Теории что наш мир может оказаться симуляцией. «Мы все в матрице?»: Гипотеза компьютерной симуляции

Физики из США и Германии Силас Бин, Зохре Давоуди и Мартин Сэвидж предложили экспериментальный способ проверки одной философской идеи, известной как гипотеза симуляции. Согласно этой гипотезе, существует вероятность того, что мы живем внутри огромной компьютерной модели, которую запустили некие постлюди для изучения собственного прошлого. Несмотря на, будем честны, свою сомнительную естественнонаучную ценность, работа Бина, Давоуди и Сэвиджа заслуживает подробного освещения: тут и квантовая хромодинамика, и философия, да и вообще - не каждый день физики предлагают проверить идеи, вдохновленные фильмом "Матрица".

Ник Бостром и его симуляция

В 2003 году известный шведский философ Ник Бостром опубликовал в Philosophical Quarterly работу под почти фантастическим заголовком "Мы все живем в компьютерной симуляции?". Необходимо заметить, что Бостром - не какой-нибудь маргинал, обитающий на окраинах современной философии. Это один из важнейших деятелей трансгуманизма нашего времени, сооснователь Всемирной ассоциации трансгуманистов (возникла в 1998 году, ныне переименована в "Хьюманити плюс"). Он лауреат многих престижнейших премий, а его работы по антропному принципу переведены на более чем 100 языков.

Трансгуманизм - мировоззрение, основанное на осмыслении достижений и перспектив науки, признающее возможность и необходимость фундаментальных изменений в самом человеке с помощью передовых технологий. Цель этих изменений - ликвидация страданий, старения, смерти, а также усиление физических, умственных и психологических возможностей людей.

Антропный принцип - принцип, сформулированный в виде формулы "Мы видим Вселенную такой, потому что только в такой Вселенной мог возникнуть наблюдатель, человек".

Теория всего - гипотетическая физико-математическая теория, описывающая все известные фундаментальные взаимодействия (сильное, слабое, электромагнитное и гравитационное)

Прежде чем перейти к формулировке основного результата Бострома, познакомимся с некоторыми понятиями (по критической работе Данилы Медведева "Живем ли мы в спекуляции Ника Бострома? "). Под постчеловеческой цивилизацией (состоящей из постлюдей) понимается "цивилизация потомков человека, изменившихся до такой степени, что они уже не могут считаться людьми". Главное отличие этой цивилизации от современной будет заключаться в невероятных вычислительных возможностях, которыми она будет обладать. Под симуляцией понимается программа, моделирующая сознание одного или нескольких человек, возможно, даже всего человечества. Историческая симуляция - это, соответственно, симуляция исторического процесса, в которой принимают участие множество смоделированных лиц.

В своей работе Бостром придерживается концепции, согласно которой сознание зависит от интеллекта (вычислительных мощностей), структуры отдельных частей, логической взаимосвязи между ними и многого другого, но совсем не зависит от носителя, то есть биологической ткани - человеческого мозга. Это значит, что сознание может быть реализовано и в виде набора электрических импульсов в некоторой вычислительной машине. Учитывая, что речь в работе идет о симуляциях, созданных постлюдьми, смоделированные внутри симуляции люди (Бостром называет их цивилизацией более низкого уровня по сравнению с цивилизацией, запустившей симуляцию) обладают сознанием. Для них модель будет представляться реальностью.

Чтобы оценить теоретическую возможность проведения такого рода симуляций в принципе, Бостром проводит несколько оценок. Так, в самом грубом приближении вычислительная мощность человеческого мозга ограничена порядка 10 17 операциями в секунду. При этом количество получаемой личностью информации составляет порядка 10 8 бита в секунду. На основе этого Бостром приходит к выводу, что для симуляции всей истории человечества потребуется порядка 10 33 - 10 36 операций (при расчете 50 лет на человека и оценке общего количества всех людей, существовавших на планете до настоящего времени, в 100 миллиардов человек).

