Принцип мат индукции. Принцип математической индукции

МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ

Слово индукция по-русски означает наведение, а индуктивными называют выводы, на основе наблюдений, опытов, т.е. полученные путем заключения от частного к общему.

Например, мы каждый день наблюдаем, что Солнце восходит с востока. Поэтому можно быть уверенным, что и завтра оно появится на востоке, а не на западе. Этот вывод мы делаем, не прибегая ни к каким предположениям о причине движения Солнца по небу (более того, само это движение оказывается кажущимся, поскольку на самом деле движется земной шар). И, тем не менее, этот индуктивный вывод правильно описывает те наблюдения, которые мы проведем завтра.

Роль индуктивных выводов в экспериментальных науках очень велика. Они дают те положения, из которых потом путем дедукции делаются дальнейшие умозаключения. И хотя теоретическая механика основывается на трех законах движения Ньютона, сами эти законы явились результатом глубокого продумывания опытных данных, в частности законов Кеплера движения планет, выведенных им при обработке многолетних наблюдений датского астронома Тихо Браге. Наблюдение, индукция оказываются полезными и в дальнейшем для уточнения сделанных предположений. После опытов Майкельсона по измерению скорости света в движущейся среде оказалось необходимым уточнить законы физики, создать теорию относительности.

В математике роль индукции в значительной степени состоит в том, что она лежит в основе выбираемой аксиоматики. После того как длительная практика показала, что прямой путь всегда короче кривого или ломанного, естественно было сформулировать аксиому: для любых трех точек А, В и С выполняется неравенство

Лежащее в основе арифметики понятие следовать за тоже появилось при наблюдениях за строем солдат, кораблей и другими упорядоченными множествами.

Не следует, однако, думать, что этим исчерпывается роль индукции в математике. Разумеется, мы не должны экспериментально проверять теоремы, логически выведенные из аксиом: если при выводе не было сделано логических ошибок, то они постольку верны, поскольку истинны принятые нами аксиомы. Но из данной системы аксиом можно вывести очень много утверждений. И отбор тех утверждений, которые надо доказывать, вновь подсказывается индукцией. Именно она позволяет отделить полезные теоремы от бесполезных, указывает, какие теоремы могут оказаться верными, и даже помогает наметить путь доказательства.


    Суть метода математической индукции

Во многих разделах арифметики, алгебры, геометрии, анализа приходится доказывать истинность предложений А(n), зависящих от натуральной переменной. Доказательство истинности предложения А(n) для всех значений переменной часто удается провести методом математической индукции, который основан на следующем принципе.

Предложение А(n) считается истинным для всех натуральных значений переменной, если выполнены следующие два условия:

    Предложение А(n) истинно для n=1.

    Из предположения, что А(n) истинно для n=k (где k - любое натуральное число), следует, что оно истинно и для следующего значения n=k+1.

Этот принцип называется принципом математической индукции. Обычно он выбирается в качестве одной из аксиом, определяющих натуральный ряд чисел, и, следовательно, принимается без доказательства.

Под методом математической индукции понимают следующий способ доказательства. Если требуется доказать истинность предложения А(n) для всех натуральных n, то, во-первых, следует проверить истинность высказывания А(1) и, во-вторых, предположив истинность высказывания А(k), попытаться доказать, что высказывание А(k+1) истинно. Если это удается доказать, причем доказательство остается справедливым для каждого натурального значения k, то в соответствии с принципом математической индукции предложение А(n) признается истинным для всех значений n.

Метод математической индукции широко применяется при доказательстве теорем, тождеств, неравенств, при решении задач на делимость, при решении некоторых геометрических и многих других задач.


    Метод математической индукции в решении задач на

делимость

С помощью метода математической индукции можно доказывать различные утверждения, касающиеся делимости натуральных чисел.

Следующее утверждение можно сравнительно просто доказать. Покажем, как оно получается с помощью метода математической индукции.

Пример 1 . Если n - натуральное число, то число четное.

При n=1 наше утверждение истинно: - четное число. Предположим, что - четное число. Так как , a 2k - четное число, то и четное. Итак, четность доказана при n=1, из четности выведена четность .Значит, четно при всех натуральных значениях n.

Пример 2. Доказать истинность предложения

A(n)={число 5 кратно 19}, n - натуральное число.

Решение.

Высказывание А(1)={число кратно 19} истинно.

Предположим, что для некоторого значения n=k

А(k)={число кратно 19} истинно. Тогда, так как

Очевидно, что и A(k+1) истинно. Действительно, первое слагаемое делится на 19 в силу предположения, что A(k) истинно; второе слагаемое тоже делится на 19, потому что содержит множитель 19. Оба условия принципа математической индукции выполнены, следовательно, предложение A(n) истинно при всех значениях n.


    Применение метода математической индукции к

суммированию рядов

Пример 1. Доказать формулу

, n - натуральное число.

Решение.

При n=1 обе части равенства обращаются в единицу и, следовательно, первое условие принципа математической индукции выполнено.

Предположим, что формула верна при n=k, т.е.

.

Прибавим к обеим частям этого равенства и преобразуем правую часть. Тогда получим


Таким образом, из того, что формула верна при n=k, следует, что она верна и при n=k+1. Это утверждение справедливо при любом натуральном значении k. Итак, второе условие принципа математической индукции тоже выполнено. Формула доказана.

Пример 2. Доказать, что сумма n первых чисел натурального ряда равна .

Решение.

Обозначим искомую сумму , т.е. .

При n=1 гипотеза верна.

Пусть . Покажем, что .

В самом деле,

Задача решена.

Пример 3. Доказать, что сумма квадратов n первых чисел натурального ряда равна .

Решение.

Пусть .

.

Предположим, что . Тогда

И окончательно .

Пример 4. Доказать, что .

Решение.

Если , то

Пример 5. Доказать, что

Решение.

При n=1 гипотеза очевидно верна.

Пусть .

Докажем, что .

Действительно,

    Примеры применения метода математической индукции к

доказательству неравенств

Пример 1. Доказать, что при любом натуральном n>1

.

Решение.

Обозначим левую часть неравенства через .

Следовательно, при n=2 неравенство справедливо.

Пусть при некотором k. Докажем, что тогда и . Имеем , .

Сравнивая и , имеем , т.е. .

При любом натуральном k правая часть последнего равенства положительна. Поэтому . Но , значит, и .

Пример 2. Найти ошибку в рассуждении.

Утверждение. При любом натуральном n справедливо неравенство .

Доказательство.

. (1)

Докажем, что тогда неравенство справедливо и при n=k+1, т.е.

.

Действительно, не меньше 2 при любом натуральном k. Прибавим к левой части неравенства (1) , а к правой 2. Получим справедливое неравенство , или . Утверждение доказано.

Пример 3. Доказать, что , где >-1, , n - натуральное число, большее 1.

Решение.

При n=2 неравенство справедливо, так как .

Пусть неравенство справедливо при n=k, где k - некоторое натуральное число, т.е.

. (1)

Покажем, что тогда неравенство справедливо и при n=k+1, т.е.

. (2)

Действительно, по условию, , поэтому справедливо неравенство

, (3)

полученное из неравенства (1) умножением каждой части его на . Перепишем неравенство (3) так: . Отбросив в правой части последнего неравенства положительное слагаемое , получим справедливое неравенство (2).

Пример 4. Доказать, что

(1)

где , , n - натуральное число, большее 1.

Решение.

При n=2 неравенство (1) принимает вид


. (2)

Так как , то справедливо неравенство

. (3)

Прибавив к каждой части неравенства (3) по , получим неравенство (2).

Этим доказано, что при n=2 неравенство (1) справедливо.

Пусть неравенство (1) справедливо при n=k, где k - некоторое натуральное число, т.е.

. (4)

Докажем, что тогда неравенство (1) должно быть справедливо и при n=k+1, т.е.

(5)

Умножим обе части неравенства (4) на a+b. Так как, по условию, , то получаем следующее справедливое неравенство:

. (6)

Для того чтобы доказать справедливость неравенства (5), достаточно показать, что

, (7)

или, что то же самое,

. (8)

Неравенство (8) равносильно неравенству

. (9)

Если , то , и в левой части неравенства (9) имеем произведение двух положительных чисел. Если , то , и в левой части неравенства (9) имеем произведение двух отрицательных чисел. В обоих случаях неравенство (9) справедливо.

Этим доказано, что из справедливости неравенства (1) при n=k следует его справедливость при n=k+1.

    Метод математической индукции в применение к другим

задачам

Наиболее естественное применение метода математической индукции в геометрии, близкое к использованию этого метода в теории чисел и в алгебре, - это применение к решению геометрических задач на вычисление. Рассмотрим несколько примеров.

