100 эрг/г * К = 0,01 Гр * К = 0,01 Дж/кг * К = 0,01 Зиверт,
где К – коэффициент качества излучения, см. определение эквивалентной дозы
Для рентгеновского, гамма-, бета-излучений, электронов и позитронов, 1 бэр соответствует поглощённой дозе в 1 рад.
1 бэр = 1 рад = 100 эрг/г = 0,01 Гр = 0,01 Дж/кг = 0,01 Зиверт
Учитывая, что при экспозиционной дозе в 1 рентген воздух поглощает примерно 85 эрг/г (физический эквивалент рентгена), а биологическая ткань примерно 94 эрг/г (биологический эквивалент рентгена), можно считать с минимальной погрешностью, что экспозиционная доза в 1 рентген для биологической ткани соответствует поглощённой дозе в 1 рад и эквивалентной дозе в 1 бэр (для рентгеновского, гамма-, бета-излучений, электронов и позитронов), то есть, грубо говоря — 1 рентген, 1 рад и 1 бэр — это одно и то же.
Зиверт (Зв) — единица эквивалентной и эффективной эквивалентной доз в системе СИ. 1 Зв равен эквивалентной дозе, при которой произведение величины поглощённой дозы в Грэях (в биологической ткани) на коэффициент К будет равно 1 Дж/кг. Иными словами, это такая поглощённая доза, при которой в 1 кг вещества выделяется энергия в 1 Дж.
В общем случае:
1 Зв = 1 Гр * К = 1 Дж/кг * К = 100 рад * К = 100 бэр * К
При К=1 (для рентгеновского, гамма-, бета-излучений, электронов и позитронов) 1 Зв соответствует поглощённой дозе в 1 Гр:
1 Зв = 1 Гр = 1 Дж/кг = 100 рад = 100 бэр.

Эффективная эквивалентная доза равно эквивалентной дозе, рассчитанной с учётом разной чувствительности различных органов организма к облучению. Эффективная доза учитывает не только, что различные виды излучений обладают разной биологической эффективностью, но и то, что одни части тела человека (органы, ткани) более чувствительны к излучению, чем другие. Например, при одинаковой эквивалентной дозе возникновение рака легких более вероятно, чем рака щитовидной железы. Таким образом, эффективная доза отражает суммарный эффект облучения человека с точки зрения отдаленных последствий.
Для расчета эффективной дозы эквивалентную дозу, полученную конкретным органом, тканью, умножают на соответствующий коэффициент.
Для всего организма этот коэффициент равен 1, а для некоторых органов имеет следующие значения:
костный мозг (красный) — 0,12
щитовидная железа — 0,05
лёгкие, желудок, толстый кишечник — 0,12
гонады (яичники, семенники) — 0,20
кожа — 0,01
Для оценки полной эффективной эквивалентной дозы, полученной человеком, рассчитывают и суммируют указанные дозы для всех органов.
Единица измерения та же, что и у эквивалентной дозы – «бэр», «зиверт»

Что такое мощность эквивалентной дозы, и в чем она измеряется?
Доза, полученная в единицу времени, называется мощностью дозы. Чем больше мощность дозы, тем быстрее растет доза излучения.
Для эквивалентной дозы в СИ единица мощности дозы – зиверт в секунду (Зв/с), внесистемная единица – бэр в секунду (бэр/с). На практике чаще всего используются их производные (мкЗв/час, мбэр/час и т.д.)

Что такое фон, естественный фон, и в чем они измеряется?
Фон – другое название для мощности экспозиционной дозы ионизирующего излучения в данном месте.
Естественный фон — мощность экспозиционной дозы ионизирующего излучения в данном месте, создаваемая только природными источниками излучения.
Единицы измерения, соответственно – бэр и зиверт.
Часто фон и естественный фон измеряют в рентгенах (микрорентгенах и т.д.), примерно приравнивая рентген и бэр (см. вопрос об эквивалентной дозе).

