Степень с действительным показателем решение. Степень числа: определения, обозначение, примеры

С. Шестаков,
Москва

Письменный экзамен

11 класс
1. Вычисления. Преобразование выражений

§ 3. Степень с действительным показателем

Упражнения § 5 первой главы сборника в основном связаны с показательной функцией и ее свойствами. В этом параграфе, как и в предыдущих, проверяется не только умение выполнять преобразования на основе известных свойств, но и овладение учащимися функциональной символикой. Среди заданий сборника можно выделить следующие группы:

  • упражнения, проверяющие усвоение определения показательной функции (1.5.A06, 1.5.B01–B04) и умение пользоваться функциональной символикой (1.5A02, 1.5.B05, 1.5C11);
  • упражнения на преобразование выражений, содержащих степень с действительным показателем, и на вычисление значений таких выражений и значений показательной функции (1.5B07, 1.5B09, 1.5.C02, 1.5.C04, 1.5.C05, 1.5D03, 1.5D05, 1.5.D10 и др.);
  • упражнения на сравнение значений выражений, содержащих степень с действительным показателем, требующие применения свойств степени с действительным показателем и показательной функции (1.5.B11, 1.5C01, 1.5C12, 1.5D01, 1.5D11);
  • прочие упражнения (в том числе связанные с позиционной записью числа, прогрессиями и др.) - 1.5.A03, 1.5.B08, 1.5.C06, 1.5. C09, 1.5.C10, 1.5.D07, 1.5.D09.

Рассмотрим ряд задач, связанных с функциональной символикой.

1.5.A02. д) Даны функции

Найдите значение выражения f 2 (x) – g 2 (x).

Решение. Воспользуемся формулой разности квадратов:

Ответ: –12.

1.5.C11. б) Даны функции

Найдите значение выражения f(x) f(y) – g(x) g(y), если f(x – y) = 9.

Приведем краткие решения упражнений на преобразование выражений, содержащих степень с действительным показателем, и на вычисление значений таких выражений и значений показательной функции.

1.5.B07. а) Известно, что 6 a – 6 –a = 6. Найдите значение выражения (6 a – 6) · 6 a .

Решение. Из условия задачи следует, что 6 a – 6 = 6 –a . Тогда

(6 a – 6) · 6a = 6 –a · 6 a = 1.

1.5.C05. б) Найдите значение выражения 7 a–b , если

Решение. По условию Разделим числитель и знаменатель левой части данного равенства на 7 b . Получим

Сделаем замену. Пусть y = 7 a–b . Равенство принимает вид

Решим полученное уравнение

Следующая группа упражнений - задачи на сравнение значений выражений, содержащих степень с действительным показателем, требующие применения свойств степени с действительным показателем и показательной функции.

1.5.B11. б) Расположите числа f(60), g(45) и h(30) в порядке убывания, если f(x) = 5 x , g(x) = 7 x и h(x) = 3 x .

Решение. f(60) = 5 60 , g(45) = 7 45 и h(30) = 3 30 .

Преобразуем данные степени так, чтобы получить одинаковые показатели:

5 60 =625 15 , 7 45 =343 15 , 3 30 =9 15 .

Запишем основания в порядке убывания: 625 > 343 > 9.

Следовательно, искомый порядок: f(60), g(45), h(30).

Ответ: f(60), g(45), h(30).

1.5.C12. а) Сравните , где x и y - некоторые действительные числа.

Решение.

Поэтому

Поэтому

Поскольку 3 2 > 2 3 , получаем, что

Ответ:

1.5.D11. а) Сравните числа

Поскольку получим

Ответ:

В завершение обзора задач на степень с действительным показателем рассмотрим упражнения, связанные с позиционной записью числа, прогрессиями и др.

1.5.A03. б) Дана функция f(x) = (0,1) x . Найдите значение выражения 6f(3) + 9f(2) + 4f(1) + 4f(0).

4f(0) + 4f(1) + 9f(2) + 6f(3) = 4 · 1 + 4 · 0,1 + 9 · 0,01 + 6 · 0,001 = 4,496.

Таким образом, данное выражение является разложением в сумму разрядных единиц десятичной дроби 4,496.

Ответ: 4,496.

