Правила потенцирования. Метод потенцирования

Правила логарифмирования Правила потенцирования
1.
2.
3.
4.
5.
6.

Логарифмическая функция

Функция вида у = , где, а - заданное число, а> 0, а ≠ 0, называется логарифмической .

или


Вспомнили и повторили теорию! А теперь немного отступления.

Начало XX века. Франция. Париж. Проходя по площади Экзюпери, господин Команьон указал на дом Денизо: «Что-то больше не слышно о провидице, общавшейся со святыми. Меня водил туда Лакарель, правитель канцелярии префекта. Она сидела в кресле, закрыв глаза, а человек десять почитателей задавали вопросы… На все вопросы она отвечала в поэтическом стиле и без особого затруднения. Когда черед дошел до меня, я задал самый простой вопрос: «Каков логарифм 9?». Она мне ничего не ответила. Как же так? Провидица не знает логарифма 9? Да виданное ли это дело! Все были смущены. Я ушел, провожаемый общим неодобрением».

«Ох, опять логарифмы», - подумаете вы. А мне хочется сказать: «Ах, эти логарифмы». И рассмотрим приложения логарифмической функции в самых различных областях науки и техники. Поистине, безграничны приложения логарифмической функции в самых различных областях науки и техники, а ведь придумывали логарифмы для облегчения вычислений. Более трех столетий прошли с того дня, как в 1614 году были опубликованы первые логарифмические таблицы, составленные Джоном Непером . Они помогали астрономам и инженерам. Сокращая время на вычисления, и тем самым. Как сказал знаменитый французский ученый Лаплас: «Удлиняя жизнь вычислителям».

Ещё недавно трудно было представить инженера без логарифмической линейки в кармане, изобретенная через десяток лет после появления логарифмов Непера английским математиком Гунтером. Она позволяла быстро получать ответ, с инженерного обихода вытеснила микрокалькулятор, но без логарифмической линейки не были бы построены ни первые компьютеры, ни калькуляторы.

Звезды, шум и логарифмы.

Этот заголовок связывает столь, казалось бы, несоединимые вещи. Шум и звезды объединяются здесь потому, что громкость шума и яркость звезд оценивается одинаковым образом – по логарифмической шкале. Астрономы делят звезды по степени яркости на видимые и абсолютные звездные величины – звезды первой величины, второй, третьей и т.д. Последовательность видимых звездных величин, воспринимаемых глазом, представляет собой арифметическую прогрессию. Но физическая по иному закону: яркости звезд составляют геометрическую прогрессию со знаменателем 2,5. Легко понять, что “величина” звезды представляет собой логарифм ее физической яркости. Короче говоря, оценивая яркость звезд, астроном оперирует таблицей логарифмов, составленной при основании 2,5. Аналогично оценивается и громкость шума. Вредное влияние промышленных шумов на здоровье рабочих и на производительность труда побудило выработать приемы точной числовой оценки громкости шума. Единицей громкости звука служит “бел”, но практически используется единица громкости, равные его десятой доле, - так называемый “децибелы”. Последовательные степени громкости 1 бел, 2 бела, 3 бела, и т.д. Составляют арифметическую прогрессию… Физические же величины, характеризующие шумы (энергия, интенсивность звука и др.), составляют геометрическую прогрессию со знаменателем 10. Громкость, выраженная в белах, равна десятичному логарифму соответствующей физической величины.

Логарифмы и ощущения

Ощущения, воспринимаемые органами чувств человека, могут вызываться раздражениями, отличающимися друг от друга во много миллионов и даже миллиардов раз. Удары молота о скользкую плиту в сто раз громче, чем тихий шелест листьев, а яркость вольтовой дуги в триллионы раз превосходит яркость какой-нибудь слабо звезды, едва видимой на ночном небе. Но никакие физиологические процессы не позволяют дать такого диапазона ощущений. Опыты показали, что организм как бы “логарифмирует” полученные им раздражения, т.е. величина ощущения приблизительно пропорциональна десятичному логарифму величины раздражения. Как видим, логарифмы вторгаются и в область психологии.

Логарифмическая спираль.

Так как это уравнение связано с логарифмической функцией, то вычисленную по этой формуле спираль называют логарифмической. Живые существа обычно растут, сохраняя общее очертание своей формы. При этом они растут всего во всех направлениях – взрослое существо и выше и толще детеныша. Но раковины морских животных могут расти лишь в одном направлении. Чтобы не слишком вытягиваться в длину, им приходится скручиваться, причем каждый следующий виток подобен предыдущему. А такой рост может совершать лишь по логарифмической спирали или ее некоторым пространственным аналогам. Поэтому раковины многих моллюсков, улиток, а также рога таких млекопитающих, как архары (горный козел), закручены по логарифмической спирали. Можно сказать, что эта спираль является математическим символом соотношения форм роста. Великий немецкий поэт Иоганн Вольфгант Гете считал ее даже математическим символом жизни и духовного развития. Очертания, выраженные логарифмической спиралью, имеют не только раковины, в нити вокруг центра по логарифмической спирали. По логарифмическим спиралям закручены и многие галактики, в частности, Галактика, которой принадлежит Солнечная система.

Подумайте и ответьте!

В связи, с чем возникла необходимость в логарифмах?