Что такое активность радионуклида и в чем она измеряется?
Количество радиоактивного вещества измеряется не только единицами массы (грамм, миллиграмм и т.д.), но и активностью, которая равняются числу ядерных превращений (распадов) в единицу времени. Чем больше ядерных превращений испытывают атомы данного вещества в секунду, тем выше его активность и тем большую опасность оно может представлять для человека.
Единицей активности в СИ является распад в секунду (расп/с). Эта единица получила название беккерель (Бк). 1 Бк равняется 1 расп/с.
Наиболее употребительной внесистемной единицей активности является кюри (Ки). 1 Ки равняется 3,7* 10 в 10 Бк, что соответствует активности 1 г радия.

Что такое удельная поверхностная активность радионуклида?
Это активность радионуклида, отнесенная к единице площади. Обычно используется для характеристики радиоактивного загрязнения территории (плотности радиоактивного загрязнения).
Единицы измерения — Бк/м2, Бк/км2, Ки/м2, Ки/км2.

Что такое период полураспада и в чем он измеряется?
Период полураспада (T1/2, также обозначается греческой буквой «лямбда», half-life)- время, в течение которого половина радиоактивных атомов распадается и их количество уменьшается в 2 раза. Величина строго постоянная для каждого радионуклида. Периоды полураспада у всех радионуклидов разные — от долей секунды (короткоживущие радионуклиды) до миллиардов лет (долгоживущие).
Это не значит, что через время равное двум T1/2 радионуклид распадется полностью. Через T1/2 радионуклида станет вдвое меньше, через 2*T1/2 – вчетверо и т.д. Полностью радионуклид не распадется теоретически никогда.

Пределы и нормы облучения

(как и где можно облучиться и что мне за это будет?)

Правда ли то, что при полетах на самолете можно получить дополнительную дозу излучения?
В общем случае да. Конкретные цифры зависят от высоты полета, типа самолета, погоды и маршрута, примерно можно оценить фон в салоне самолета как 200-400 мкР/Ч.

Опасно ли делать флюорографию или рентгенографию?
Хотя снимок и занимает всего доли секунды, мощность излучения весьма велика и человек получает достаточную дозу облучения. Не зря врач-рентгенолог при снимке прячется за стальную стенку.
Примерные эффективные дозы для облучаемых органов:
флюорография в одной проекции — 1.0 мЗв
ренген легких — 0.4 мЗ
снимок черепа в двух проекциях — 0.22 мЗв
снимок зуба — 0.02мЗв
снимок носа (гайморовы пазухи) — 0.02 мЗв
снимок голени (ног в связи с переломом) — 0.08мЗв
Указанные цифры верны для одного снимка (если особо не отмечено), при исправном рентгеновском аппарате и применении средств защиты. Скажем, при снимке легких вовсе не обязательно облучать голову и все, что ниже пояса. Требуйте просвинцованный фартук и воротник, их должны вам выдать. Полученная при обследовании доза обязательно записывается в личную карточку больного.
Ну и напоследок — любой врач, отправляющий вас на рентген, обязан оценивать риск избыточного облучения по сравнению с тем, насколько помогут ему ваши снимки для более эффективного лечения.

Радиация на промышленных объектах, свалках, заброшенных зданиях?

Источники радиации можно встретить где угодно, даже в жилом здании, напр. когда-то использовались Радиоизотопные извещатели дыма (РИД) в которых использовались изотопы, излучающие Альфа, Бета и Гамма радиацию, всевозможные шкалы приборов, выпущенных до 60-х годов, на которые наносилась краска в составе которой были соли Радия-226, на свалках находили гамма-дефектоскопы, проверочные источники для дозиметров и.т.д.

Методы и приборы контроля.

Какими приборами можно измерить радиацию?
: Основные приборы – радиометр и дозиметр. Существуют комбинированные приборы – дозиметр-радиометр. Самые распространённые это бытовые дозиметры-радиометры: Терра-П, Припять, Сосна, Стора-Ту, Белла и др. Есть военные приборы типа ДП-5, ДП-2,ДП-3 и др.