Если же говорить о моделировании всей Вселенной со времени Большого Взрыва по настоящий момент, а не только истории человечества, то физик Сет Ллойд из Массачусетского технологического института еще в 2002 году опубликовал в Physical Review Letters , в которой приводил расчеты необходимых мощностей. Оказалось, что для этого потребуется машина с памятью 10 90 бит, которой придется выполнить 10 120 логических операций.

Эмблема "Хьюманити плюс"

Эти числа (что у Бострома, что у Ллойда) кажутся просто невероятными. Однако в 2000 году тот же Ллойд опубликовал другую замечательную работу - он попытался рассчитать предельную мощность компьютера массой 1 килограмм и объемом один кубический дециметр, исходя из соображений квантовой механики. Ему это удалось (pdf) - оказывается, что такое количество материи может выполнять порядка 10 50 операций в секунду. Следовательно, если исходить из мощности такого предельного компьютера, симуляция, о которой говорит Бостром, не кажется слишком уж фантастической. Ллойд даже оценил время, которое потребуется для достижения таких мощностей - при условии, что мощность компьютеров будет продолжать расти по закону Мура (что, конечно, совсем сомнительно: некоторые ученые предсказывают, что закон уже через 75 лет). Так вот, это время составило всего 250 лет.

Однако, вернемся к Бострому. Исходя из приведенных выше оценок, шведский философ не только заключил, что симуляция возможна, но и сделал парадоксальный вывод. Бостром утверждает, что по крайней мере одно из трех нижеследующих утверждений верно (так называемая трилемма Бострома):

  1. Человечество вымрет, так и не став постцивилизацией;
  2. Человечество разовьется в постцивилизацию, которая по каким-то причинам не будет заинтересована в моделировании прошлого;
  3. Почти наверняка мы живем в компьютерной симуляции
Последний пункт, если коротко, Бостром аргументирует тем соображением, что, если симуляции будут проводиться, то их будет много. Логично предположить, что при этом количество смоделированных людей будет на многие порядки превышать количество когда-либо живших предков базовой цивилизации. Следовательно, вероятность того, что некий случайным образом выбранный человек является объектом эксперимента, равна почти единице.

Из этого вытекает, что если мы оптимисты и не верим в вымирание человечества и, кроме этого, убеждены в любознательности наших потомков, то выполнен пункт три: мы с большой долей вероятности живем в компьютерной симуляции. К слову, у Бострома в работе вообще есть много парадоксальных выводов - например, о вероятности моделирования людей без сознания, то есть существования мира, в котором сознанием наделены лишь единицы, а остальные представляют из себя "тени-зомби" (как называет их сам философ). Также философ интересно рассуждает об этических аспектах моделирования, а также о том, что большинство симуляций обязаны когда-нибудь заканчиваться, а значит, - с вероятностью почти равной единице, - мы обитаем в мире, который должен завершить свое существование (подробнее с этими рассуждениями можно ознакомиться в частичном русском переводе статьи).

Несмотря на всю свою популярность, выводы Бострома неоднократно становились объектом критики. В частности, оппоненты указывают на пробелы в аргументации философа, а также на большое количество присутствующих в его рассуждениях скрытых предположений относительно целого ряда фундаментальных вопросов - например, природы сознания и потенциальной способности смоделированных индивидуумов к самосознанию. В общем, однозначного ответа на вопрос "Живем ли мы в Матрице?" от философов ожидать не приходится (как, впрочем, и на другие, не менее "простые" вопросы: что есть сознание, что есть реальность и т.д.). Поэтому перейдем к физикам.

Физики и их подход

Бостром не скрывает, что на работу его вдохновили, среди прочего, фантастические фильмы. Среди них, конечно, "Матрица" (идея симуляции) и "13 этаж" (идея вложенных симуляций)

Некоторое время назад на сайте arXiv.org появился препринт работы физиков из США и Германии Силаса Бина, Зохре Давоуди и Мартина Сэвиджа. Эти ученые решили сыграть в предложенную Бостромом игру. Они задались вот каким вопросом: если вся Вселенная есть компьютерная симуляция, то можно ли найти доказательства этого физическими методами? Для этого они попытались представить себе, чем физика симулированного мира будет отличаться от физики мира настоящего.