Что нового вы узнали о логарифмах и их приложениях?

Кого из ученых, внесших вклад в развитие логарифмов, вы запомнили?

Что надо учитывать, решая различные задания с логарифмами?

1) ; 2) ; 3) ; 4) ; 5) ; 6) ; 7) ; 8) ; 9) ; 10) ; 11) ; 12) ; 13) ; 14) .

1. Математика. Базовый курс / Гусев и др. – СПО. Москва, 2010. – Глава 10, 79-89. ил.

2. Математика: Учебник / Под ред. Н. В. Макаровой. – М.: для техникумов, 2009. –768с.


Самостоятельная работа №6.

Выражения, преобразование выражений

Степенные выражения (выражения со степенями) и их преобразование

В этой статье мы поговорим о преобразовании выражений со степенями. Сначала мы остановимся на преобразованиях, которые выполняются с выражениями любых видов, в том числе и со степенными выражениями, таких как раскрытие скобок, приведение подобных слагаемых. А дальше разберем преобразования, присущие именно выражениям со степенями: работа с основанием и показателем степени, использование свойств степеней и т.д.

Навигация по странице.

Что такое степенные выражения?

Термин «степенные выражения» практически не встречается школьных учебниках математики, но он довольно часто фигурирует в сборниках задач, особенно предназначенных для подготовки к ЕГЭ и ОГЭ, например, . После анализа заданий, в которых требуется выполнить какие-либо действия со степенными выражениями, становится понятно, что под степенными выражениями понимают выражения, содержащие в своих записях степени. Поэтому, для себя можно принять такое определение:

Определение.

Степенные выражения – это выражения, содержащие степени.

Приведем примеры степенных выражений . Причем будем их представлять согласно тому, как происходит развитие взглядов на от степени с натуральным показателем до степени с действительным показателем.

Как известно, сначала происходит знакомство со степенью числа с натуральным показателем, на этом этапе появляются первые самые простые степенные выражения типа 3 2 , 7 5 +1 , (2+1) 5 , (−0,1) 4 , 3·a 2 −a+a 2 , x 3−1 , (a 2) 3 и т.п.

Чуть позже изучается степень числа с целым показателем, что приводит к появлению степенных выражений с целыми отрицательными степенями, наподобие следующих: 3 −2 , , a −2 +2·b −3 +c 2 .

В старших классах вновь возвращаются к степеням. Там вводится степень с рациональным показателем, что влечет появление соответствующих степенных выражений: , , и т.п. Наконец, рассматриваются степени с иррациональными показателями и содержащие их выражения: , .

Перечисленными степенными выражениями дело не ограничивается: дальше в показатель степени проникает переменная, и возникают, например, такие выражения 2 x 2 +1 или . А после знакомства с , начинают встречаться выражения со степенями и логарифмами, к примеру, x 2·lgx −5·x lgx .

Итак, мы разобрались с вопросом, что представляют собой степенные выражения. Дальше будем учиться преобразовывать их.

Основные виды преобразований степенных выражений

Со степенными выражениями можно выполнять любые из основных тождественных преобразований выражений . Например, можно раскрывать скобки, заменять числовые выражения их значениями, приводить подобные слагаемые и т.д. Естественно, при этом стоит надо соблюдать принятый порядок выполнения действий . Приведем примеры.

Пример.

Вычислите значение степенного выражения 2 3 ·(4 2 −12) .

Решение.

Согласно порядку выполнения действий сначала выполняем действия в скобках. Там, во-первых, заменяем степень 4 2 ее значением 16 (при необходимости смотрите ), и во-вторых, вычисляем разность 16−12=4 . Имеем 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4 .

В полученном выражении заменяем степень 2 3 ее значением 8 , после чего вычисляем произведение 8·4=32 . Это и есть искомое значение.

Итак, 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4=8·4=32 .

Ответ:

2 3 ·(4 2 −12)=32 .

Пример.

Упростить выражения со степенями 3·a 4 ·b −7 −1+2·a 4 ·b −7 .

Решение.

Очевидно, что данное выражение содержит подобные слагаемые 3·a 4 ·b −7 и 2·a 4 ·b −7 , и мы можем привести их: .

Ответ:

3·a 4 ·b −7 −1+2·a 4 ·b −7 =5·a 4 ·b −7 −1 .

Пример.

Представьте выражение со степенями в виде произведения.

Решение.

Справиться с поставленной задачей позволяет представление числа 9 в виде степени 3 2 и последующее использование формулы сокращенного умножения разность квадратов:

Ответ:

Также существует ряд тождественных преобразований, присущих именно степенным выражениям. Дальше мы их и разберем.

Работа с основанием и показателем степени

Встречаются степени, в основании и/или показателе которых находятся не просто числа или переменные, а некоторые выражения. В качестве примера приведем записи (2+0,3·7) 5−3,7 и (a·(a+1)−a 2) 2·(x+1) .

При работе с подобными выражениями можно как выражение в основании степени, так и выражение в показателе заменить тождественно равным выражением на ОДЗ его переменных. Другими словами, мы можем по известным нам правилам отдельно преобразовывать основание степени, и отдельно – показатель. Понятно, что в результате этого преобразования получится выражение, тождественно равное исходному.

