Таблица первообразных математических функций. Первообразная функции и общий вид

Научиться интегрированию не сложно. Для этого необходимо лишь усвоить определенный, достаточно небольшой, набор правил и разработать у себя своего рода чутье. Выучить правила и формулы, конечно же, легко, но понять, где и когда нужно применить то или иное правило интегрирования или дифференцирования, достаточно затруднительно. В этом, собственно, и состоит умение интегрировать.

1. Первообразная. Неопределенный интеграл.

Предполагается, что к моменту чтения этой статьи читатель уже обладает некими навыками дифференцирования (т.е. нахождения производных).

Определение 1.1: Функция называется первообразной функции если выполняется равенство:

Комментарии: > Ударение в слове “первообразная” можно ставить двумя способами: первоо бразная или первообра зная.

Свойство 1: Если функция является первообразной функции , то функция также является первообразной функции .

Доказательство: Докажем это из определения первообразной. Найдем производную функции :

Первое слагаемое по определению 1.1 равно , а второе слагаемое является производной константы, которая равна 0.

.

Подведем итог. Запишем начало и конец цепочки равенств:

Таким образом, производная функции равна , а значит, по определению, является её первообразной. Свойство доказано.

Определение 1.2: Неопределенным интегралом функции называется всё множество первообразных этой функции. Это обозначается так:

.

Рассмотрим названия каждой части записи подробно:

— общее обозначение интеграла,

— подинтегральное (подынтегральное) выражение, интегрируемая функция.

— дифференциал, и выражение после буквы , в данном случае это , будем называть переменной интегрирования.

Комментарии: Ключевые слова в этом определении – “все множество”. Т.е. если в будущем в ответе не будет записано это самое «плюс С», то проверяющий имеет полное право не зачесть это задание, т.к. необходимо найти все множество первообразных, а если С отсутствует, то найдена только одна.

Вывод: Для того, чтобы проверить правильно ли вычислен интеграл, необходимо найти от результата производную. Она должна совпасть с подынтегральным выражением.
Пример:
Задание: Вычислить неопределенный интеграл и выполнить проверку.

Решение:

То, как вычислен этот интеграл, в данном случае не имеет никакого значения. Предположим, что это откровение свыше. Наша задача – показать, что откровение нас не обмануло, а сделать это можно с помощью проверки.

Проверка:

При дифференцировании результата получили подынтегральное выражение, значит, интеграл вычислен верно.

2. Начало. Таблица интегралов.

Для интегрирования не нужно каждый раз вспоминать функцию, производная которой равна данной подынтегральной функции (т.е. использовать непосредственно определение интеграла). В каждом сборнике задач или учебнике по математическому анализу приведена список свойств интегралов и таблица простейших интегралов.

Перечислим свойства.

Свойства:
1.
Интеграл от дифференциала равен переменной интегрирования.
2. , где — константа.
Множитель-константу можно выносить за знак интеграла.

3.
Интеграл суммы равен сумме интегралов (если количество слагаемых конечно).
Таблица интегралов:

1. 10.
2. 11.
3. 12.
4. 13.
5. 14.
6. 15.
7. 16.
8. 17.
9. 18.

Чаще всего задача состоит в том, чтобы с помощью свойств и формул свести исследуемый интеграл к табличному.

Пример:

[ Воспользуемся третьим свойством интегралов и запишем в виде суммы трех интегралов.]

[ Воспользуемся вторым свойством и вынесем константы за знак интегрирования.]

[ В первом интеграле воспользуемся табличным интегралом №1 (n=2), во втором – той же формулой, но n=1, а для третьего интеграла можно или воспользоваться все тем же табличным интегралом, но с n=0, или первым свойством.]
.
Проверим дифференцированием:

Получено исходное подынтегральное выражение, следовательно, интегрирование выполнено без ошибок (и даже не забыто прибавление произвольной константы С).

Табличные интегралы необходимо выучить наизусть по одной простой причине – дабы знать, к чему стремиться, т.е. знать цель преобразования данного выражения.

Приведем еще несколько примеров:
1)
2)
3)

Задачи для самостоятельного решения:

Задание 1. Вычислить неопределенный интеграл:

+ Показать/спрятать подсказку №1.

1) Воспользоваться третьим свойством и представить этот интеграл как сумму трех интегралов.

+ Показать/спрятать подсказку №2.

+ Показать/спрятать подсказку №3.

3) Для первых двух слагаемых воспользоваться первым табличным интегралом, а для третьего – вторым табличным.

+ Показать/спрятать Решение и Ответ.

4) Решение:

Ответ:

Таблица первообразных


Используя свойства неопределенных интегралов и таблицу основных интегралов,
можно интегрировать некоторые функции.

ПРИЁМЫ ИНТЕГРИРОВАНИЯ
Метод подстановки

Наиболее общим приёмом интегрирования функций является метод
подстановки, который применяется тогда, когда искомый интеграл
является табличным, но путем ряда элементарных преобразований он может быть
сведен к табличному.

переменную.т заменяют переменной / по формуле х=φ(t) и,
следовательно, dx произведением φ"(t)dt.




Интегрирование по частям


Пример: необходимо найти интеграл



Здесь в двойные вертикальные линии заключены все вычисления, которые
являются подготовительными для применения формулы интегрирования по
частям. Подготовительные записи могут быть вынесены за пределы уравнения.