В качестве возможного инструмента для моделирования они взяли квантовую хромодинамику - пожалуй, самую совершенную из существующих ныне физических теорий. Что же касается собственно моделирования, то они предположили, что постлюди будут проводить ее на пространственной сетке с некоторым достаточно небольшим пространственным шагом. Понятное дело, что оба допущения довольно спорны: во-первых, постлюди наверняка предпочли бы использовать для симуляции теорию всего (которая, несомненно, уже была бы в их распоряжении). Во-вторых, численные методы постлюдей должны отличаться от наших примерно так же, как ядерный реактор - от каменного топора. Однако без этих предположений работа физиков вообще оказалась бы невозможной.

Тут, кстати, уместно заметить, что моделирование процессов, происходящих в фиксированной области пространства, это довольно активно развивающееся направление вычислительной физики. Пока, конечно, успехи невелики: у физиков получается смоделировать кусочек мира диаметром не более нескольких (от 2,5 до 5,8) фемтометров (1 фемтометр равен 10 -15 метра) с шагом b = 0,1 фемтометра. Тем не менее, модели такого рода представляют большой теоретический интерес. Например, они могут помочь при расчете того, что происходит в условиях, недостижимых в современных ускорителях. Или же, например, с помощью моделирования можно будет получить некоторые предсказания свойств вакуума и сравнить их с экспериментальными данными - а это, возможно, как раз и натолкнет физиков на идеи, касающиеся упомянутой теории всего.

Для начала Бин, Давоуди и Сэвидж оценили возможности симуляций. Оказалось, что для фиксированного шага в 0,1 фемтометра размер моделируемой области растет экспоненциально (то есть так же как вычислительная мощность компьютеров в законе Мура) - таков результат экстраполяции данных за почти 20-летнюю историю этой области исследований. Получается, что моделирования кубического метра материи на основе законов квантовой хромодинамики с шагом b = 0,1 фемтометра следует ожидать примерно через 140 лет (показатель растет примерно на порядок в 10 лет). Учитывая, что диаметр видимой Вселенной составляет порядка 10 27 метров, при сохранении закономерного роста (что, как уже отмечалось выше, маловероятно) симуляции необходимого объема можно будет достичь через 140 + 270 = 410 лет (но это только при фиксированном параметре b). Впрочем, сами ученые таких цифр не приводят, ограничиваясь ближайшими 140 годами.

Затем ученые попытались оценить возможные ограничения на физику такой модели и обнаружили, прямо скажем, занятные вещи. Они установили, что в симулированной Вселенной в спектре космических лучей на определенных энергиях должен быть обрыв. В теории такой обрыв действительно имеется - это предел Грайзена - Зацепина - Кузьмина, который составляет 50 эксаэлектронвольт. Он связан с тем, что высокоэнергетические частицы должны взаимодействовать с фотонами фонового микроволнового излучения и, как следствие, терять энергию. Тут, однако, возникают две трудности. Во-первых, для того чтобы этот предел был артефактом компьютерной модели, ее пространственный шаг должен быть на 11 порядков меньше b = 0,1 фемтометра. Во-вторых, наличие предела Грайзена - Зацепина - Кузьмина пока не доказано на практике. В этом направлении имеется множество противоречивых результатов. Так, согласно одним из них, обрыв действительно есть. Согласно другим, поверхности Земли достигают частицы с энергией, превышающей этот предел, причем прилетают они из довольно темных областей космоса (то есть не являются продуктом деятельности ближайших к нам активных галактических ядер).

Впрочем, у ученых есть еще один способ проверки - распределение высокоэнергетических космических лучей должно быть анизотропно (то есть неодинаково по разным пространственным направлениям). Это связано с предположением, что расчеты проводятся на кубической сетке - именно такой и должна быть сетка, по мнению физиков, из соображения изотропии пространства-времени. Вместе с тем, возможность обнаружения анизотропии излучения физики не обсуждают. Непонятно даже, какого рода приборы нужны для подобных исследований - достаточно ли уже существующих приборов (космической обсерватории "Ферми", например)? В общем, однозначного ответа на вопрос "Живем ли мы в Матрице?" от физиков тоже ожидать не приходится.