Такие преобразования позволяют упрощать выражения со степенями или достигать других нужных нам целей. Например, в упомянутом выше степенном выражении (2+0,3·7) 5−3,7 можно выполнить действия с числами в основании и показателе, что позволит перейти к степени 4,1 1,3 . А после раскрытия скобок и приведения подобных слагаемых в основании степени (a·(a+1)−a 2) 2·(x+1) мы получим степенное выражение более простого вида a 2·(x+1) .

Использование свойств степеней

Один из главных инструментов преобразования выражений со степенями – это равенства, отражающие . Напомним основные из них. Для любых положительных чисел a и b и произвольных действительных чисел r и s справедливы следующие свойства степеней:

  • a r ·a s =a r+s ;
  • a r:a s =a r−s ;
  • (a·b) r =a r ·b r ;
  • (a:b) r =a r:b r ;
  • (a r) s =a r·s .

Заметим, что при натуральных, целых, а также положительных показателях степени ограничения на числа a и b могут быть не столь строгими. Например, для натуральных чисел m и n равенство a m ·a n =a m+n верно не только для положительных a , но и для отрицательных, и для a=0 .

В школе основное внимание при преобразовании степенных выражений сосредоточено именно на умении выбрать подходящее свойство и правильно его применить. При этом основания степеней обычно положительные, что позволяет использовать свойства степеней без ограничений. Это же касается и преобразования выражений, содержащих в основаниях степеней переменные – область допустимых значений переменных обычно такова, что на ней основания принимают лишь положительные значения, что позволяет свободно использовать свойства степеней. Вообще, нужно постоянно задаваться вопросом, а можно ли в данном случае применять какое-либо свойство степеней, ведь неаккуратное использование свойств может приводить к сужению ОДЗ и другим неприятностям. Детально и на примерах эти моменты разобраны в статье преобразование выражений с использованием свойств степеней . Здесь же мы ограничимся рассмотрением нескольких простых примеров.

Пример.

Представьте выражение a 2,5 ·(a 2) −3:a −5,5 в виде степени с основанием a .

Решение.

Сначала второй множитель (a 2) −3 преобразуем по свойству возведения степени в степень: (a 2) −3 =a 2·(−3) =a −6 . Исходное степенное выражение при этом примет вид a 2,5 ·a −6:a −5,5 . Очевидно, остается воспользоваться свойствами умножения и деления степеней с одинаковым основанием, имеем
a 2,5 ·a −6:a −5,5 =
a 2,5−6:a −5,5 =a −3,5:a −5,5 =
a −3,5−(−5,5) =a 2 .

Ответ:

a 2,5 ·(a 2) −3:a −5,5 =a 2 .

Свойства степеней при преобразовании степенных выражений используются как слева направо, так и справа налево.

Пример.

Найти значение степенного выражения .

Решение.

Равенство (a·b) r =a r ·b r , примененное справа налево, позволяет от исходного выражения перейти к произведению вида и дальше . А при умножении степеней с одинаковыми основаниями показатели складываются: .

Можно было выполнять преобразование исходного выражения и иначе:

Ответ:

.

Пример.

Дано степенное выражение a 1,5 −a 0,5 −6 , введите новую переменную t=a 0,5 .

Решение.

Степень a 1,5 можно представить как a 0,5·3 и дальше на базе свойства степени в степени (a r) s =a r·s , примененного справа налево, преобразовать ее к виду (a 0,5) 3 . Таким образом, a 1,5 −a 0,5 −6=(a 0,5) 3 −a 0,5 −6 . Теперь легко ввести новую переменную t=a 0,5 , получаем t 3 −t−6 .

Ответ:

t 3 −t−6 .

Преобразование дробей, содержащих степени

Степенные выражения могут содержать дроби со степенями или представлять собой такие дроби. К таким дробям в полной мере применимы любые из основных преобразований дробей , которые присущи дробям любого вида. То есть, дроби, которые содержат степени, можно сокращать, приводить к новому знаменателю, работать отдельно с их числителем и отдельно со знаменателем и т.д. Для иллюстрации сказанных слов рассмотрим решения нескольких примеров.

Пример.

Упростить степенное выражение .

Решение.

Данное степенное выражение представляет собой дробь. Поработаем с ее числителем и знаменателем. В числителе раскроем скобки и упростим полученное после этого выражение, используя свойства степеней, а в знаменателе приведем подобные слагаемые:

И еще изменим знак знаменателя, поместив минус перед дробью: .

Ответ:

.

Приведение содержащих степени дробей к новому знаменателю проводится аналогично приведению к новому знаменателю рациональных дробей. При этом также находится дополнительный множитель и выполняется умножение на него числителя и знаменателя дроби. Выполняя это действие, стоит помнить, что приведение к новому знаменателю может приводить к сужению ОДЗ. Чтобы этого не происходило, нужно, чтобы дополнительный множитель не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.

Пример.

Приведите дроби к новому знаменателю: а) к знаменателю a , б) к знаменателю .

Решение.