Пример 1. Вычислить сторону правильного - угольника, вписанного в круг радиуса R.

Решение.

При n=2 правильный 2 n - угольник есть квадрат; его сторона . Далее, согласно формуле удвоения


находим, что сторона правильного восьмиугольника , сторона правильного шестнадцатиугольника , сторона правильного тридцатидвухугольника . Можно предположить поэтому, что сторона правильного вписанного 2 n - угольника при любом равна

. (1)

Допустим, что сторона правильного вписанного - угольника выражается формулой (1). В таком случае по формуле удвоения


,

откуда следует, что формула (1) справедлива при всех n.

Пример 2. На сколько треугольников n-угольник (не обязательно выпуклый) может быть разбит своими непересекающимися диагоналями?

Решение.

Для треугольника это число равно единице (в треугольнике нельзя провести ни одной диагонали); для четырехугольника это число равно, очевидно, двум.

Предположим, что мы уже знаем, что каждый k-угольник, где k 1 А 2 …А n на треугольники.

А n

А 1 А 2

Пусть А 1 А k - одна из диагоналей этого разбиения; она делит n-угольник А 1 А 2 …А n на k-угольник A 1 A 2 …A k и (n-k+2)-угольник А 1 А k A k+1 …A n . В силу сделанного предположения, общее число треугольников разбиения будет равно

(k-2)+[(n-k+2)-2]=n-2;

тем самым наше утверждение доказано для всех n.

Пример 3. Указать правило вычисления числа P(n) способов, которыми выпуклый n-угольник может быть разбит на треугольники непересекающимися диагоналями.

Решение.

Для треугольника это число равно, очевидно, единице: P(3)=1.

Предположим, что мы уже определили числа P(k) для всех k 1 А 2 …А n . При всяком разбиении его на треугольники сторона А 1 А 2 будет стороной одного из треугольников разбиения, третья вершина этого треугольника может совпасть с каждой из точек А 3 , А 4 , …,А n . Число способов разбиения n-угольника, при которых эта вершина совпадает с точкой А 3 , равно числу способов разбиения на треугольники (n-1)-угольника А 1 А 3 А 4 …А n , т.е. равно P(n-1). Число способов разбиения, при которых эта вершина совпадает с А 4 , равно числу способов разбиения (n-2)-угольника А 1 А 4 А 5 …А n , т.е. равно P(n-2)=P(n-2)P(3); число способов разбиения, при которых она совпадает с А 5 , равно P(n-3)P(4), так как каждое из разбиений (n-3)-угольника А 1 А 5 …А n можно комбинировать при этом с каждым из разбиений четырехугольника А 2 А 3 А 4 А 5 , и т.д. Таким образом, мы приходим к следующему соотношению:

Р(n)=P(n-1)+P(n-2)P(3)+P(n-3)P(4)+…+P(3)P(n-2)+P(n-1).

С помощью этой формулы последовательно получаем:

P(4)=P(3)+P(3)=2,

P(5)=P(4)+P(3)P(3)+P(4)+5,

P(6)=P(5)+P(4)P(3)+P(3)P(4)+P(5)=14

и т.д.

Так же при помощи метода математической индукции можно решать задачи с графами.

Пусть на плоскости задана сеть линий, соединяющих между собой какие-то точки и не имеющие других точек. Такую сеть линий мы будем называть картой, заданные точки ее вершинами, отрезки кривых между двумя смежными вершинами - границами карты, части плоскости, на которые она разбивается границами - странами карты.

Пусть на плоскости задана некоторая карта. Мы будем говорить, что она правильно раскрашена, если каждая ее страна закрашена определенной краской, причем любые две страны, имеющие между собой общую границу, закрашены в разные цвета.

Пример 4. На плоскости дано n окружностей. Доказать, что при любом расположении этих окружностей образуемую ими карту можно правильно раскрасить двумя красками.

Решение.

При n=1 наше утверждение очевидно.

Предположим, что наше утверждение справедливо для любой карты, образованной n окружностями, и пусть на плоскости задано n+1 окружностей. Удалив одну из этих окружностей, мы получим карту, которую в силу сделанного предположения можно правильно раскрасить двумя красками, например черной и белой.

Метод математической индукции

Вступление

Основная часть

  1. Полная и неполная индукция
  2. Принцип математической индукции
  3. Метод математической индукции
  4. Решение примеров
  5. Равенства
  6. Деление чисел
  7. Неравенства

Заключение

Список использованной литературы

Вступление

В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом – частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному.

Метод математической индукции можно сравнить с прогрессом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно.

Хотя и выросла область применения метода математической индукции, в школьной программе ему отводится мало времени. Ну, скажите, что полезного человеку принесут те два-три урока, за которые он услышит пять слов теории, решит пять примитивных задач, и, в результате получит пятёрку за то, что он ничего не знает.

А ведь это так важно - уметь размышлять индуктивно.

Основная часть

По своему первоначальному смыслу слово “индукция” применяется к рассуждениям, при помощи которых получают общие выводы, опираясь на ряд частных утверждений. Простейшим методом рассуждений такого рода является полная индукция. Вот пример подобного рассуждения.

Пусть требуется установить, что каждое натуральное чётное число n в пределах 4< n < 20 представимо в виде суммы двух простых чисел. Для этого возьмём все такие числа и выпишем соответствующие разложения:

4=2+2; 6=3+3; 8=5+3; 10=7+3; 12=7+5;

14=7+7; 16=11+5; 18=13+5; 20=13+7.

Эти девять равенств показывают, что каждое из интересующих нас чисел действительно представляется в виде суммы двух простых слагаемых.

Таким образом, полная индукция заключается в том, что общее утверждение доказывается по отдельности в каждом из конечного числа возможных случаев.

Иногда общий результат удаётся предугадать после рассмотрения не всех, а достаточно большого числа частных случаев (так называемая неполная индукция).

Результат, полученный неполной индукцией, остается, однако, лишь гипотезой, пока он не доказан точным математическим рассуждением, охватывающим все частные случаи. Иными словами, неполная индукция в математике не считается законным методом строгого доказательства, но является мощным методом открытия новых истин.

Пусть, например, требуется найти сумму первых n последовательных нечётных чисел. Рассмотрим частные случаи:

1+3+5+7+9=25=5 2

После рассмотрения этих нескольких частных случаев напрашивается следующий общий вывод:

1+3+5+…+(2n-1)=n 2

т.е. сумма n первых последовательных нечётных чисел равна n 2

Разумеется, сделанное наблюдение ещё не может служить доказательством справедливости приведённой формулы.

Полная индукция имеет в математике лишь ограниченное применение. Многие интересные математические утверждения охватывают бесконечное число частных случаев, а провести проверку для бесконечного числа случаев мы не в состоянии. Неполная же индукция часто приводит к ошибочным результатам.

Во многих случаях выход из такого рода затруднений заключается в обращении к особому методу рассуждений, называемому методом математической индукции. Он заключается в следующем.

Пусть нужно доказать справедливость некоторого утверждения для любого натурального числа n (например нужно доказать, что сумма первых n нечётных чисел равна n 2). Непосредственная проверка этого утверждения для каждого значения n невозможна, поскольку множество натуральных чисел бесконечно. Чтобы доказать это утверждение, проверяют сначала его справедливость для n=1. Затем доказывают, что при любом натуральном значении k из справедливости рассматриваемого утверждения при n=k вытекает его справедливость и при n=k+1.

Тогда утверждение считается доказанным для всех n. В самом деле, утверждение справедливо при n=1. Но тогда оно справедливо и для следующего числа n=1+1=2. Из справедливости утверждения для n=2 вытекает его справедливость для n=2+

1=3. Отсюда следует справедливость утверждения для n=4 и т.д. Ясно, что, в конце концов, мы дойдём до любого натурального числа n. Значит, утверждение верно для любого n.

Обобщая сказанное, сформулируем следующий общий принцип.

Принцип математической индукции.

Если предложение А(n), зависящее от натурального числа n, истинно для n=1 и из того, что оно истинно для n=k (где k-любое натуральное число), следует, что оно истинно и для следующего числа n=k+1, то предположение А(n) истинно для любого натурального числа n.

В ряде случаев бывает нужно доказать справедливость некоторого утверждения не для всех натуральных чисел, а лишь для n>p, где p-фиксированное натуральное число. В этом случае принцип математической индукции формулируется следующим образом.

Если предложение А(n) истинно при n=p и если А(k)ÞА(k+1) для любого k>p, то предложение А(n) истинно для любого n>p.

Доказательство по методу математической индукции проводиться следующим образом. Сначала доказываемое утверждение проверяется для n=1, т.е. устанавливается истинность высказывания А(1). Эту часть доказательства называют базисом индукции. Затем следует часть доказательства, называемая индукционным шагом. В этой части доказывают справедливость утверждения для n=k+1 в предположении справедливости утверждения для n=k (предположение индукции), т.е. доказывают, что А(k)ÞA(k+1).