1.5.D07. а) Дана функция f(x) = 0,1 x . Найдите значение выражения f 3 (1) – f 3 (2) + f 3 (3) + ... + (–1) n–1 f 3 (n) + ...

f 3 (1)–f 3 (2)+f 3 (3)+...+(–1) n–1 f 3 (n)+...= 0,1 3 –0,1 6 +0,1 9 +...+(–1) n–1 · 0,1 3n + ...

Данное выражение является суммой бесконечно убывающей геометрической прогрессии с первым членом 0,001 и знаменателем –0,001. Сумма равна

1.5.D09. а) Найдите значение выражения 5 2x +5 2y +2 5x · 5 y – 25 y · 5 x , если 5 x –5 y =3, x + y = 3.

5 2x +5 2y +25 x · 5 y –25 y · 5 x =(5 x – 5 y) 2 +2 · 5 x · 5 y +5 x · 5 y (5 x – 5 y)=3 2 +2 · 5 x+y +5 x+y · 3=3 2 +2 · 5 3 +3 · 5 3 =634.

Ответ: 634.

§ 4. Логарифмические выражения

При повторении темы «Преобразование логарифмических выражений» (§ 1.6 сборника) следует вспомнить ряд основных формул, связанных с логарифмами:

Приведем ряд формул, знание которых не требуется для решения задач уровней A и B, но может оказаться полезным при решении более сложных задач (число этих формул можно как уменьшать, так и увеличивать в зависимости от взглядов учителя и уровня подготовленности учащихся):

Большинство упражнений из § 1.6 сборника можно отнести к одной из следующих групп:

  • упражнения на непосредственное использование определения и свойств логарифмов (1.6.A03, 1.6.A04, 1.6.B01, 1.6.B05, 1.6.B08, 1.6.B10, 1.6.C09, 1.6.D01, 1.6.D08, 1.6.D10);
  • упражнения на вычисление значения логарифмического выражения по данному значению другого выражения или логарифма (1.6.C02, 1.6.C09, 1.6.D02);
  • упражнения на сравнение значений двух выражений, содержащих логарифмы (1.6.C11);
  • упражнения с комплексным многошаговым заданием (1.6.D11, 1.6.D12).

Приведем краткие решения упражнений на непосредственное использование определения и свойств логарифмов.

1.6.B05. а) Найдите значение выражения

Решение.

Выражение принимает вид

1.6.D08. б) Найдите значение выражения (1 – log 4 36)(1 – log 9 36).

Решение. Воспользуемся свойствами логарифмов:

(1 – log 4 36)(1 – log 9 36) =

= (1 – log 4 4 – log 4 9)(1 – log 9 4 – log 9 9) =

= –log 4 9 · (–log 9 4) = 1.

1.6.D10. а) Найдите значение выражения

Решение. Преобразуем числитель:

log 6 42 · log 7 42=(1 + log 6 7)(1 + log 7 6)=1 + log 6 7 + log 7 6 + log 6 7 · log 7 6.

Но log 6 7 · log 7 6 = 1. Следовательно, числитель равен 2 + log 6 7 + log 7 6, а дробь равна 1.

Перейдем к решению упражнений на вычисление значения логарифмического выражения по данному значению другого выражения или логарифма.

1.6.D02. а) Найдите значение выражения log 70 320, если log 5 7=a , log 7 2=b .

Решение. Преобразуем выражение. Перейдем к основанию 7:

Из условия следует, что . Поэтому

В следующей задаче требуется сравнить значения двух выражений, содержащих логарифмы.

1.6.C11. а) Сравните числа

Решение. Приведем оба логарифма к основанию 2.

Следовательно, данные числа равны.

Ответ: данные числа равны.

Степень с рациональным показателем

В множество рациональных чисел входят целые и дробные числа.

Определение 1

Степень числа $а$ с целым показателем $n$ является результатом умножения числа $а$ самого на себя $n$ раз, причем: $a^n=a \cdot a \cdot a \cdot \ldots \cdot a$, при $n>0$; $a^n=\frac{1}{a \cdot a \cdot a \cdot \ldots \cdot a}$, при $n

Определение 2

Степень числа $а$ с показателем в виде дроби $\frac{m}{n}$ называется корнем $n$-ной степени из $a$ в степени $m$: $a^\frac{m}{n}=\sqrt[n]{a^m}$, где $а>0$, $n$ – натуральное число, $m$ – целое число.