а) В этом случае довольно просто сообразить, какой дополнительный множитель помогает достичь нужного результата. Это множитель a 0,3 , так как a 0,7 ·a 0,3 =a 0,7+0,3 =a . Заметим, что на области допустимых значений переменной a (это есть множество всех положительных действительных чисел) степень a 0,3 не обращается в нуль, поэтому, мы имеем право выполнить умножение числителя и знаменателя заданной дроби на этот дополнительный множитель:

б) Присмотревшись повнимательнее к знаменателю, можно обнаружить, что

и умножение этого выражения на даст сумму кубов и , то есть, . А это и есть новый знаменатель, к которому нам нужно привести исходную дробь.

Так мы нашли дополнительный множитель . На области допустимых значений переменных x и y выражение не обращается в нуль, поэтому, мы можем умножить на него числитель и знаменатель дроби:

Ответ:

а) , б) .

В сокращении дробей, содержащих степени, также нет ничего нового: числитель и знаменатель представляются в виде некоторого количества множителей, и сокращаются одинаковые множители числителя и знаменателя.

Пример.

Сократите дробь: а) , б) .

Решение.

а) Во-первых, числитель и знаменатель можно сократить на чисел 30 и 45 , который равен 15 . Также, очевидно, можно выполнить сокращение на x 0,5 +1 и на . Вот что мы имеем:

б) В этом случае одинаковых множителей в числителе и знаменателе сразу не видно. Чтобы получить их, придется выполнить предварительные преобразования. В данном случае они заключаются в разложении знаменателя на множители по формуле разности квадратов:

Ответ:

а)

б) .

Приведение дробей к новому знаменателю и сокращение дробей в основном используется для выполнения действий с дробями. Действия выполняются по известным правилам. При сложении (вычитании) дробей, они приводятся к общему знаменателю, после чего складываются (вычитаются) числители, а знаменатель остается прежним. В результате получается дробь, числитель которой есть произведение числителей, а знаменатель – произведение знаменателей. Деление на дробь есть умножение на дробь, обратную ей.

Пример.

Выполните действия .

Решение.

Сначала выполняем вычитание дробей, находящихся в скобках. Для этого приводим их к общему знаменателю, который есть , после чего вычитаем числители:

Теперь умножаем дроби:

Очевидно, возможно сокращение на степень x 1/2 , после которого имеем .

Еще можно упростить степенное выражение в знаменателе, воспользовавшись формулой разность квадратов: .

Ответ:

Пример.

Упростите степенное выражение .

Решение.

Очевидно, данную дробь можно сократить на (x 2,7 +1) 2 , это дает дробь . Понятно, что надо еще что-то сделать со степенями икса. Для этого преобразуем полученную дробь в произведение . Это дает нам возможность воспользоваться свойством деления степеней с одинаковыми основаниями: . И в заключение процесса переходим от последнего произведения к дроби .

Ответ:

.

И еще добавим, что можно и во многих случаях желательно множители с отрицательными показателями степени переносить из числителя в знаменатель или из знаменателя в числитель, изменяя знак показателя. Такие преобразования часто упрощают дальнейшие действия. Например, степенное выражение можно заменить на .

Преобразование выражений с корнями и степенями

Часто в выражениях, в которыми требуется провести некоторые преобразования, вместе со степенями с дробными показателями присутствуют и корни. Чтобы преобразовать подобное выражение к нужному виду, в большинстве случаев достаточно перейти только к корням или только к степеням. Но поскольку работать со степенями удобнее, обычно переходят от корней к степеням. Однако, осуществлять такой переход целесообразно тогда, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков (это мы подробно разобрали в статье переход от корней к степеням и обратно После знакомства со степенью с рациональным показателем вводится степень с иррациональным показателем, что позволяет говорить и о степени с произвольным действительным показателем. На этом этапе в школе начинает изучаться показательная функция , которая аналитически задается степенью, в основании которой находится число, а в показателе – переменная. Так мы сталкиваемся со степенными выражениями, содержащими числа в основании степени, а в показателе - выражения с переменными, и естественно возникает необходимость выполнения преобразований таких выражений.

Следует сказать, что преобразование выражений указанного вида обычно приходится выполнять при решении показательных уравнений и показательных неравенств , и эти преобразования довольно просты. В подавляющем числе случаев они базируются на свойствах степени и нацелены по большей части на то, чтобы в дальнейшем ввести новую переменную. Продемонстрировать их нам позволит уравнение 5 2·x+1 −3·5 x ·7 x −14·7 2·x−1 =0 .

Во-первых, степени, в показателях которых находится сумма некоторой переменной (или выражения с переменными) и числа, заменяются произведениями. Это относится к первому и последнему слагаемым выражения из левой части:
5 2·x ·5 1 −3·5 x ·7 x −14·7 2·x ·7 −1 =0 ,
5·5 2·x −3·5 x ·7 x −2·7 2·x =0 .

Дальше выполняется деление обеих частей равенства на выражение 7 2·x , которое на ОДЗ переменной x для исходного уравнения принимает только положительные значения (это стандартный прием решения уравнений такого вида, речь сейчас не о нем, так что сосредоточьте внимание на последующих преобразованиях выражений со степенями):

Теперь сокращаются дроби со степенями, что дает .