Доказать, что 1+3+5+…+(2n-1)=n 2 .

Решение: 1) Имеем n=1=1 2 . Следовательно,

утверждение верно при n=1, т.е. А(1) истинно.

2) Докажем, что А(k)ÞA(k+1).

Пусть k-любое натуральное число и пусть утверж-дение справедливо для n=k, т.е.

1+3+5+…+(2k-1)=k 2 .

Докажем, что тогда утверждение справедливо и для следующего натурального числа n=k+1, т.е. что

1+3+5+…+(2k+1)=(k+1) 2 .

В самом деле,

1+3+5+…+(2k-1)+(2k+1)=k 2 +2k+1=(k+1) 2 .

Итак, А(k)ÞА(k+1). На основании принципа математической индукции заключаем, что предпо-ложение А(n) истинно для любого nÎN.

Доказать, что

1+х+х 2 +х 3 +…+х n =(х n+1 -1)/(х-1), где х¹1

Решение: 1) При n=1 получаем

1+х=(х 2 -1)/(х-1)=(х-1)(х+1)/(х-1)=х+1

следовательно, при n=1 формула верна; А(1) ис-тинно.

2) Пусть k-любое натуральное число и пусть формула верна при n=k, т.е.

1+х+х 2 +х 3 +…+х k =(х k+1 -1)/(х-1).

Докажем, что тогда выполняется равенство

1+х+х 2 +х 3 +…+х k +x k+1 =(x k+2 -1)/(х-1).

В самом деле

1+х+х 2 +x 3 +…+х k +x k+1 =(1+x+x 2 +x 3 +…+x k)+x k+1 =

=(x k+1 -1)/(x-1)+x k+1 =(x k+2 -1)/(x-1).

Итак, А(k)ÞA(k+1). На основании принципа математической индукции заключаем, что форму-ла верна для любого натурального числа n.

Доказать, что число диагоналей выпуклого n-угольника равно n(n-3)/2.

Решение: 1) При n=3 утверждение спра-

А 3 ведливо, ибо в треугольнике

 А 3 =3(3-3)/2=0 диагоналей;

А 2 А(3) истинно.

2) Предположим, что во всяком

выпуклом k-угольнике имеет-

А 1 ся А k =k(k-3)/2 диагоналей.

А k Докажем, что тогда в выпуклом

(k+1)-угольнике число

диагоналей А k+1 =(k+1)(k-2)/2.

Пусть А 1 А 2 А 3 …A k A k+1 -выпуклый (k+1)-уголь-ник. Проведём в нём диагональ A 1 A k . Чтобы под-считать общее число диагоналей этого (k+1)-уголь-ника нужно подсчитать число диагоналей в k-угольнике A 1 A 2 …A k , прибавить к полученному числу k-2, т.е. число диагоналей (k+1)-угольника, исходящих из вершины А k+1 , и, кроме того, следует учесть диагональ А 1 А k .

Таким образом,

 k+1 = k +(k-2)+1=k(k-3)/2+k-1=(k+1)(k-2)/2.

Итак, А(k)ÞA(k+1). Вследствие принципа математической индукции утверждение верно для любого выпуклого n-угольника.

Доказать, что при любом n справедливо утвер-ждение:

1 2 +2 2 +3 2 +…+n 2 =n(n+1)(2n+1)/6.

Решение: 1) Пусть n=1, тогда

Х 1 =1 2 =1(1+1)(2+1)/6=1.

Значит, при n=1 утверждение верно.

2) Предположим, что n=k

Х k =k 2 =k(k+1)(2k+1)/6.

3) Рассмотрим данное утвержде-ние при n=k+1

X k+1 =(k+1)(k+2)(2k+3)/6.

X k+1 =1 2 +2 2 +3 2 +…+k 2 +(k+1) 2 =k(k+1)(2k+1)/6+ +(k+1) 2 =(k(k+1)(2k+1)+6(k+1) 2)/6=(k+1)(k(2k+1)+

6(k+1))/6=(k+1)(2k 2 +7k+6)/6=(k+1)(2(k+3/2)(k+

2))/6=(k+1)(k+2)(2k+3)/6.

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математиче-ской индукции, утверждение верно для любого на-турального n.

Доказать, что для любого натурального n спра-ведливо равенство:

1 3 +2 3 +3 3 +…+n 3 =n 2 (n+1) 2 /4.

Решение: 1) Пусть n=1.

Тогда Х 1 =1 3 =1 2 (1+1) 2 /4=1.

Мы видим, что при n=1 утверждение верно.

2) Предположим, что равенство верно при n=k

X k =k 2 (k+1) 2 /4.

3) Докажем истинность этого ут-верждения для n=k+1, т.е.

Х k+1 =(k+1) 2 (k+2) 2 /4. X k+1 =1 3 +2 3 +…+k 3 +(k+1) 3 =k 2 (k+1) 2 /4+(k+1) 3 =(k 2 (k++1) 2 +4(k+1) 3)/4=(k+1) 2 (k 2 +4k+4)/4=(k+1) 2 (k+2) 2 /4.

Из приведённого доказательства видно, что ут-верждение верно при n=k+1, следовательно, равен-ство верно при любом натуральном n.

Доказать, что

((2 3 +1)/(2 3 -1))´((3 3 +1)/(3 3 -1))´…´((n 3 +1)/(n 3 -1))=3n(n+1)/2(n 2 +n+1), где n>2.

Решение: 1) При n=2 тождество выглядит: (2 3 +1)/(2 3 -1)=(3´2´3)/2(2 2 +2+1),

т.е. оно верно.

2) Предположим, что выражение верно при n=k

(2 3 +1)/(2 3 -1)´…´(k 3 +1)/(k 3 -1)=3k(k+1)/2(k 2 +k+1).

3) Докажем верность выражения при n=k+1.

(((2 3 +1)/(2 3 -1))´…´((k 3 +1)/(k 3 -1)))´(((k+1) 3 +

1)/((k+1) 3 -1))=(3k(k+1)/2(k 2 +k+1))´((k+2)((k+

1) 2 -(k+1)+1)/k((k+1) 2 +(k+1)+1))=3(k+1)(k+2)/2´

´((k+1) 2 +(k+1)+1).

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математиче-ской индукции, утверждение верно для любого n>2

Доказать, что

1 3 -2 3 +3 3 -4 3 +…+(2n-1) 3 -(2n) 3 =-n 2 (4n+3)

для любого натурального n.

Решение: 1) Пусть n=1, тогда

1 3 -2 3 =-1 3 (4+3); -7=-7.

2) Предположим, что n=k, тогда

1 3 -2 3 +3 3 -4 3 +…+(2k-1) 3 -(2k) 3 =-k 2 (4k+3).

3) Докажем истинность этого ут-верждения при n=k+1

(1 3 -2 3 +…+(2k-1) 3 -(2k) 3)+(2k+1) 3 -(2k+2) 3 =-k 2 (4k+3)+

+(2k+1) 3 -(2k+2) 3 =-(k+1) 3 (4(k+1)+3).

Доказана и справедливость равенства при n=k+1, следовательно утверждение верно для лю-бого натурального n.

Доказать верность тождества

(1 2 /1´3)+(2 2 /3´5)+…+(n 2 /(2n-1)´(2n+1))=n(n+1)/2(2n+1)

для любого натурального n.

1) При n=1 тождество верно 1 2 /1´3=1(1+1)/2(2+1).

2) Предположим, что при n=k

(1 2 /1´3)+…+(k 2 /(2k-1)´(2k+1))=k(k+1)/2(2k+1).

3) Докажем, что тождество верно при n=k+1.

(1 2 /1´3)+…+(k 2 /(2k-1)(2k+1))+(k+1) 2 /(2k+1)(2k+3)=(k(k+1)/2(2k+1))+((k+1) 2 /(2k+1)(2k+3))=((k+1)/(2k+1))´((k/2)+((k+1)/(2k+3)))=(k+1)(k+2)´ (2k+1)/2(2k+1)(2k+3)=(k+1)(k+2)/2(2(k+1)+1).

Из приведённого доказательства видно, что ут-верждение верно при любом натуральном n.

Доказать, что (11 n+2 +12 2n+1) делится на 133 без остатка.

Решение: 1) Пусть n=1, тогда

11 3 +12 3 =(11+12)(11 2 -132+12 2)=23´133.

Но (23´133) делится на 133 без остатка, значит при n=1 утверждение верно; А(1) истинно.

2) Предположим, что (11 k+2 +12 2k+1) делится на 133 без остатка.