А чем отличается радиометр от дозиметра?
Радиометр показывает мощность дозы излучения здесь теперь и сейчас. Но для оценки влияния радиации на организм важна не мощность, а именно полученная доза.
Дозиметр — это прибор, который, измеряя мощность дозы излучения, перемножает её на время воздействия радиации, подсчитывая тем самым полученную владельцем эквивалентную дозу. Бытовые дозиметры измеряют, как правило, только мощность дозы гамма-излучения (некоторые еще и бета-излучения), весовой множитель которых (коэффициент качества излучения) равны 1.
Поэтому даже при отсутствии в приборе функции дозиметра можно мощность дозы, измеренную в Р/ч поделить на 100 и умножить на время облучения, получив таким образом искомое значение дозы в Зивертах. Либо, что то же самое, умножив измеренную мощность дозы на время облучения, получим эквивалентную дозу в бэрах.
Простая аналогия — спидометр в машине показывает мгновенную скорость «радиометр» а счетчик километров интегрирует эту скорость по времени, показывая пройденный машиной путь («дозиметр»).

Дезактивация.

Способы дезактивации техники
Радиоактивная пыль на зараженной технике удерживается силами притяжения (адгезии); величина этих сил зависит от свойств поверхности и среды, в которой происходит притяжение. Силы адгезии в воздухе значительно больше, чем в жидкости. В случае заражения техники, покрытой маслянистыми загрязнениями, адгезия радиоактивной пыли определяется прочностью прилипания самого маслянистого слоя.
При дезактивации происходит два процесса:
· отрыв частиц радиоактивной пыли от зараженной поверхности;
· удаление их с поверхности объекта.

Исходя из этого, способы дезактивации основаны либо на механическом удалении радиоактивной пыли (сметание, сдувание, пылеотсасывание), либо на использовании физико-химических моющих процессов (смывание радиоактивной пыли растворами моющих средств).
Ввиду того, что частичная дезактивация отличается от полной только тщательностью и полнотой обработки, то и способы частичной и полной дезактивации практически одинаковы и зависят только от наличия технических средств дезактивации и дезактивирующих растворов.