Наконец, отношение степеней с одинаковыми показателями заменяется степенями отношений, что приводит к уравнению , которое равносильно . Проделанные преобразования позволяют ввести новую переменную , что сводит решение исходного показательного уравнения к решению квадратного уравнения

  • И. В. Бойков, Л. Д. Романова Сборник задач для подготовки к ЕГЭ. Ч. 1. Пенза 2003.
  • Число c {\displaystyle c} называется n -й степенью числа a {\displaystyle a} , если

    c = a ⋅ a ⋅ . . . ⋅ a ⏟ n {\displaystyle c=\underbrace {a\cdot a\cdot ...\cdot a} _{n}} .

    Свойства:

    1. (a b) n = a n b n {\displaystyle \left(ab\right)^{n}=a^{n}b^{n}}
    2. (a b) n = a n b n {\displaystyle \left({a \over b}\right)^{n}={{a^{n}} \over {b^{n}}}}
    3. a n a m = a n + m {\displaystyle a^{n}a^{m}=a^{n+m}}
    4. a n a m = a n − m {\displaystyle \left.{a^{n} \over {a^{m}}}\right.=a^{n-m}}
    5. (a n) m = a n m {\displaystyle \left(a^{n}\right)^{m}=a^{nm}}
    6. запись не обладает свойством ассоциативности (сочетательности), то есть в общем случае левая ассоциативность не равна правой ассоциативности (a n) m ≠ a (n m) {\displaystyle (a^{n})^{m}\neq a^{\left({n^{m}}\right)}} , результат будет зависеть от последовательности действий, например, (2 2) 3 = 4 3 = 64 {\displaystyle (2^{2})^{3}=4^{3}=64} , а 2 (2 3) = 2 8 = 256 {\displaystyle 2^{\left({2^{3}}\right)}=2^{8}=256} . Принято считать запись a n m {\displaystyle a^{n^{m}}} равнозначной a (n m) {\displaystyle a^{\left({n^{m}}\right)}} , а вместо (a n) m {\displaystyle (a^{n})^{m}} можно писать просто a n m {\displaystyle a^{nm}} , пользуясь предыдущим свойством. Впрочем некоторые языки программирования не придерживаются этого соглашения (см. );
    7. возведение в степень не обладает свойством коммутативности (переместительности) : вообще говоря, a b ≠ b a {\displaystyle a^{b}\neq b^{a}} , например, 2 5 = 32 {\displaystyle 2^{5}=32} , но 5 2 = 25 {\displaystyle 5^{2}=25} .

    Вещественная степень

    Пусть a ⩾ 0 , r {\displaystyle a\geqslant 0,r} - вещественные числа, причём r {\displaystyle r} - иррациональное число . Определим значение следующим образом.

    Как известно, любое вещественное число можно приблизить, сверху и снизу, двумя рациональными числами, то есть можно подобрать для r {\displaystyle r} рациональный интервал [ p , q ] {\displaystyle } с любой степенью точности. Тогда общая часть всех соответствующих интервалов [ a p , a q ] {\displaystyle } состоит из одной точки, которая и принимается за a r {\displaystyle a^{r}} .

    Другой подход основан на теории рядов и логарифмов (см. ).

    Потенцирование

    a b = (r e θ i) b = (e Ln ⁡ (r) + θ i) b = e (Ln ⁡ (r) + θ i) b . {\displaystyle a^{b}=(re^{{\theta }i})^{b}=(e^{\operatorname {Ln} (r)+{\theta }i})^{b}=e^{(\operatorname {Ln} (r)+{\theta }i)b}.}

    Следует иметь в виду, что комплексный логарифм - многозначная функция, так что, вообще говоря, комплексная степень определена неоднозначно.

    Ноль в степени ноль

    Выражение 0 0 {\displaystyle 0^{0}} (ноль в нулевой степени) многие учебники считают неопределённым и лишённым смысла. Некоторые авторы предлагают принять соглашение о том, что это выражение равно 1. В частности, тогда разложение в ряд экспоненты:

    e x = 1 + ∑ n = 1 ∞ x n n ! {\displaystyle e^{x}=1+\sum _{n=1}^{\infty }{x^{n} \over n!}}

    можно записать короче:

    e x = ∑ n = 0 ∞ x n n ! . {\displaystyle e^{x}=\sum _{n=0}^{\infty }{x^{n} \over n!}.}

    В любом случае соглашение 0 0 = 1 {\displaystyle 0^{0}=1} чисто символическое, и оно не может использоваться ни в алгебраических, ни в аналитических преобразованиях из-за разрывности функции в этой точке.

    Степень как функция

    Поскольку в выражении используются два символа ( x {\displaystyle x} и y {\displaystyle y} ), то его можно рассматривать как одну из трёх функций:

    Полезные формулы

    x y = a y log a ⁡ x {\displaystyle x^{y}=a^{y\log _{a}x}} x y = e y ln ⁡ x {\displaystyle x^{y}=e^{y\ln x}} x y = 10 y lg ⁡ x {\displaystyle x^{y}=10^{y\lg x}}

    Последние две формулы используют для возведения положительных чисел в произвольную степень на электронных калькуляторах (включая компьютерные программы), не имеющих встроенной функции x y {\displaystyle x^{y}} , и для приближенного возведения в нецелую степень или для целочисленного возведения в степень, когда числа слишком велики для того, чтобы записать результат полностью.