Определение 3

Степень нуля с показателем в виде дроби $\frac{m}{n}$ определяется следующим образом: $0^\frac{m}{n}=\sqrt[n]{0^m}=0$, где $m$ – целое число, $m>0$, $n$ – натуральное число.

Существует и другой подход к определению степени числа с дробный показателем, который показывает возможность существования степени отрицательного числа или отрицательного дробного показателя.

Например, выражения $\sqrt{(-3)^6}$, $\sqrt{(-3)^3}$ или $\sqrt{(-7)^{-10}}$ имеют смысл, таким образом, и выражения $(-3)^\frac{6}{7}$, $(-3)^\frac{3}{7}$ и $(-7)^\frac{-10}{6}$ должны иметь смысл, в то время, как согласно определению степени с показателем в виде дроби при отрицательном основании не существуют.

Дадим другое определение:

Степенью числа $a$ с дробным показателем $\frac{m}{n}$ называется $\sqrt[n]{a^m}$ в следующих случаях:

    При любом действительном числе $a$, целом $m>0$ и нечетном натуральном $n$.

    Например, $13,4^\frac{7}{3}=\sqrt{13,4^7}$, $(-11)^\frac{8}{5}=\sqrt{(-11)^8}$.

    При любом отличном от нуля действительном числе $a$, целом отрицательном $m$ и нечетном $n$.

    Например, $13,4^\frac{-7}{3}=\sqrt{13,4^{-7}}$, $(-11)^\frac{-8}{5}=\sqrt{(-11)^{-8}}$.

    При любом неотрицательном числе $a$, целом положительном $m$ и четном $n$.

    Например, $13,4^\frac{7}{4}=\sqrt{13,4^7}$, $11^\frac{3}{16}=\sqrt{11^3}$.

    При любом положительном $a$, целом отрицательном $m$ и четном $n$.

    Например, $13,4^\frac{-7}{4}=\sqrt{13,4^{-7}}$, $11^\frac{-3}{8}=\sqrt{11^{-3}}$.

    При других условиях степень с дробным показателем определить невозможно.

    Например, $(-13,4)^\frac{10}{3}=\sqrt{(-13,4)^{10}}$, $(-11)^\frac{5}{4}=\sqrt{(-11)^5}$.

К тому же, при применении данного определения является важным, чтобы дробный показатель $\frac{m}{n}$ был несократимой дробью.

Серьезность данного замечания в том, что степенью отрицательного числа с дробным сократимым показателем, например, $\frac{10}{14}$ будет положительное число, а степенью того же числа с уже сокращенным показателем $\frac{5}{7}$ будет отрицательное число.

Например, $(-1)^\frac{10}{14}=\sqrt{(-1)^{10}}=\sqrt{1^{10}}=1$, а $(-1)^\frac{5}{7}=\sqrt{(-1)^5}=-1$.

Таким образом, при выполнении сокращения дроби $\frac{10}{14}=\frac{5}{7}$ не выполняется равенство $(-1)^\frac{10}{14}=(-1)^\frac{5}{7}$.

Замечание 1

Нужно отметить, что чаще применяется более удобное и простое первое определение степени с показателем в виде дроби.

В случае записи дробного показателя степени в виде смешанной дроби или десятичной, необходимо показатель степени преобразовать к виду обыкновенной дроби.

Например, $(2 \frac{3}{7})^{1 \frac{2}{7}}=(2 \frac{3}{7})^\frac{9}{7}=\sqrt{(2 \frac{3}{7})^9}$, $7^{3,6}=7^\frac{36}{10}=\sqrt{7^{36}}$.

Степень с иррациональным и действительным показателем

К действительным числам относятся рациональные и иррациональные числа.

Разберем понятие степени с иррациональным показателем, т.к. степень с рациональным показателем мы рассмотрели.

Рассмотрим последовательность приближений к числу $\alpha$, которые являются рациональными числами. Т.е. имеем последовательность рациональных чисел $\alpha_1$, $\alpha_2$, $\alpha_3$, $\ldots$, которые определяют число $\alpha$ с любой степенью точности. Если вычислить степени с этими показателями $a^{\alpha_1}$, $a^{\alpha_2}$, $a^{\alpha_3}$, $\ldots$, то окажется, что эти числа являются приближениями к некоторому числу $b$.