3) Докажем, что в таком случае

(11 k+3 +12 2k+3) делится на 133 без остатка. В самом деле 11 k+3 +12 2л+3 =11´11 k+2 +12 2´ 12 2k+1 =11´11 k+2 +

+(11+133)´12 2k+1 =11(11 k+2 +12 2k+1)+133´12 2k+1 .

Полученная сумма делится на 133 без остатка, так как первое её слагаемое делится на 133 без ос-татка по предположению, а во втором одним из множителей выступает 133. Итак, А(k)ÞА(k+1). В силу метода математической индукции утвержде-ние доказано.

Доказать, что при любом n 7 n -1 делится на 6 без остатка.

Решение: 1) Пусть n=1, тогда Х 1 =7 1 -1=6 де-лится на 6 без остатка. Значит при n=1 утвержде-ние верно.

2) Предположим, что при n=k

7 k -1 делится на 6 без остатка.

3) Докажем, что утверждение справедливо для n=k+1.

X k+1 =7 k+1 -1=7´7 k -7+6=7(7 k -1)+6.

Первое слагаемое делится на 6, поскольку 7 k -1 делится на 6 по предположению, а вторым слага-емым является 6. Значит 7 n -1 кратно 6 при любом натуральном n. В силу метода математической ин-дукции утверждение доказано.

Доказать, что 3 3n-1 +2 4n-3 при произвольном на-туральном n делится на 11.
Решение: 1) Пусть n=1, тогда

Х 1 =3 3-1 +2 4-3 =3 2 +2 1 =11 делится на 11 без остат-ка. Значит, при n=1 утверждение верно.

2) Предположим, что при n=k

X k =3 3k-1 +2 4k-3 делится на 11 без остатка.

3) Докажем, что утверждение верно для n=k+1.

X k+1 =3 3(k+1)-1 +2 4(k+1)-3 =3 3k+2 +2 4k+1 =3 3´ 3 3k-1 +2 4´ 2 4k-3 =

27´3 3k-1 +16´2 4k-3 =(16+11)´3 3k-1 +16´2 4k-3 =16´3 3k-1 +

11´3 3k-1 +16´2 4k-3 =16(3 3k-1 +2 4k-3)+11´3 3k-1 .

Первое слагаемое делится на 11 без остатка, поскольку 3 3k-1 +2 4k-3 делится на 11 по предположе-нию, второе делится на 11, потому что одним из его множителей есть число 11. Значит и сумма де-лится на 11 без остатка при любом натуральном n. В силу метода математической индукции утвер-ждение доказано.

Доказать, что 11 2n -1 при произвольном нату-ральном n делится на 6 без остатка.

Решение: 1) Пусть n=1, тогда 11 2 -1=120 делится на 6 без остатка. Значит при n=1 утвержде-ние верно.

2) Предположим, что при n=k

11 2k -1 делится на 6 без остатка.

11 2(k+1) -1=121´11 2k -1=120´11 2k +(11 2k -1).

Оба слагаемых делятся на 6 без остатка: пер-вое содержит кратное 6-ти число 120, а второе де-лится на 6 без остатка по предположению. Значит и сумма делится на 6 без остатка. В силу метода математической индукции утверждение доказано.

Доказать, что 3 3n+3 -26n-27 при произвольном натуральном n делится на 26 2 (676) без остатка.

Решение: Предварительно докажем, что 3 3n+3 -1 делится на 26 без остатка.

  1. При n=0
  2. 3 3 -1=26 делится на 26

  3. Предположим, что при n=k
  4. 3 3k+3 -1 делится на 26

  5. Докажем, что утверждение

верно при n=k+1.

3 3k+6 -1=27´3 3k+3 -1=26´3 3л+3 +(3 3k+3 -1) –делится на 26

Теперь проведём доказательство утвер-ждения, сформулированного в условии задачи.

1) Очевидно, что при n=1 утвер-ждение верно

3 3+3 -26-27=676

2) Предположим, что при n=k

выражение 3 3k+3 -26k-27 делится на 26 2 без остатка.

3) Докажем, что утверждение верно при n=k+1

3 3k+6 -26(k+1)-27=26(3 3k+3 -1)+(3 3k+3 -26k-27).

Оба слагаемых делятся на 26 2 ; первое делится на 26 2 , потому что мы доказали делимость на 26 выражения, стоящего в скобках, а второе делится по предположению индукции. В силу метода мате-матической индукции утверждение доказано.

Доказать, что если n>2 и х>0, то справедливо неравенство

(1+х) n >1+n´х.

Решение: 1) При n=2 неравенство справед-ливо, так как

(1+х) 2 =1+2х+х 2 >1+2х.

Значит, А(2) истинно.

2) Докажем, что А(k)ÞA(k+1), если k> 2. Предположим, что А(k) истинно, т.е., что справедливо неравенство

(1+х) k >1+k´x. (3)

Докажем, что тогда и А(k+1) истинно, т.е., что справедливо неравенство

(1+x) k+1 >1+(k+1)´x.

В самом деле, умножив обе части неравенства (3) на положительное число 1+х, получим

(1+x) k+1 >(1+k´x)(1+x).

Рассмотрим правую часть последнего неравен-

ства; имеем

(1+k´x)(1+x)=1+(k+1)´x+k´x 2 >1+(k+1)´x.

В итоге получаем, что

(1+х) k+1 >1+(k+1)´x.

Итак, А(k)ÞA(k+1). На основании принципа математической индукции можно утверждать, что неравенство Бернулли справедливо для любого

Доказать, что справедливо неравенство

(1+a+a 2) m > 1+m´a+(m(m+1)/2)´a 2 при а> 0.

Решение: 1) При m=1

(1+а+а 2) 1 > 1+а+(2/2)´а 2 обе части равны.

2) Предположим, что при m=k

(1+a+a 2) k >1+k´a+(k(k+1)/2)´a 2

3) Докажем, что при m=k+1 не-равенство верно

(1+a+a 2) k+1 =(1+a+a 2)(1+a+a 2) k >(1+a+a 2)(1+k´a+

+(k(k+1)/2)´a 2)=1+(k+1)´a+((k(k+1)/2)+k+1)´a 2 +

+((k(k+1)/2)+k)´a 3 +(k(k+1)/2)´a 4 > 1+(k+1)´a+

+((k+1)(k+2)/2)´a 2 .

Мы доказали справедливость неравенства при m=k+1, следовательно, в силу метода математиче-ской индукции, неравенство справедливо для лю-бого натурального m.

Доказать, что при n>6 справедливо неравенство

3 n >n´2 n+1 .

Решение: Перепишем неравенство в виде

  1. При n=7 имеем
  2. 3 7 /2 7 =2187/128>14=2´7

    неравенство верно.

  3. Предположим, что при n=k

3) Докажем верность неравен-ства при n=k+1.

3 k+1 /2 k+1 =(3 k /2 k)´(3/2)>2k´(3/2)=3k>2(k+1).

Так как k>7, последнее неравенство очевидно.

В силу метода математической индукции неравен-ство справедливо для любого натурального n.

Доказать, что при n>2 справедливо неравенство

1+(1/2 2)+(1/3 2)+…+(1/n 2)<1,7-(1/n).

Решение: 1) При n=3 неравенство верно

1+(1/2 2)+(1/3 2)=245/180<246/180=1,7-(1/3).

  1. Предположим, что при n=k

1+(1/2 2)+(1/3 2)+…+(1/k 2)=1,7-(1/k).

3) Докажем справедливость не-

равенства при n=k+1

(1+(1/2 2)+…+(1/k 2))+(1/(k+1) 2)<1,7-(1/k)+(1/(k+1) 2).

Докажем, что 1,7-(1/k)+(1/(k+1) 2)<1,7-(1/k+1)Û

Û(1/(k+1) 2)+(1/k+1)<1/kÛ(k+2)/(k+1) 2 <1/kÛ

Ûk(k+2)<(k+1) 2Û k 2 +2k

Последнее очевидно, а поэтому

1+(1/2 2)+(1/3 2)+…+(1/(k+1) 2)<1,7-(1/k+1).

В силу метода математической индукции не-равенство доказано.

Заключение

Вчастности изучив метод математической индукции, я повысил свои знания в этой облас-ти математики, а также научился решать задачи, которые раньше были мне не под силу.

В основном это были логические и занима-тельные задачи, т.е. как раз те, которые повы-шают интерес к самой математике как к науке. Решение таких задач становится заниматель-ным занятием и может привлечь в математиче-ские лабиринты всё новых любознательных. По-моему, это является основой любой науки.

Продолжая изучать метод математической индукции, я постараюсь научиться применять его не только в математике, но и в решении проблем физики, химии и самой жизни.