В заключение

Разумеется, читатель в этом месте может почувствовать разочарование. Мол, как же так: читал-читал, а ответа на главный вопрос "Живем ли мы в Матрице?" так и не получил. Это, однако, было ожидаемо, и вот почему. Для философии гипотеза о симуляции - лишь одна из многих версий бытия. Эти версии если и конкурируют между собой, то только в умах их сторонников и противников, то есть являются объектами веры, не претендующими на объективность.

Что же касается физиков, то недавно появилась очень интересная : американский профессор из Университета Луизианы Ретт Аллейн (Rhett Allain) проанализировал физическую составляющую игры Bad Piggies от компании Rovio, создавшей Angry Birds. Он сделал это ровно для того, чтобы определить возможный диаметр зеленых свиней из игры, существуй они в действительности (диаметр, к слову, оказался равным 96 сантиметрам). Так вот, работа Силаса Бина, Зохре Давоуди и Мартина Сэвиджа - это такого же рода упражнение, только с чуть более сложными объектами и запутанной математикой. В целом же, это не более чем занятная гимнастика для ума - но, как и всякая гимнастика, она полезна. Благодаря ей читатель теперь знает трилемму Бострома и размер винчестера, на который можно записать информацию обо всей Вселенной. Это интересно.

На правах пятничного поста.

Давайте подумаем немного о том, может ли наблюдаемая Вселенная являться компьютерной симуляцией? Не в смысле того, что злобные киборги поработили человечество и уложили всех в Матрицу, а чуть глобальнее.

Перед началом обсуждения рекомендуется освежить в памяти этот пост . Речь идет об «неравенствах Белла». Уже проведены достоверные эксперименты, показывающие нарушение этих неравенств, и здесь мы сразу принимаем за истину, что наша реальность «мутна», а «очки» (наблюдатель) придают ей четкость.

Полная версия любимого xkcd №505


Хоть и опасаясь гнева теологов, проведу небольшое, слегка наивное, философское вступление. Попробуем поставить себя на место истинно всемогущего существа. Трудоемкость любого действия для нас - О(1). С подобными силами мы можем создать вселенную, единственный физический закон которой - наша Воля. Никаких ухищрений, никаких сложностей. Никакой квантовой механики, «мутной» реальности, Большого Взрыва. Никакой «игры в кости»:)
Вообще, стремление к созданию чего-либо сложного, расширяющего границы возможного, это прерогатива существ с ограниченными возможностями, например нас - людей. Мы слабы, старимся, умираем без воздуха, без пищи. Но мы вечно хотим прыгнуть выше головы (и, что характерно, таки прыгаем). Будут ли такие стремления у истинно всемогущего существа? Сомнительно.

Теперь поставим себя на место всё-таки не безгранично могущественного существа. Пусть у нас будут серьезные мощности. Мы пробуем сэмулировать Вселенную. У нас есть отличные алгоритмы для обсчета поведения совокупности из N частиц эмулируемого мира. Трудоемкость алгоритма O(N*logN) (можно даже представить что O(N)). Занимаемая на эмуляцию память также пропорциональна N. Проблема ! Получается, чтобы эмулировать «четкую» реальность, требуется (грубо говоря) вычислительный кластер, соотносимый по размерам с эмулируемой вселенной.

И тут нам приходит в голову гениальная идея реализации - сделать эмулируемую реальность «мутной»! Колоссальная оптимизация как производительности, так и объема хранимых данных. Недетерминизм эмуляции как следствие? Не баг, а фича!

Конечно, на случай если вдруг понадобится рассмотреть что происходит в реальности подробно, используем добротный ГПСЧ и волновую функцию для генерации микро-мира на заданном участке. А пока можно хранить только обобщенные параметры пространства. (Очевидно, ответственный за этот участок разработчик любит ленивые вычисления).

Уже в середине разработки ТЗ меняется: хочется сбалансированную Вселенную. Вводим совершенно обособленное (пусть поломают головы) взаимодействие - гравитацию. Таким образом, компенсируем суммарные массу-энергию Вселенной отрица­тельной энергией гравитационного взаимодействия ее частей.