Определение 4

Степенью числа $a>0$ с иррациональным показателем $\alpha$ называется выражение $a^\alpha$, которое имеет значение, равное пределу последовательности $a^{\alpha_1}$, $a^{\alpha_2}$, $a^{\alpha_3}$, $\ldots$, где $\alpha_1$, $\alpha_2$, $\alpha_3$, … – последовательные десятичные приближения иррационального числа $\alpha$.

Степенью числа a с натуральным показателем n , большим 1, называется произведение n множителей, каждый из которых равен a :

В выражении a n:

Число а (повторяющийся множитель) называют основанием степени

Число n (показывающее сколько раз повторяется множитель) – показателем степени

Например:
2 5 = 2·2·2·2·2 = 32,
здесь:
2 – основание степени,
5 – показатель степени,
32 – значение степени

Отметим, что основание степени может быть любым числом.

Вычисление значения степени называют действием возведения в степень. Это действие третьей ступени. То есть при вычислении значения выражения, не содержащего скобки, сначала выполняют действие третьей ступени, затем второй (умножение и деление) и, наконец, первой (сложение и вычитание).

Для записи больших чисел часто применяются степени числа 10. Так, расстояние от земли до солнца примерно равное 150 млн. км, записывают в виде 1,5 · 10 8

Каждое число больше 10 можно записать в виде: а · 10 n , где 1 ≤ a < 10 и n – натуральное число. Такая запись называется стандартным видом числа.

Например: 4578 = 4,578 · 10 3 ;

103000 = 1,03 · 10 5 .

Свойства степени с натуральным показателем:

1 . При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней складываются

a m · a n = a m + n

например: 7 1.7 · 7 - 0.9 = 7 1.7+(- 0.9) = 7 1.7 - 0.9 = 7 0.8

2 . При делении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней вычитаются

a m / a n = a m - n ,

где, m > n,
a ≠ 0

например: 13 3.8 / 13 -0.2 = 13 (3.8 -0.2) = 13 3.6

3 . При возведении степени в степень основание остается прежним, а показатели степеней перемножаются.

(a m) n = a m · n

например: (2 3) 2 = 2 3·2 = 2 6

4 . При возведении в степень произведения в эту степень возводится каждый множитель

(a · b) n = a n ·b m ,

например:(2·3) 3 = 2 n · 3 m ,

5 . При возведении в степень дроби в эту степень возводятся числитель и знаменатель

(a / b) n = a n / b n

например: (2 / 5) 3 =(2 / 5)·(2 / 5)·(2 / 5) = 2 3 /5 3

Степень с рациональным показателем

Степенью числа а > 0 с рациональным показателем , где m – целое число, а n – натуральное (n > 1), называется число

Например:

Степень числа 0 определена только для положительных показателей;

по определению 0 r = 0 , для любого r > 0

Замечания

Для степеней с рациональным показателем сохраняются основные свойства степеней , верные для любых показателей (при условии, что основание степени будет положительным).

Степень с действительным показателем

Итак, для любого действительного числа мы определили операцию возведения в натуральную степень; для любого числа мы определили возведения в нулевую и целую отрицательную степень; для любого мы определили операцию возведения в положительную дробную степень; для любого мы определили операцию возведения в отрицательную дробную степень.

Возникает естественный вопрос: можно ли каким-либо образом определить операцию возведения в иррациональную степень, а, следовательно, определить смысл выражения a x и для любого действительного числа x ? Оказывается, что для положительных чисел a можно придать смысл записи a α , где α - иррациональное число. Для этого нужно рассмотреть три случая: a = 1, a > 1, 0 < a < 1.

Итак, для a > 0 мы определили степень с любым действительным показателем.

Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

Свойство № 1
Произведение степеней

Запомните!

При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

a m · a n = a m + n , где «a » — любое число, а «m », «n » — любые натуральные числа.

Данное свойство степеней также действует на произведение трёх и более степеней.

  • Упростить выражение.
    b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
  • Представить в виде степени.
    6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
  • Представить в виде степени.
    (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15

Важно!

Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.

Нельзя заменять сумму (3 3 + 3 2) на 3 5 . Это понятно, если
посчитать (3 3 + 3 2) = (27 + 9) = 36 , а 3 5 = 243

Свойство № 2
Частное степеней

Запомните!