МАТЕМАТИКА:

ЛЕКЦИИ, ЗАДАЧИ, РЕШЕНИЯ

Учебное пособие / В.Г.Болтянский, Ю.В.Сидоров, М.И.Шабунин. ООО “Попурри” 1996.

АЛГЕБРА И НАЧАЛА АНАЛИЗА

Учебное пособие / И.Т.Демидов,А.Н.Колмогоров, С.И.Шварцбург,О.С.Ивашев-Мусатов, Б.Е.Вейц. “Просвещение” 1975.

Библиографическое описание: Баданин А. С., Сизова М. Ю. Применение метода математической индукции к решению задач на делимость натуральных чисел // Юный ученый. — 2015. — №2. — С. 84-86..02.2019).



В математических олимпиадах часто встречаются достаточно трудные задачи на доказательство делимости натуральных чисел. Перед школьниками возникает проблема: как найти универсальный математический метод, позволяющий решать подобные задачи?

Оказывается, большинство задач на доказательство делимости можно решать методом математической индукции, но в школьных учебниках уделяется очень мало внимания этому методу, чаще всего приводится краткое теоретическое описание и разбирается несколько задач.

Метод математической индукции мы находим в теории чисел. На заре теории чисел математики открыли многие факты индуктивным путем: Л. Эйлер и К. Гаусс рассматривали подчас тысячи примеров, прежде чем подметить числовую закономерность и поверить в нее. Но одновременно они понимали, сколь обманчивыми могут быть гипотезы, прошедшие «конечную» проверку. Для индуктивного перехода от утверждения, проверенного для конечного подмножества, к аналогичному утверждению для всего бесконечного множества необходимо доказательство. Такой способ предложил Блез Паскаль, который нашел общий алгоритм для нахождения признаков делимости любого целого числа на любое другое целое число (трактат «О характере делимости чисел).

Метод математической индукции используется, чтобы доказать путем рассуждений истинность некоего утверждения для всех натуральных чисел или истинность утверждения начиная с некоторого числа n.

Решение задач на доказательство истинности некоторого утверждения методом математической индукции состоит из четырех этапов (рис. 1):

Рис. 1. Схема решения задачи

1. Базис индукции . Проверяют справедливость утверждения для наименьшего из натуральных чисел, при котором утверждение имеет смысл.

2. Индукционное предположение . Предполагаем, что утверждение верно для некоторого значения k.

3. Индукционный переход . Доказываем, что утверждение справедливо для k+1.

4. Вывод . Если такое доказательство удалось довести до конца, то, на основе принципа математической индукции можно утверждать, что утверждение верно для любого натурального числа n.

Рассмотрим применение метода математической индукции к решению задач на доказательство делимости натуральных чисел.

Пример 1 . Доказать, что число 5 кратно 19, где n - натуральное число.

Доказательство:

1) Проверим, что эта формула верна при n = 1: число =19 кратно 19.

2) Пусть эта формула верна для n = k, т. е. число кратно 19.

Кратно 19. Действительно, первое слагаемое делится на 19 в силу предположения (2); второе слагаемое тоже делится на 19, потому что содержит множитель 19.

Пример 2. Доказать, что сумма кубов трех последовательных натуральных чисел делится на 9.

Доказательство:

Докажем утверждение: «Для любого натурального числа n выражение n 3 +(n+1) 3 +(n+2) 3 кратно 9.

1) Проверим, что эта формула верна при n = 1: 1 3 +2 3 +3 3 =1+8+27=36 кратно 9.

2) Пусть эта формула верна для n = k, т. е. k 3 +(k+1) 3 +(k+2) 3 кратно 9.

3) Докажем, что формула верна и для n = k + 1, т. е. (k+1) 3 +(k+2) 3 +(k+3) 3 кратно 9. (k+1) 3 +(k+2) 3 +(k+3) 3 =(k+1) 3 +(k+2) 3 + k 3 + 9k 2 +27 k+ 27=(k 3 +(k+1) 3 +(k+2) 3)+9(k 2 +3k+ 3).

Полученное выражение содержит два слагаемых, каждое из которых делится на 9, таким образом, сумма делится на 9.

4) Оба условия принципа математической индукции выполнены, следовательно, предложение истинно при всех значениях n.

Пример 3. Доказать, что при любом натуральном n число 3 2n+1 +2 n+2 делится на 7.

Доказательство:

1) Проверим, что эта формула верна при n = 1: 3 2*1+1 +2 1+2 = 3 3 +2 3 =35, 35 кратно 7.

2) Пусть эта формула верна для n = k, т. е. 3 2 k +1 +2 k +2 делится на 7.

3) Докажем, что формула верна и для n = k + 1, т. е.

3 2(k +1)+1 +2 (k +1)+2 =3 2 k +1 ·3 2 +2 k +2 ·2 1 =3 2 k +1 ·9+2 k +2 ·2=3 2 k +1 ·9+2 k +2 ·(9–7)=(3 2 k +1 +2 k +2)·9–7·2 k +2 .Т. к. (3 2 k +1 +2 k +2)·9 делится на 7 и 7·2 k +2 делится на 7, то и их разность делится на 7.

4) Оба условия принципа математической индукции выполнены, следовательно, предложение истинно при всех значениях n.

Многие задачи на доказательство в теории делимости натуральных чисел удобно решать с применением метода математической индукции, можно даже сказать, что решение задач данным методом вполне алгоритмизировано, достаточно выполнить 4 основных действия. Но универсальным этот метод назвать нельзя, т. к. присутствуют и недостатки: во-первых, доказывать можно только на множестве натуральных чисел, а во-вторых, доказывать можно только для одной переменной.

Для развития логического мышления, математической культуры этот метод является необходимым инструментом, ведь ещё великий русский математик А. Н. Колмогоров говорил: «Понимание и умение правильно применять принцип математической индукции, является хорошим критерием логической зрелости, которая совершенно необходима математику».

Литература:

1. Виленкин Н. Я. Индукция. Комбинаторика. - М.: Просвещение, 1976. - 48 с.

2. Генкин Л. О математической индукции. - М., 1962. - 36 с.

3. Соломинский И. С. Метод математической индукции. - М.: Наука, 1974. - 63с.

4. Шарыгин И. Ф. Факультативный курс по математике: Решение задач: Учеб.пособие для 10 кл. сред.шк. - М.: Просвещение, 1989. - 252 с.

5. Шень А. Математическая индукция. - М.: МЦНМО,2007.- 32 с.

Применяя метод математической индукции, доказать, что для любого натурального n справедливы следующие равенства:
а) ;
б) .


Решение.

а) При n = 1 равенство справедливо. Предполагая справедливость равенства при n , покажем справедливость его и при n + 1. Действительно,

что и требовалось доказать.

б) При n = 1 справедливость равенства очевидна. Из предположения справедливости его при n следует

Учитывая равенство 1 + 2 + ... + n = n (n + 1)/2, получаем

1 3 + 2 3 + ... + n 3 + (n + 1) 3 = (1 + 2 + ... + n + (n + 1)) 2 ,

т. е. утверждение справедливо и при n + 1.

Пример 1. Доказать следующие равенства

где n О N .

Решение. a) При n = 1 равенство примет вид 1=1, следовательно, P (1) истинно. Предположим, что данное равенство справедливо, то есть, имеет место

. Следует проверить (доказать), что P (n + 1), то есть истинно. Поскольку (используется предположение индукции) получим то есть, P (n + 1) - истинное утверждение.

Таким образом, согласно методу математической индукции, исходное равенство справедливо для любого натурального n .

Замечание 2. Этот пример можно было решить и иначе. Действительно, сумма 1 + 2 + 3 + ... + n есть сумма первых n членов арифметической прогрессии с первым членом a 1 = 1 и разностью d = 1. В силу известной формулы , получим

b) При n = 1 равенство примет вид: 2·1 - 1 = 1 2 или 1=1, то есть, P (1) истинно. Допустим, что имеет место равенство

1 + 3 + 5 + ... + (2n - 1) = n 2 и докажем, что имеет место P (n + 1): 1 + 3 + 5 + ... + (2n - 1) + (2(n + 1) - 1) = (n + 1) 2 или 1 + 3 + 5 + ... + (2n - 1) + (2n + 1) = (n + 1) 2 .

Используя предположение индукции, получим

1 + 3 + 5 + ... + (2n - 1) + (2n + 1) = n 2 + (2n + 1) = (n + 1) 2 .

Таким образом, P (n + 1) истинно и, следовательно, требуемое равенство доказано.