    Употребление в устной речи

    Запись a n {\displaystyle a^{n}} обычно читается как «a в n {\displaystyle n} -ой степени» или «a в степени n ». Например, 10 4 {\displaystyle 10^{4}} читается как «десять в четвёртой степени», 10 3 / 2 {\displaystyle 10^{3/2}} читается как «десять в степени три вторых (или: полтора)».

    Для второй и третьей степени существуют специальные названия: возведение в квадрат и в куб соответственно. Так, например, 10 2 {\displaystyle 10^{2}} читается как «десять в квадрате», 10 3 {\displaystyle 10^{3}} читается как «десять в кубе». Такая терминология возникла из древнегреческой математики . Древние греки формулировали алгебраические конструкции на языке геометрической алгебры (англ.) русск. . В частности, вместо употребления слова «умножение» они говорили о площади прямоугольника или об объёме параллелепипеда : вместо a 2 {\displaystyle a^{2}} , a 3 {\displaystyle \ a^{3}} древние греки говорили «квадрат на отрезке a », «куб на a ». По этой причине четвёртую степень и выше древние греки избегали .

    Урок 19

    ЛОГАРИФМИРОВАНИЕ И ПОТЕНЦИРОВАНИЕ ВЫРАЖЕНИЙ

    Цели :

    дидактическая :

      повторение, систематизация и обобщение знаний;

      закрепление умений решать практические задачи по теме;

    воспитательная :

      воспитывать самостоятельность формирования умозаключений; воспитывать общие компетенции - работать в коллективе и в команде;

    развивающая :

      развитие логического мышления алгоритмической культуры;

      развитие умения доказывать свои умозаключения, анализировать ответы друг друга;

      продолжить формировать умение правильно воспринимать и активно запоминать новую информацию.

    Тип урока : комбинированный урок

    Методическое обеспечение : учебники, план-конспект урока, карточки.

    Ход урока:

    1. Организационный момент

    Перед началом урока преподаватель проводит проверку подготовленности кабинета к занятию.

    Приветствие обучающихся, определение отсутствующих, заполнение группового журнала. Сообщается тема и цель урока.

    2. Повторение ранее изученного материала

    3. Изучение нового материала

    ПОВТОРЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

    1. Проверка домашнего задания, работа у доски над затруднительными моментами.

    2. Дайте определение понятию логарифм.

    Логарифм числа b по основанию а – это показатель степени, в которую нужно возвести число а, чтобы получить число b.

    3. Приведите пример записи логарифма. Что означает эта запись?

    3. Для того, чтобы проверить уровень усвоения материала, предлагается решить некоторые задания. На доске таблица, которую необходимо заполнить, указав решение примера и номер свойства из ранее записанного конспекта урока.

    Пример

    Решение. Ответ

    Номер свойства

    5, 1

    ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

    Логарифмирование – это нахождение логарифмов заданных чисел или выражений.

    Пример : Найдем логарифм

    Решение .

    Последовательно воспользуемся сразу всеми тремя основными свойствами логарифмов, которые изложены выше (логарифм произведения, логарифм частного и логарифм степени):

    Логарифмирование – это преобразование, при котором логарифм выражения с переменными приводится к сумме или разности логарифмов переменных.

    Необходимо четко различать сумму логарифмов lga + lgb и логарифм суммы lg ( a + b ) . Сумма логарифмов равна логарифму произведения, а для логарифма суммы формулы нет.

    Пример . Дано, где a >0, b >0, c >0. Найти lg x .

    Решение . Логарифмируя, получим:

    Потенцирование – это преобразование, обратное логарифмированию.

    Потенцировать – значит освобождаться от знаков логарифмов в процессе решения логарифмического выражения.

    При решении уравнений потенцированием выражения преобразовывают с помощью свойств логарифмов, приводя их к виду

    либо к виду

    Например , надо решить уравнение log 2 3x = log 2 9.

    Убираем знаки логарифмов – то есть потенцируем:

    3х = 9.

    В результате получаем простое уравнение, которое решается за несколько секунд:

    х = 9: 3 = 3.

    Но потенцирование не сводится к простому и произвольному убиранию значков логарифмов. Для этого в обоих частях уравнения как минимум должно быть одинаковое значение основания (в нашем случае это основание 2).

    Потенциирование применяется при решении логарифмических уравнений, с которыми мы познакомимся на следующем занятии.

    ПРАКТИЧЕСКИЕ ЗАДАНИЯ

      Группа разбивается на подгруппы по два-три человека. Каждая подгруппа составляет один пример для логарифмирования, передает его соседней подгруппе для решения. После чего подгруппы решают пример и передают его следующей подгруппе для решения. В итоге каждая подгруппа должна выставить оценку своим одногруппникам, решившим составленное выражение.

    ДОМАШНЯЯ РАБОТА

      Прологорифмируйте выражение по основанию 10 при условии, что все переменные положительные:

      Выполните потенцирование выражения:

    Цель :научиться преобразовывать алгебраические выражения с помощью логарифмирования и потенцирования.

    Место проведения : учебная аудитория, ОБОУ СПО «Курский электромеханический техникум».