При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

= 11 3 − 2 · 4 2 − 1 = 11 · 4 = 44
  • Пример. Решить уравнение. Используем свойство частного степеней.
    3 8: t = 3 4

    T = 3 8 − 4

    Ответ: t = 3 4 = 81
  • Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

    • Пример. Упростить выражение.
      4 5m + 6 · 4 m + 2: 4 4m + 3 = 4 5m + 6 + m + 2: 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5
    • Пример. Найти значение выражения, используя свойства степени.
      = = = 2 9 + 2
      2 5
      = 2 11
      2 5
      = 2 11 − 5 = 2 6 = 64

      Важно!

      Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

      Нельзя заменять разность (4 3 −4 2) на 4 1 . Это понятно, если посчитать (4 3 −4 2) = (64 − 16) = 48 , а 4 1 = 4

      Будьте внимательны!

      Свойство № 3
      Возведение степени в степень

      Запомните!

      При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

      (a n) m = a n · m , где «a » — любое число, а «m », «n » — любые натуральные числа.


      Свойства 4
      Степень произведения

      Запомните!

      При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

      (a · b) n = a n · b n , где «a », «b » — любые рациональные числа; «n » — любое натуральное число.

      • Пример 1.
        (6 · a 2 · b 3 · c) 2 = 6 2 · a 2 · 2 · b 3 · 2 · с 1 · 2 = 36 a 4 · b 6 · с 2
      • Пример 2.
        (−x 2 · y) 6 = ((−1) 6 · x 2 · 6 · y 1 · 6) = x 12 · y 6

      Важно!

      Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

      (a n · b n)= (a · b) n

      То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

      • Пример. Вычислить.
        2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000
      • Пример. Вычислить.
        0,5 16 · 2 16 = (0,5 · 2) 16 = 1

      В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

      Например, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216

      Пример возведения в степень десятичной дроби.

      4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4

      Свойства 5
      Степень частного (дроби)

      Запомните!

      Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

      (a: b) n = a n: b n , где «a », «b » — любые рациональные числа, b ≠ 0, n — любое натуральное число.

      • Пример. Представить выражение в виде частного степеней.
        (5: 3) 12 = 5 12: 3 12

      Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.


    В этой статье мы разберемся, что такое степень числа . Здесь мы дадим определения степени числа, при этом подробно рассмотрим все возможные показатели степени, начиная с натурального показателя, заканчивая иррациональным. В материале Вы найдете массу примеров степеней, покрывающих все возникающие тонкости.

    Навигация по странице.

    Степень с натуральным показателем, квадрат числа, куб числа

    Для начала дадим . Забегая вперед, скажем, что определение степени числа a с натуральным показателем n дается для a , которое будем называть основанием степени , и n , которое будем называть показателем степени . Также отметим, что степень с натуральным показателем определяется через произведение, так что для понимания нижеизложенного материала нужно иметь представление об умножении чисел.

    Определение.

    Степень числа a с натуральным показателем n - это выражение вида a n , значение которого равно произведению n множителей, каждый из которых равен a , то есть, .
    В частности, степенью числа a с показателем 1 называется само число a , то есть, a 1 =a .

    Сразу стоит сказать о правилах чтения степеней. Универсальный способ чтения записи a n таков: «a в степени n ». В некоторых случаях также допустимы такие варианты: «a в n -ой степени» и «n -ая степень числа a ». Для примера возьмем степень 8 12 , это «восемь в степени двенадцать», или «восемь в двенадцатой степени», или «двенадцатая степень восьми».

    Вторая степень числа, а также третья степень числа имеют свои названия. Вторую степень числа называют квадратом числа , например, 7 2 читается как «семь в квадрате» или «квадрат числа семь». Третья степень числа называется кубом числа , к примеру, 5 3 можно прочитать как «пять в кубе» или сказать «куб числа 5 ».

    Пришло время привести примеры степеней с натуральными показателями . Начнем со степени 5 7 , здесь 5 – основание степени, а 7 – показатель степени. Приведем еще пример: 4,32 является основанием, а натуральное число 9 – показателем степени (4,32) 9 .

    Обратите внимание, что в последнем примере основание степени 4,32 записано в скобках: чтобы избежать разночтений мы будем брать в скобки все основания степени, которые отличны от натуральных чисел. В качестве примера приведем следующие степени с натуральными показателями , их основания не являются натуральными числами, поэтому они записаны в скобках. Ну и для полной ясности в этом моменте покажем разницу, заключенную в записях вида (−2) 3 и −2 3 . Выражение (−2) 3 – это степень −2 с натуральным показателем 3, а выражение −2 3 (его можно записать как −(2 3) ) соответствует числу, значению степени 2 3 .