Замечание 3. Этот пример можно решить (аналогично предыдущему) без использования метода математической индукции.

c) При n = 1 равенство истинно: 1=1. Допустим, что истинно равенство

и покажем, что то есть истинность P (n ) влечет истинность P (n + 1). Действительно, и, так как 2 n 2 + 7 n + 6 = (2 n + 3)(n + 2), получим и, следовательно, исходное равенство справедливо для любого натурального n .

d) При n = 1 равенство справедливо: 1=1. Допустим, что имеет место

и докажем, что

Действительно,

e) Утверждение P (1) справедливо: 2=2. Допустим, что равенство

справедливо, и докажем, что оно влечет равенство Действительно,

Следовательно, исходное равенство имеет место для любого натурального n .

f) P (1) справедливо: 1 / 3 = 1 / 3 . Пусть имеет место равенство P (n ):

. Покажем, что последнее равенство влечет следующее:

Действительно, учитывая, что P (n ) имеет место, получим

Таким образом, равенство доказано.

g) При n = 1 имеем a + b = b + a и, следовательно, равенство справедливо.

Пусть формула бинома Ньютона справедлива при n = k , то есть,

Тогда Используя равенство получим

Пример 2. Доказать неравенства

a) неравенство Бернулли: (1 + a ) n ≥ 1 + n a , a > -1, n О N .
b) x 1 + x 2 + ... + x n n , если x 1 x 2 · ... ·x n = 1 и x i > 0, .
c) неравенство Коши относительно среднего арифемтического и среднего геометрического
где x i > 0, , n ≥ 2.
d) sin 2n a + cos 2n a ≤ 1, n О N .
e)
f) 2 n > n 3 , n О N , n ≥ 10.

Решение. a) При n = 1 получаем истинное неравенство

1 + a ≥ 1 + a . Предположим, что имеет место неравенство

(1 + a ) n ≥ 1 + n a (1)
и покажем, что тогда имеет место и (1 + a ) n + 1 ≥ 1 + (n + 1)a .

Действительно, поскольку a > -1 влечет a + 1 > 0, то умножая обе части неравенства (1) на (a + 1), получим

(1 + a ) n (1 + a ) ≥ (1 + n a )(1 + a ) или (1 + a ) n + 1 ≥ 1 + (n + 1)a + n a 2 Поскольку n a 2 ≥ 0, следовательно, (1 + a ) n + 1 ≥ 1 + (n + 1)a + n a 2 ≥ 1 + (n + 1)a .

Таким образом, если P (n ) истинно, то и P (n + 1) истинно, следовательно, согласно принципу математической индукции, неравенство Бернулли справедливо.

b) При n = 1 получим x 1 = 1 и, следовательно, x 1 ≥ 1 то есть P (1) - справедливое утверждение. Предположим, что P (n ) истинно, то есть, если adica, x 1 ,x 2 ,...,x n - n положительных чисел, произведение которых равно единице, x 1 x 2 ·...·x n = 1, и x 1 + x 2 + ... + x n n .

Покажем, что это предложение влечет истинность следующего: если x 1 ,x 2 ,...,x n ,x n +1 - (n + 1) положительных чисел, таких, что x 1 x 2 ·...·x n ·x n +1 = 1, тогда x 1 + x 2 + ... + x n + x n + 1 ≥n + 1.

Рассмотрим следующие два случая:

1) x 1 = x 2 = ... = x n = x n +1 = 1. Тогда сумма этих чисел равна (n + 1), и требуемое неравество выполняется;

2) хотя бы одно число отлично от единицы, пусть, например, больше единицы. Тогда, поскольку x 1 x 2 · ... ·x n ·x n + 1 = 1, существует еще хотя бы одно число, отличное от единицы (точнее, меньше единицы). Пусть x n + 1 > 1 и x n < 1. Рассмотрим n положительных чисел

x 1 ,x 2 ,...,x n -1 ,(x n ·x n +1). Произведение этих чисел равно единице, и, согласно гипотезе, x 1 + x 2 + ... + x n -1 + x n x n + 1 ≥ n . Последнее неравенство переписывается следующим образом: x 1 + x 2 + ... + x n -1 + x n x n +1 + x n + x n +1 ≥ n + x n + x n +1 или x 1 + x 2 + ... + x n -1 + x n + x n +1 ≥ n + x n + x n +1 - x n x n +1 .

Поскольку

(1 - x n )(x n +1 - 1) > 0, то n + x n + x n +1 - x n x n +1 = n + 1 + x n +1 (1 - x n ) - 1 + x n =
= n + 1 + x n +1 (1 - x n ) - (1 - x n ) = n + 1 + (1 - x n )(x n +1 - 1) ≥ n + 1. Следовательно, x 1 + x 2 + ... + x n + x n +1 ≥ n +1, то есть, если P (n ) справедливо, то и P (n + 1) справедливо. Неравенство доказано.

Замечание 4. Знак равенства имеет место тогда и только тогда, когда x 1 = x 2 = ... = x n = 1.

c) Пусть x 1 ,x 2 ,...,x n - произвольные положительные числа. Рассмотрим следующие n положительных чисел:

Поскольку их произведение равно единице: согласно ранее доказанному неравенству b), следует, что откуда

Замечание 5. Равенство выполняется если и только если x 1 = x 2 = ... = x n .

d) P (1) - справедливое утверждение: sin 2 a + cos 2 a = 1. Предположим, что P (n ) - истинное утверждение:

Sin 2n a + cos 2n a ≤ 1 и покажем, что имеет место P (n + 1). Действительно, sin 2(n + 1) a + cos 2(n + 1) a = sin 2n a ·sin 2 a + cos 2n a ·cos 2 a < sin 2n a + cos 2n a ≤ 1 (если sin 2 a ≤ 1, то cos 2 a < 1, и обратно: если cos 2 a ≤ 1, то sin 2 a < 1). Таким образом, для любого n О N sin 2n a + cos 2n ≤ 1 и знак равенства достигается лишь при n = 1.

e) При n = 1 утверждение справедливо: 1 < 3 / 2 .

Допустим, что и докажем, что

Поскольку
учитывая P (n ), получим

f) Учитывая замечание 1 , проверим P (10): 2 10 > 10 3 , 1024 > 1000, следовательно, для n = 10 утверждение справедливо. Предположим, что 2 n > n 3 (n > 10) и докажем P (n + 1), то есть 2 n +1 > (n + 1) 3 .

Поскольку при n > 10 имеем или , следует, что

2n 3 > n 3 + 3n 2 + 3n + 1 или n 3 > 3n 2 + 3n + 1. Учитывая неравенство (2 n > n 3 ), получим 2 n +1 = 2 n ·2 = 2 n + 2 n > n 3 + n 3 > n 3 + 3n 2 + 3n + 1 = (n + 1) 3 .

Таким образом, согласно методу математической индукции, для любого натурального n О N , n ≥ 10 имеем 2 n > n 3 .

Пример 3. Доказать, что для любого n О N

Решение. a) P (1) - истинное утверждение (0 делится на 6). Пусть P (n ) справедливо, то есть n (2n 2 - 3n + 1) = n (n - 1)(2n - 1) делится на 6. Покажем, что тогда имеет место P (n + 1), то есть, (n + 1)n (2n + 1) делится на 6. Действительно, поскольку

и, как n (n - 1)(2 n - 1), так и 6 n 2 делятся на 6, тогда и их сумма n (n + 1)(2 n + 1) делится 6.

Таким образом, P (n + 1) - справедливое утверждение, и, следовательно, n (2n 2 - 3n + 1) делится на 6 для любого n О N .

b) Проверим P (1): 6 0 + 3 2 + 3 0 = 11, следовательно, P (1) - справедливое утверждение. Следует доказать, что если 6 2n -2 + 3 n +1 + 3 n -1 делится на 11 (P (n )), тогда и 6 2n + 3 n +2 + 3 n также делится на 11 (P (n + 1)). Действительно, поскольку

6 2n + 3 n +2 + 3 n = 6 2n -2+2 + 3 n +1+1 + 3 n -1+1 = = 6 2 ·6 2n -2 + 3·3 n +1 + 3·3 n -1 = 3·(6 2n -2 + 3 n +1 + 3 n -1) + 33·6 2n -2 и, как 6 2n -2 + 3 n +1 + 3 n -1 , так и 33·6 2n -2 делятся на 11, тогда и их сумма 6 2n + 3 n +2 + 3 n делится на 11. Утверждение доказано. Индукция в геометрии

Пример 4. Вычислить сторону правильного 2 n -угольника, вписанного в окружность радиуса R .

Если предложение А(n), зависящее от натурального числа n, истинно для n=1 и из того, что оно истинно для n=k (где k-любое натуральное число), следует, что оно истинно и для следующего числа n=k+1, то предположение А(n) истинно для любого натурального числа n.

В ряде случаев бывает нужно доказать справедливость некоторого утверждения не для всех натуральных чисел, а лишь для n>p, где p-фиксированное натуральное число. В этом случае принцип математической индукции формулируется следующим образом.