    Средства обучения :

    Виды самостоятельной работы :

    Логарифмирование алгебраического выражения с целью выражения данного логарифма через другие логарифмы по тому же самому основанию;

    Логарифмирование выражения по данному основанию;

    Нахождение числа по данному его логарифму;

    Решение уравнения.

    Краткая теоретическая справка

    Если некоторое выражение A составлено из положительных чисел x , y , z c помощью операций умножения, деления и возведения в степень, то, используя свойства логарифмов, можно выразить через логарифмы чисел x , y , z . Такое преобразование называют логарифмированием .

    Пример 1. Известно, что положительные числа x , y , z, t а чисел y , z, t .

    Решение: 1) Логарифм дроби равен разности логарифмов числителя и знаменателя:

    2) Логарифм произведения равен сумме логарифмов множителей: .

    3) Логарифм степени равен произведению показателя степени на логарифм основания степени: ; .

    4) В итоге получаем:

    Преобразование, заключающееся в нахождении выражения, логарифм которого представлен через логарифмы некоторых чисел, называют потенцированием .

    При выполнении данного преобразования используется следующее утверждение.

    Теорема . Равенство, где справедливо тогда и только тогда, когда.

    Пример 2. Известно, что. Выразить x через y , z, t .

    Решение: Согласно свойству логарифма степени имеем:

    Итак, и, следовательно, .

    Практические задания для аудиторной работы

    x , a ,b и с связаны соотношением. Выразить через логарифмы по основанию n чисел a, b, с .

    2. Прологарифмируйте по основанию 3:

    3. Найдите число х по данному его логарифму:

    4. Решите уравнение:

    Практические задания для самостоятельной работы

    Вариант 1

    1. Известно, что положительные числа y , a ,b связаны соотношением. Выразить через логарифмы по основанию c чисел a и b .

    3. Найдите число х по данному его логарифму:

    4. Решите уравнение:

    Вариант 2

    1. Известно, что положительные числа x , a ,b и с связаны соотношением. Выразить через логарифмы по основанию n чисел a, b, с .

    3. Найдите число х по данному его логарифму:

    4. Решите уравнение:

    Вариант 3

    1. Известно, что положительные числа y , a ,b связаны соотношением. Выразить через логарифмы по основанию с чисел a и b .

    2. Прологарифмируйте по основанию 2:

    3. Найдите число х по данному его логарифму:

    4. Решите уравнение:

    Вариант 4

    1. Известно, что положительные числа x , a ,b и с связаны соотношением. Выразить через логарифмы по основанию n чисел a, b, с .

    2. Прологарифмируйте по основанию 5:

    3. Найдите число х по данному его логарифму:

    4. Решите уравнение:

    Требования к отчёту:

    1. После выполнения работы студент обязан продемонстрировать преподавателю выполненные задания.

    2. Предоставить отчёт о выполненной работе, содержащей:

    Порядковый номер и наименование практической работы;

    Цель практической работы;

    Ход выполнения работы;

    Ответы на контрольные вопросы;

    Вывод о выполненном задании.

    Контрольные вопросы

    1. Что называют логарифмом числа?

    2. Что называют логарифмированием выражения?

    3. Какое преобразование называют потенцированием?

    4. Какое утверждение используется при потенцировании?

    5. Как можно преобразовать сумму двух логарифмов по одному и тому же основанию?

    Сделайте вывод о том, какие математические навыки вы приобрели на этом занятии.

    Конец работы -

    Эта тема принадлежит разделу:

    Пояснительная записка перечень практических работ практические работы действия с рациональными числами

    Практическая работа действия с рациональными числами место проведения учебная аудитория.. практическая работа решение рациональных.. практическая работа решение рациональных уравнений неравенств систем уравнений и..

    Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

    Что будем делать с полученным материалом:

    Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

    Все темы данного раздела:

    Пояснительная записка
    Учебная дисциплина «Математика» является естественнонаучной дисциплиной, обеспечивающей общеобразовательный уровень подготовки специалиста. Методические рекомендации по проведению

    Перечень практических работ
    № п/п Наименование практической работы (тема) Количество аудиторных работ

    Действия с рациональными числами
    Цель:повторить решение арифметических примеров на все действия с рациональными числами. Место проведения: учебная аудитория, ОБОУ СПО «Курский электромеханический техникум».

    Решение рациональных уравнений, неравенств, систем уравнений и неравенств первой степени

    Решение рациональных уравнений, неравенств, систем уравнений и неравенств второй степени
    Цель:обобщить и закрепить ранее пройденный материал по решению рациональных уравнений, неравенств и их систем. Место проведения: учебная аудитория, ОБОУ СПО «Курский электром

    Практические приёмы приближённых вычислений
    Цель:научиться вычислять абсолютные и относительные погрешности приближений, находить границы погрешностей; выполнять действия над приближенными числами с учетом и без учета границ погрешнос

    Преобразование и вычисление числовых значений алгебраических выражений, содержащих степени с рациональными показателями
    Цель:научиться применять свойства степени для преобразования степенных выражений. Место проведения: учебная аудитория, ОБОУ СПО «Курский электромеханический техникум».

    Преобразование и вычисление числовых значений алгебраических
    выражений, содержащих корни n-ой степени () Цель:научиться выполнять преобразования и находить значения выражений, содержащих корни n-й степени.