    Заметим, что встречается обозначение степени числа a с показателем n вида a^n . При этом, если n – многозначное натуральное число, то показатель степени берется в скобки. Например, 4^9 – это другая запись степени 4 9 . А вот еще примеры записи степеней при помощи символа «^ »: 14^(21) , (−2,1)^(155) . В дальнейшем мы преимущественно будем пользоваться обозначением степени вида a n .

    Одной из задач, обратной возведению в степень с натуральным показателем, является задача нахождения основания степени по известному значению степени и известному показателю. Эта задача приводит к .

    Известно, что множество рациональных чисел состоит из целых и дробных чисел, причем каждое дробное число может быть представлено в виде положительной или отрицательной обыкновенной дроби. Степень с целым показателем мы определили в предыдущем пункте, поэтому, чтобы закончить определение степени с рациональным показателем, нужно придать смысл степени числа a с дробным показателем m/n , где m – целое число, а n - натуральное. Сделаем это.

    Рассмотрим степень с дробным показателем вида . Чтобы сохраняло силу свойство степени в степени, должно выполняться равенство . Если учесть полученное равенство и то, как мы определили , то логично принять при условии, что при данных m , n и a выражение имеет смысл.

    Несложно проверить, что при справедливы все свойства степени с целым показателем (это сделано в разделе свойства степени с рациональным показателем).

    Приведенные рассуждения позволяют сделать следующий вывод : если при данных m , n и a выражение имеет смысл, то степенью числа a с дробным показателем m/n называют корень n -ой степени из a в степени m .

    Это утверждение вплотную подводит нас к определению степени с дробным показателем. Остается лишь расписать, при каких m , n и a имеет смысл выражение . В зависимости от ограничений, накладываемых на m , n и a существуют два основных подхода.

      Проще всего наложить ограничение на a , приняв a≥0 для положительных m и a>0 для отрицательных m (так как при m≤0 степень 0 m не определена). Тогда мы получаем следующее определение степени с дробным показателем.

      Определение.

      Степенью положительного числа a с дробным показателем m/n , где m – целое, а n – натуральное число, называется корень n -ой из числа a в степени m , то есть, .

      Также определяется дробная степень нуля с той лишь оговоркой, что показатель должен быть положительным.

      Определение.

      Степень нуля с дробным положительным показателем m/n , где m – целое положительное, а n – натуральное число, определяется как .
      При степень не определяется, то есть, степень числа нуль с дробным отрицательным показателем не имеет смысла.

      Следует отметить, что при таком определении степени с дробным показателем существует один нюанс: при некоторых отрицательных a и некоторых m и n выражение имеет смысл, а мы отбросили эти случаи, введя условие a≥0 . Например, имеют смысл записи или , а данное выше определение заставляет нас говорить, что степени с дробным показателем вида не имеют смысла, так как основание не должно быть отрицательным.

      Другой подход к определению степени с дробным показателем m/n заключается в раздельном рассмотрении четных и нечетных показателях корня . Этот подход требует дополнительного условия: степень числа a , показателем которой является , считается степенью числа a , показателем которой является соответствующая несократимая дробь (важность этого условия поясним чуть ниже). То есть, если m/n – несократимая дробь, то для любого натурального числа k степень предварительно заменяется на .

      При четных n и положительных m выражение имеет смысл при любом неотрицательном a (корень четной степени из отрицательного числа не имеет смысла), при отрицательных m число a должно быть еще отличным от нуля (иначе будет деление на нуль). А при нечетных n и положительных m число a может быть любым (корень нечетной степени определен для любого действительного числа), а при отрицательных m число a должно быть отличным от нуля (чтобы не было деления на нуль).

      Приведенные рассуждения приводят нас к такому определению степени с дробным показателем.

      Определение.

      Пусть m/n – несократимая дробь, m – целое, а n – натуральное число. Для любой сократимой обыкновенной дроби степень заменяется на . Степень числа a с несократимым дробным показателем m/n - это для

      Поясним, зачем степень с сократимым дробным показателем предварительно заменяется степенью с несократимым показателем. Если бы мы просто определили степень как , и не оговорились о несократимости дроби m/n , то мы бы столкнулись с ситуациями, подобными следующей: так как 6/10=3/5 , то должно выполняться равенство , но , а .