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Задача. Найти приращение функции, первообразной для функции f(x), при
переходе аргумента х от значения а к значению b.
Решение. Положим, что интегрированием найдено


Как видим, в выражении приращения первообразной функции F(x) + С 1
отсутствует постоянная величина С 1 . А так как под С 1 подразумевалось любое
данное число, то полученный результат приводит к следующему заключению: при
переходе аргумента х от значения х=а к значению х=b все функции F(x) + С,
первообразные для данной функции f(x), имеют одно и то же приращение, равное
F(b)-F(a).

Это приращение принято называть определенным интегралом и обозначать
символом


Таким образом, искомый интеграл равен 6.

Геометрический смысл определенного интеграла

1. Найти площадь одной арки синусоиды.


Тело вращения изображено на рисунке.
В качестве плоскости я выберем плоскость ху.




Пример №2. Нахождение определенного интеграла методом замены переменной
интегрирования

Пример №3. Нахождение определенного интеграла методом интегрирования по
частям.


Соотношения между массой m и плотностью р:

Соотношения между электрическим зарядом q и силой тока I:

Соотношения между теплоёмкостью с и количеством теплоты Q:

Описание движения вязкой жидкости, крови по сосудам, распределения
давления крови в сердечнососудистой системе, тепловых, электрических,
магнитных, оптических процессов, связанных с жизнедеятельностью
организма, требует применение интегрирования.

ТРЕНИНГ: РЕШЕНИЕ ПРИМЕРОВ

точки меняется по закону v = (6t +7) м/с

Определить, как зависит от времени пройденный путь, если скорость материальной
точки меняется по закону v = (6t +7)м/с, если известно, что в начальный момент


времени (t=0), материальная точка находилась на расстоянии s 0 = 4м от начала


Найти работу, совершаемую пружиной при её удлинении от x 1 до х 2 .
Решение.


Чтобы проинтегрировать данную функцию, необходимо сделать замену
переменной

Гак как 4-х 2 ≤2-х на отрезке [-1;2], то площадь S данной фигуры вычисляется
следующим образом:



Решение.
u = sinx
du = cosxdx

новые пределы интегрирования: u 1 = 0 (т.к. x 1 = 0, подставим это значение в новую
функцию - u = sinx, u 1 = sinx 1 = 0)


возникновении в нем индукционного тока,






ответ:

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Дифференциальные уравнения - это уравнения, содержащие искомые
функции, их производные различных порядков и независимые переменные.
Теория дифференциальных уравнений возникла в конце 17 века под
влиянием потребностей механики и других естественнонаучных дисциплин,
по существу одновременно с интегральным исчислением и
дифференциальным исчислением.

Простейшие дифференциальные уравнения встречались уже в работах И.
Ньютона и Г. Лейбница; термин "дифференциальные уравнения"
принадлежит Лейбницу. Задачу нахождения неопределённого интеграла F (х)
функции f(x) Ньютон рассматривал просто как частный случай его второй
задачи. Такой подход был для Ньютона, как создателя основ
математического естествознания вполне оправданным: в очень большом
числе случаев законы природы, управляющие теми или иными процессами,
выражаются в форме дифференциальных уравнений, а расчёт течения этих
процессов сводится к решению дифференциальных уравнений.

Следующие два простых примера могут служить иллюстрацией к
сказанному.

1) Если тело, нагретое до температуры Т, помещено в среду, температура
которой равна нулю, то при известных условиях можно считать, что
приращение ΔТ(отрицательное в случае Т> 0) его температуры за малый
промежуток времени Δt с достаточной точностью выражается формулой

где k - постоянный коэффициент. При математической обработке этой
физической задачи считают, что выполняется точно соответствующее
предельное соотношение между дифференциалами

т. е. имеет место дифференциальное уравнение

где Т обозначает производную no t.

растяжения пружины, приводят груз в
движение. Если х (t) обозначает
величину отклонения тела от
положения равновесия в момент
времени t, то ускорение тела
выражается 2-й производной х" (t).
Сила тх" (t), действующая на тело,
при небольших растяжениях пружины
по законам теории упругости пропорциональна отклонению х (t). Т. о.,
получается дифференциальное уравнение


Его решение имеет вид:

Интегрирование - это одна из основных операций в матанализе. Таблицы известных первообразных могут быть полезны, но сейчас они, после появления систем компьютерной алгебры, теряют свою значимость. Ниже находится список больше всего встречающихся первообразных.

Таблица основных интегралов

Другой, компактный вариант

Таблица интегралов от тригонометрических функций

От рациональных функций

От иррациональных функций

Интегралы от трансцендентных функций

"C" – произвольная константа интегрирования, которая определяется, если известно значение интеграла в какой-либо точке. Каждая функция имеет бесконечное число первообразных.

У большинства школьников и студентов бывают проблемы с вычислением интегралов. На этой странице собраны таблицы интегралов от тригонометрических, рациональных, иррациональных и трансцендентных функций, которые помогут в решении. Еще вам поможет таблица производных .

Видео - как находить интегралы

Если вам не совсем понятна данная тема, посмотрите видео, в котором всё подробно объясняется.