Все способы дезактивации можно разделить на две группы: жидкостные и безжидкостные. Промежуточным между ними является газокапельный способ дезактивации.
К жидкостным способам относятся:
· смывание РВ дезактивирующими растворами, водой и растворителями (бензином, керосином, дизтопливом и т.п.) с использованием щеток или ветоши;
· смывание РВ струёй воды под давлением.
При обработке техники этими способами отрыв частиц РВ от поверхности происходит в жидкой среде, когда силы адгезии ослаблены. Транспортировка оторванных частиц при их удалении также обеспечивается жидкостью, стекающей с объекта.
Поскольку скорость движения слоя жидкости, непосредственно примыкающего к твердой поверхности, очень мала, то мала и скорость перемещения пылинок, особенно очень мелких, полностью утопленных в тонком пограничном слое жидкости. Поэтому для достижения достаточной полноты дезактивации приходится одновременно с подачей жидкости протирать поверхность щеткой, или ветошью, использовать растворы моющих средств, облегчающих отрыв радиоактивных загрязнений и удержание их в растворе, или же применять мощную струю воды с большим давлением и расходом жидкости на единицу поверхности.
Жидкостные способы обработки высокоэффективны и универсальны, практически все существующие табельные технические средства дезактивации рассчитаны на жидкостные способы обработки. Самым эффективным из них является способ смывания РВ дезактивирующими растворами с использованием щеток (позволяет снижать зараженность объекта в 50 — 80 раз), а самым быстрым по выполнению — способ смывания РВ струёй воды. Способ смывания РВ дезактивирующими растворами, водой и растворителями с использованием ветоши применяется главным образом для дезактивации внутренних поверхностей кабины автомобиля, различных приборов, чувствительных к большим объёмам воды и дезактивирующих растворов.
Выбор того или иного способа жидкостной обработки зависит от наличия дезактивирующих веществ, емкости водоисточников, технических средств и вида техники, подлежащей дезактивации.
К безжидкостным способам относятся следующие:
· сметание радиоактивной пыли с объекта вениками и другими подсобными материалами;
· удаление радиоактивной пыли методом пылеотсасывания;
· сдувание радиоактивной пыли сжатым воздухом.
При осуществлении этих способов отрыв частиц радиоактивной пыли осуществляется в воздушной среде, когда силы адгезии велики. Существующими способами (пылеотсасывание, струя воздуха от компрессора автомобиля) нельзя создать достаточно мощного потока воздуха. Все эти способы эффективны при удалении сухой радиоактивной пыли с сухих не замасленных и не сильно загрязненных объектов. Табельным техническим средством дезактивации военной техники безжидкостным способом (пылеотсасыванием) в настоящее время является комплект ДК-4, с помощью которого можно обрабатывать технику и жидкостным и безжидкостным способами.
Безжидкостные способы дезактивации позволяют снижать зараженность объектов:
· обметание — в 2 — 4 раза;
· пылеотсасывание — в 5 — 10раз;
· обдувание сжатым воздухом от компрессора автомобиля – в 2-3раза.
Газокапельный способ заключается в обдувании объекта мощным газокапельным потоком.
Источником газового потока служит воздушно-реактивный двигатель, на выходе из сопла в газовый поток вводится вода, которая дробится на мелкие капли.
Сущность способа заключается в том, что на обрабатываемой поверхности образуется пленка жидкости, благодаря чему силы сцепления (адгезии) частиц пыли с поверхностью ослабляются и мощный газовый поток сдувает их с объекта.
Газокапельный способ дезактивации осуществляется с помощью тепловых машин (ТМС-65, УТМ), он позволяет исключить ручной труд при проведении специальной обработки военной техники.
Время дезактивации автомобиля КаМАЗ газокапельным потоком составляет 1 — 2 мин, расход воды — 140л, зараженность снижается в 50 — 100раз.
При дезактивации техники любым из жидкостных или безжидкостных способов необходимо соблюдать следующий порядок обработки:
· объект начинать обрабатывать с верхних частей, постепенно опускаясь вниз;
· последовательно обрабатывать всю поверхность без пропусков;
· каждый участок поверхности обработать 2-3 раза, шероховатые поверхности обработать особенно тщательно с повышенным расходом жидкости;
· при обработке растворами с использованием щёток и ветоши тщательно протирать обрабатываемую поверхность;
· при обработке струёй воды направлять струю под углом 30 — 60° к поверхности, находясь в 3 — 4м от обрабатываемого объекта;
· следить, чтобы брызги и стекающая с обрабатываемого объекта жидкость не попадала на людей, производящих дезактивацию.

Поведение в ситуации потенциальной радиационной опасности.

Если мне сказали, что недалеко взорвалась АЭС, куда бежать?
Никуда не бежать. Во-первых, вас могли обмануть. Во-вторых, в случае действительной опасности лучше всего довериться действиям профессионалов. А для того, чтобы об этих самых действиях узнать, желательно находиться дома, включить радиоприемник или телевизор. В качестве меры предосторожности можно порекомендовать плотно закрыть окна и двери, не выпускать детей и домашних животных на улицу, провести влажную уборку квартиры.

Какие лекарства нужно выпить, чтобы от радиации не было вреда?
При авариях на АЭС в атмосферу выбрасывается большое количество радиоактивного изотопа йода-131, который накапливается в щитовидной железе, что приводит к внутреннему облучению организма и может вызвать рак щитовидной железы. Поэтому в первые дни после загрязнения территории (а лучше до этого загрязнения) необходимо насытить щитовидную железу обычным йодом, тогда организм будет невосприимчив к радиоактивному его изотопу. Пить йод из пузырька исключительно вредно, существуют разнообразные таблетки — обычный йодид калия, йод-актив, йодомарин и т.п., все они представляют собой тот же калий-йод.
Если калий-йода поблизости нет, а территория загрязнена, то в крайнем случае можно капнуть пару капель обычного йода на стакан воды или киселя, и выпить.
Период полураспада йода-131 – чуть более 8 суток. Соответственно, через две недели можно в любом случае о принятии йода внутрь забыть.

Таблица доз радиации.