    Преобразование и вычисление числовых значений алгебраических выражений, содержащих степени и корни
    Цель:научиться применять свойства степени и корня для преобразования алгебраических выражений. Место проведения: учебная аудитория, ОБОУ СПО «Курский электромеханический техн

    Вычисление логарифма числа
    Цель:научиться находить логарифм числа, применять свойства логарифмов для преобразования алгебраических выражений. Место проведения: учебная аудитория, ОБОУ СПО «Курский элек

    С произвольным основанием
    Цель:научиться вычислять логарифмы чисел с произвольным основанием через десятичные и натуральные логарифмы с помощью специальных таблиц логарифмов или микрокалькуляторов. Место

    Уравнения
    Цель:научиться выполнять преобразования показательных и логарифмических выражений, решать простейшие показательные и логарифмические уравнения. Место проведения: учебная ауди

    Единичной числовой окружности
    Цель:научиться решать простейшие тригонометрические уравнения с помощью единичной числовой окружности. Место проведения: учебная аудитория, ОБОУ СПО «Курский электромеханичес

    Практические приёмы вычисления значений синуса, косинуса и тангенса произвольного числового аргумента
    Цель:приобрести практические навыки вычисления значений синуса, косинуса, тангенса и котангенса произвольного числового аргумента с помощью четырехзначных математических таблиц В.М. Брадиса

    С использованием основных тригонометрических тождеств
    Цель:научиться выполнять преобразования тригонометрических выражений с применением основных тригонометрических тождеств. Место проведения: учебная аудитория, ОБОУ СПО «Курски

    Формул сложения и формул двойного аргумента
    Цель:научиться выполнять преобразования тригонометрических выражений с применением формул сложения и формул двойного аргумента. Место проведения: учебная аудитория, ОБОУ СПО

    Основные методы решения тригонометрических уравнений
    Цель:научиться решать простейшие тригонометрические уравнения, тригонометрические уравнения путем введения новой переменной и разложения на множители, однородные тригонометрические уравнения

    Нахождение области определения функции. Вычисление значения функции в заданной точке. Построение графиков функций
    Цель:научиться находить область определения функций, заданных аналитически; вычислять значения функций и выполнять построения графиков функций. Место проведения: учебная ауди

    Степенные функции, их свойства и графики
    Цель:научиться строить графики степенных функций, описывать их свойства, решать уравнения и неравенства функционально-графическим методом. Место проведения: учебная аудитория

    Показательные функции, их свойства и графики
    Цель:научиться строить графики показательных функций, описывать их свойства; решать показательные уравнения и неравенства функционально-графическим методом. Место проведения:

    Логарифмические функции, их свойства и графики
    Цель:научиться строить графики логарифмических функций, описывать их свойства, решать показательные уравнения функционально-графическим методом. Место проведения: учебная ауд

    Их свойства и графики
    Цель: научиться строить графики тригонометрических функций y=sin x и y= cos x, описывать их свойства, решать уравнения функционально-графическим методом. Место пров

    Тригонометрические функции y=tgx, y=ctgx, их свойства и графики
    Цель: научиться строить графики тригонометрических функций y=tg x и y= ctg x, описывать их свойства, решать уравнения функционально-графическим методом. Место прове

    Систем уравнений
    Цель: научиться решать иррациональные уравнения и неравенства, системы иррациональных уравнений. Место проведения: учебная аудитория, ОБОУ СПО «Курский электромеханический те

    Основные приёмы решения показательных уравнений и неравенств, систем уравнений и неравенств
    Цель: научиться решать показательные уравнения и неравенства, системы уравнений и неравенств. Место проведения: учебная аудитория, ОБОУ СПО «Курский электромеханический техни

    Основные приёмы решения логарифмических уравнений и неравенств, систем уравнений и неравенств
    Цель: научиться решать логарифмические уравнения и неравенства, системы уравнений и неравенств. Место проведения: учебная аудитория, ОБОУ СПО «Курский электромеханический тех

    Неравенств, систем уравнений
    Цель: научиться решать тригонометрические уравнения и неравенства, системы уравнений. Место проведения: учебная аудитория, ОБОУ СПО «Курский электромеханический техникум».

    Решение неравенств методом интервалов
    Цель: научиться решать неравенства методом интервалов. Место проведения: учебная аудитория, ОБОУ СПО «Курский электромеханический техникум». Средства обуч

    Геометрическая интерпретация множества решений
    Цель: научиться решать уравнения, неравенства, их системы с двумя переменными, геометрически изображать их решение. Место проведения: учебная аудитория, ОБОУ СПО «Курский эле

    Решение задач прикладного характера, сводящихся к составлению уравнений, неравенств и их систем
    Цель: научиться решать задачи, сводящиеся к составлению уравнений, неравенств и их систем. Место проведения: учебная аудитория, ОБОУ СПО «Курский электромеханический техникум

    Критерии оценок практических работ
    Отметка Качество выполнения практических заданий Задания выполнены полностью и правильно: правильно выбран способ решени

    Перечень литературы
    Основная литература: 1. Колягин Ю.М., Луканкин Г.Л., Яковлев Г.Н. Математика: Учебное пособие: В 2 кн. Кн. 1. – М.: «Издательство Новая Волна», 2004. 2. Колягин Ю