Если предложение А(n) истинно при n=p и если А(k) Ю А(k+1) для любого k>p, то предложение А(n) истинно для любого n>p.

Доказательство по методу математической индукции проводиться следующим образом. Сначала доказываемое утверждение проверяется для n=1, т.е. устанавливается истинность высказывания А(1). Эту часть доказательства называют базисом индукции. Затем следует часть доказательства, называемая индукционным шагом. В этой части доказывают справедливость утверждения для n=k+1 в предположении справедливости утверждения для n=k (предположение индукции), т.е. доказывают, что А(k) Ю A(k+1)

Доказать, что 1+3+5+…+(2n-1)=n 2 .

  • 1) Имеем n=1=1 2 . Следовательно, утверждение верно при n=1, т.е. А(1) истинно
  • 2) Докажем, что А(k) Ю A(k+1)

Пусть k-любое натуральное число и пусть утверждение справедливо для n=k, т.е

1+3+5+…+(2k-1)=k 2

Докажем, что тогда утверждение справедливо и для следующего натурального числа n=k+1, т.е. что

  • 1+3+5+…+(2k+1)=(k+1) 2 В самом деле,
  • 1+3+5+…+(2k-1)+(2k+1)=k 2 +2k+1=(k+1) 2

Итак, А(k) Ю А(k+1). На основании принципа математической индукции заключаем, что предположение А(n) истинно для любого n О N

Доказать, что

1+х+х 2 +х 3 +…+х n =(х n+1 -1)/(х-1), где х № 1

  • 1) При n=1 получаем
  • 1+х=(х 2 -1)/(х-1)=(х-1)(х+1)/(х-1)=х+1

следовательно, при n=1 формула верна; А(1) истинно

  • 2) Пусть k-любое натуральное число и пусть формула верна при n=k,
  • 1+х+х 2 +х 3 +…+х k =(х k+1 -1)/(х-1)

Докажем, что тогда выполняется равенство

  • 1+х+х 2 +х 3 +…+х k +x k+1 =(x k+2 -1)/(х-1) В самом деле
  • 1+х+х 2 +x 3 +…+х k +x k+1 =(1+x+x 2 +x 3 +…+x k)+x k+1 =

=(x k+1 -1)/(x-1)+x k+1 =(x k+2 -1)/(x-1)

Итак, А(k) Ю A(k+1). На основании принципа математической индукции заключаем, что формула верна для любого натурального числа n

Доказать, что число диагоналей выпуклого n-угольника равно n(n-3)/2

Решение: 1) При n=3 утверждение справедливо, ибо в треугольнике

А 3 =3(3-3)/2=0 диагоналей; А 2 А(3) истинно

2) Предположим, что во всяком выпуклом k-угольнике имеет А 1 ся А k =k(k-3)/2 диагоналей. А k Докажем, что тогда в выпуклом А k+1 (k+1)-угольнике число диагоналей А k+1 =(k+1)(k-2)/2.

Пусть А 1 А 2 А 3 …A k A k+1 -выпуклый (k+1)-угольник. Проведём в нём диагональ A 1 A k . Чтобы подсчитать общее число диагоналей этого (k+1)-угольника нужно подсчитать число диагоналей в k-угольнике A 1 A 2 …A k , прибавить к полученному числу k-2, т.е. число диагоналей (k+1)-угольника, исходящих из вершины А k+1 , и, кроме того, следует учесть диагональ А 1 А k

Таким образом,

G k+1 =G k +(k-2)+1=k(k-3)/2+k-1=(k+1)(k-2)/2

Итак, А(k) Ю A(k+1). Вследствие принципа математической индукции утверждение верно для любого выпуклого n-угольника.

Доказать, что при любом n справедливо утверждение:

1 2 +2 2 +3 2 +…+n 2 =n(n+1)(2n+1)/6

Решение: 1) Пусть n=1, тогда

Х 1 =1 2 =1(1+1)(2+1)/6=1

2) Предположим, что n=k

Х k =k 2 =k(k+1)(2k+1)/6

3) Рассмотрим данное утвержде-ние при n=k+1

X k+1 =(k+1)(k+2)(2k+3)/6

X k+1 =1 2 +2 2 +3 2 +…+k 2 +(k+1) 2 =k(k+1)(2k+1)/6+ +(k+1) 2

=(k(k+1)(2k+1)+6(k+1) 2)/6=(k+1)(k(2k+1)+

6(k+1))/6=(k+1)(2k 2 +7k+6)/6=(k+1)(2(k+3/2)(k+

2))/6=(k+1)(k+2)(2k+3)/6

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математической индукции, утверждение верно для любого натурального n

Доказать, что для любого натурального n справедливо равенство:

1 3 +2 3 +3 3 +…+n 3 =n 2 (n+1) 2 /4

Решение: 1) Пусть n=1

Тогда Х 1 =1 3 =1 2 (1+1) 2 /4=1. Мы видим, что при n=1 утверждение верно.

2) Предположим, что равенство верно при n=k

X k =k 2 (k+1) 2 /4

3) Докажем истинность этого утверждения для n=k+1, т.е

Х k+1 =(k+1) 2 (k+2) 2 /4. X k+1 =1 3 +2 3 +…+k 3 +(k+1) 3 =k 2 (k+1) 2 /4+(k+1) 3 =(k 2 (k++1) 2 +4(k+1) 3)/4=(k+1) 2 (k 2 +4k+4)/4=(k+1) 2 (k+2) 2 /4

Из приведённого доказательства видно, что утверждение верно при n=k+1, следовательно, равенство верно при любом натуральном n

Доказать, что

((2 3 +1)/(2 3 -1)) ґ ((3 3 +1)/(3 3 -1)) ґ … ґ ((n 3 +1)/(n 3 -1))=3n(n+1)/2(n 2 +n+1), где n>2

Решение: 1) При n=2 тождество выглядит:

  • (2 3 +1)/(2 3 -1)=(3 ґ 2 ґ 3)/2(2 2 +2+1), т.е. оно верно
  • 2) Предположим, что выражение верно при n=k
  • (2 3 +1)/(2 3 -1) ґ … ґ (k 3 +1)/(k 3 -1)=3k(k+1)/2(k 2 +k+1)
  • 3) Докажем верность выражения при n=k+1
  • (((2 3 +1)/(2 3 -1)) ґ … ґ ((k 3 +1)/(k 3 -1))) ґ (((k+1) 3 +

1)/((k+1) 3 -1))=(3k(k+1)/2(k 2 +k+1)) ґ ((k+2)((k+

1) 2 -(k+1)+1)/k((k+1) 2 +(k+1)+1))=3(k+1)(k+2)/2 ґ

ґ ((k+1) 2 +(k+1)+1)

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математической индукции, утверждение верно для любого n>2

Доказать, что

1 3 -2 3 +3 3 -4 3 +…+(2n-1) 3 -(2n) 3 =-n 2 (4n+3) для любого натурального n

Решение: 1) Пусть n=1, тогда

  • 1 3 -2 3 =-1 3 (4+3); -7=-7
  • 2) Предположим, что n=k, тогда
  • 1 3 -2 3 +3 3 -4 3 +…+(2k-1) 3 -(2k) 3 =-k 2 (4k+3)
  • 3) Докажем истинность этого утверждения при n=k+1
  • (1 3 -2 3 +…+(2k-1) 3 -(2k) 3)+(2k+1) 3 -(2k+2) 3 =-k 2 (4k+3)+

+(2k+1) 3 -(2k+2) 3 =-(k+1) 3 (4(k+1)+3)

Доказана и справедливость равенства при n=k+1, следовательно утверждение верно для любого натурального n.

Доказать верность тождества

(1 2 /1 ґ 3)+(2 2 /3 ґ 5)+…+(n 2 /(2n-1) ґ (2n+1))=n(n+1)/2(2n+1) для любого натурального n

  • 1) При n=1 тождество верно 1 2 /1 ґ 3=1(1+1)/2(2+1)
  • 2) Предположим, что при n=k
  • (1 2 /1 ґ 3)+…+(k 2 /(2k-1) ґ (2k+1))=k(k+1)/2(2k+1)
  • 3) Докажем, что тождество верно при n=k+1
  • (1 2 /1 ґ 3)+…+(k 2 /(2k-1)(2k+1))+(k+1) 2 /(2k+1)(2k+3)=(k(k+1)/2(2k+1))+((k+1) 2 /(2k+1)(2k+3))=((k+1)/(2k+1)) ґ ((k/2)+((k+1)/(2k+3)))=(k+1)(k+2) ґ (2k+1)/2(2k+1)(2k+3)=(k+1)(k+2)/2(2(k+1)+1)

Из приведённого доказательства видно, что утверждение верно при любом натуральном n.

Доказать, что (11 n+2 +12 2n+1) делится на 133 без остатка

Решение: 1) Пусть n=1, тогда

11 3 +12 3 =(11+12)(11 2 -132+12 2)=23 ґ 133

Но (23 ґ 133) делится на 133 без остатка, значит при n=1 утверждение верно; А(1) истинно.

  • 2) Предположим, что (11 k+2 +12 2k+1) делится на 133 без остатка
  • 3) Докажем, что в таком случае (11 k+3 +12 2k+3) делится на 133 без остатка. В самом деле
  • 11 k+3 +12 2л+3 =11 ґ 11 k+2 +12 2 ґ 12 2k+1 =11 ґ 11 k+2 +

+(11+133) ґ 12 2k+1 =11(11 k+2 +12 2k+1)+133 ґ 12 2k+1

Полученная сумма делится на 133 без остатка, так как первое её слагаемое делится на 133 без остатка по предположению, а во втором одним из множителей выступает 133. Итак, А(k) Ю А(k+1). В силу метода математической индукции утверждение доказано

Доказать, что при любом n 7 n -1 делится на 6 без остатка

  • 1) Пусть n=1, тогда Х 1 =7 1 -1=6 де-лится на 6 без остатка. Значит при n=1 утвержде-ние верно
  • 2) Предположим, что при n=k 7 k -1 делится на 6 без остатка
  • 3) Докажем, что утверждение справедливо для n=k+1

X k+1 =7 k+1 -1=7 ґ 7 k -7+6=7(7 k -1)+6

Первое слагаемое делится на 6, поскольку 7 k -1 делится на 6 по предположению, а вторым слагаемым является 6. Значит 7 n -1 кратно 6 при любом натуральном n. В силу метода математической индукции утверждение доказано.

Доказать, что 3 3n-1 +2 4n-3 при произвольном натуральном n делится на 11.

1) Пусть n=1, тогда

Х 1 =3 3-1 +2 4-3 =3 2 +2 1 =11 делится на 11 без остатка.

Значит, при n=1 утверждение верно

  • 2) Предположим, что при n=k X k =3 3k-1 +2 4k-3 делится на 11 без остатка
  • 3) Докажем, что утверждение верно для n=k+1

X k+1 =3 3(k+1)-1 +2 4(k+1)-3 =3 3k+2 +2 4k+1 =3 3 ґ 3 3k-1 +2 4 ґ 2 4k-3 =

27 ґ 3 3k-1 +16 ґ 2 4k-3 =(16+11) ґ 3 3k-1 +16 ґ 2 4k-3 =16 ґ 3 3k-1 +

11 ґ 3 3k-1 +16 ґ 2 4k-3 =16(3 3k-1 +2 4k-3)+11 ґ 3 3k-1

Первое слагаемое делится на 11 без остатка, поскольку 3 3k-1 +2 4k-3 делится на 11 по предположению, второе делится на 11, потому что одним из его множителей есть число 11. Значит и сумма делится на 11 без остатка при любом натуральном n. В силу метода математической индукции утверждение доказано.

Доказать, что 11 2n -1 при произвольном натуральном n делится на 6 без остатка

  • 1) Пусть n=1, тогда 11 2 -1=120 делится на 6 без остатка. Значит при n=1 утверждение верно
  • 2) Предположим, что при n=k 1 2k -1 делится на 6 без остатка
  • 11 2(k+1) -1=121 ґ 11 2k -1=120 ґ 11 2k +(11 2k -1)

Оба слагаемых делятся на 6 без остатка: первое содержит кратное 6-ти число 120, а второе делится на 6 без остатка по предположению. Значит и сумма делится на 6 без остатка. В силу метода математической индукции утверждение доказано.

Доказать, что 3 3n+3 -26n-27 при произвольном натуральном n делится на 26 2 (676) без остатка

Предварительно докажем, что 3 3n+3 -1 делится на 26 без остатка

  • 1. При n=0
  • 3 3 -1=26 делится на 26
  • 2. Предположим, что при n=k
  • 3 3k+3 -1 делится на 26
  • 3. Докажем, что утверждение верно при n=k+1
  • 3 3k+6 -1=27 ґ 3 3k+3 -1=26 ґ 3 3л+3 +(3 3k+3 -1) -делится на 26

Теперь проведём доказательство утверждения, сформулированного в условии задачи

  • 1) Очевидно, что при n=1 утверждение верно
  • 3 3+3 -26-27=676
  • 2) Предположим, что при n=k выражение 3 3k+3 -26k-27 делится на 26 2 без остатка
  • 3) Докажем, что утверждение верно при n=k+1
  • 3 3k+6 -26(k+1)-27=26(3 3k+3 -1)+(3 3k+3 -26k-27)

Оба слагаемых делятся на 26 2 ; первое делится на 26 2 , потому что мы доказали делимость на 26 выражения, стоящего в скобках, а второе делится по предположению индукции. В силу метода математической индукции утверждение доказано

Доказать, что если n>2 и х>0, то справедливо неравенство (1+х) n >1+n ґ х

  • 1) При n=2 неравенство справед-ливо, так как
  • (1+х) 2 =1+2х+х 2 >1+2х

Значит, А(2) истинно

  • 2) Докажем, что А(k) Ю A(k+1), если k> 2. Предположим, что А(k) истинно, т.е., что справедливо неравенство
  • (1+х) k >1+k ґ x. (3)

Докажем, что тогда и А(k+1) истинно, т.е., что справедливо неравенство

(1+x) k+1 >1+(k+1) ґ x

В самом деле, умножив обе части неравенства (3) на положительное число 1+х, получим

(1+x) k+1 >(1+k ґ x)(1+x)

Рассмотрим правую часть последнего неравенства; имеем

(1+k ґ x)(1+x)=1+(k+1) ґ x+k ґ x 2 >1+(k+1) ґ x

В итоге получаем, что (1+х) k+1 >1+(k+1) ґ x

Итак, А(k) Ю A(k+1). На основании принципа математической индукции можно утверждать, что неравенство Бернулли справедливо для любого n> 2

Доказать, что справедливо неравенство (1+a+a 2) m > 1+m ґ a+(m(m+1)/2) ґ a 2 при а> 0

Решение: 1) При m=1

  • (1+а+а 2) 1 > 1+а+(2/2) ґ а 2 обе части равны
  • 2) Предположим, что при m=k
  • (1+a+a 2) k >1+k ґ a+(k(k+1)/2) ґ a 2
  • 3) Докажем, что при m=k+1 не-равенство верно
  • (1+a+a 2) k+1 =(1+a+a 2)(1+a+a 2) k >(1+a+a 2)(1+k ґ a+

+(k(k+1)/2) ґ a 2)=1+(k+1) ґ a+((k(k+1)/2)+k+1) ґ a 2 +

+((k(k+1)/2)+k) ґ a 3 +(k(k+1)/2) ґ a 4 > 1+(k+1) ґ a+

+((k+1)(k+2)/2) ґ a 2

Мы доказали справедливость неравенства при m=k+1, следовательно, в силу метода математической индукции, неравенство справедливо для любого натурального m

Доказать, что при n>6 справедливо неравенство 3 n >n ґ 2 n+1

Перепишем неравенство в виде (3/2) n >2n

  • 1. При n=7 имеем 3 7 /2 7 =2187/128>14=2 ґ 7 неравенство верно
  • 2. Предположим, что при n=k (3/2) k >2k
  • 3) Докажем верность неравенства при n=k+1
  • 3 k+1 /2 k+1 =(3 k /2 k) ґ (3/2)>2k ґ (3/2)=3k>2(k+1)

Так как k>7, последнее неравенство очевидно.

В силу метода математической индукции неравенство справедливо для любого натурального n

Доказать, что при n>2 справедливо неравенство

1+(1/2 2)+(1/3 2)+…+(1/n 2)<1,7-(1/n)

  • 1) При n=3 неравенство верно
  • 1+(1/2 2)+(1/3 2)=245/180
  • 2. Предположим, что при n=k
  • 1+(1/2 2)+(1/3 2)+…+(1/k 2)=1,7-(1/k)
  • 3) Докажем справедливость неравенства при n=k+1
  • (1+(1/2 2)+…+(1/k 2))+(1/(k+1) 2)

Докажем, что 1,7-(1/k)+(1/(k+1) 2)<1,7-(1/k+1) Ы

Ы (1/(k+1) 2)+(1/k+1)<1/k Ы (k+2)/(k+1) 2 <1/k Ы

Ы k(k+2)<(k+1) 2 Ы k 2 +2k

Последнее очевидно, а поэтому

1+(1/2 2)+(1/3 2)+…+(1/(k+1) 2)<1,7-(1/k+1)

В силу метода математической индукции неравенство доказано.