После ряда неудачных экспериментов с разгоном объектов, хардкодим константу предельной скорости - скорость света в вакууме. Естественно, ограничение действует только при работе с публичным API, в то время как зависимости квантово запутанных объектов, и взаимное воздействие гравитационных объектов спокойно передаем по внутренним шинам движка без задержек. Потом оказывается, что есть «уязвимость» для передачи данных выше скорости света, если обитатели эмулируемого мира додумаются до «слабого квантового измерения» .

Правда со скоростью всё равно что-то неладно - время жизни быстро движущихся частиц увеличивалось. Архитектор говорит, что это баг рассинхронизации участков симуляции, между которыми частица перемещается слишком быстро, и не везде ей успевают инкрементировать счетчик "времени". Добавил, что исправить можно, переписав кластеризацию практически с нуля, и мы плюнули на это.

Для обсчета многих физических законов используем числа с плавающей точкой (сложилось исторически), в итоге приходится везде вводить «машинный эпсилон» - планковскую длину, планковскую массу, и т.п.

Позже начинаем жалеть о введении гравитации, так как трудоемкость алгоритма обсчета серьезно подскочила. На отдельных участках симуляции элементы кластера уже не справляются с обработкой поведения частиц в заданном темпе. Пожимаем плечами, вводим локальное замедление времени вблизи массивных скоплений эмулируемых частиц.

"Ах, гравитация, бессердечная ты сволочь! " - слова нашего архитектора, наблюдающего, как вся симуляция коллапсирует в сингулярную точку в первые же мгновения после старта системного теста. Ничего, это можно решить аккуратным подбором стартовых параметров и констант.

Наконец, мир отлажен и запущен. Хотим, помимо всего прочего, понаблюдать за стихийным развитием форм жизни. После пары тысяч прогонов, жизнь так и не появилась. Лезть в рабочий мир и что-либо менять во время его «рантайма» не хочется. Приходится еще раз долго подбирать стартовые параметры и переменные окружения, проводя тонкую настройку. Жизнь наконец зарождается (привет, антропный принцип).

Теперь сидим, (с попкорном), внимательно наблюдаем за развитием симулируемых подопытных. Ждём пока они догадаются.
Ну или начнут свою эмуляцию строить. Зачем? Затем же, что и мы - потому что мы можем.

Множество людей считают тему виртуальной жизни очень интересной. Недаром фильм братьев (точнее уже сестер) Вачовски « » обрел такую огромную популярность. Конечно, основная идея компьютерной симуляции состоит не в том, что миром управляют гигантские роботы, а люди всего лишь источник энергии. Гипотеза описывает то, что каждый человек, собственно как и вся наша планета являются лишь программным кодом нечто большего, того, чего мы не можем в принципе представить. Скептики сразу начнут спорить о невозможности такого подхода, однако, стоит задуматься, чем же эта гипотеза происхождения мира уступает другим гипотезам:

— не менее трети людей уверены, что человека создали силы, которым мы поклоняемся (гипотеза божественного происхождения). У каждой религии свой бог, однако, идея примерно одинакова;
— жизнь на Землю занесена с метеоритом, или же нас «вывели» инопланетяне;
— в результате долгих физических и химических реакций образовались бактерии, началась эволюция.
Совсем недавно прошла встреча ученых в музее естественной истории. Такая встреча происходит каждый год и посвящена памяти фантаста Азимова.

Грасс Тайсон (директор одного из крупных планетариев) утверждает: теория весьма вероятна. Например, как отмечает Грасс, несмотря на большое сходство цепочек ДНК у человеческой особи с приматом (шимпанзе), разница в интеллекте просто колоссальна. Таким образом, почему же не могут где-то в «высшем мире» обитать существа, для которых мы просто кучка примитивных амеб? Соответственно, вся известная нам Вселенная может быть всего лишь плодом чьей-то фантазии, созданным для банального развлечения.


Сознание в виртуальной реальности

Еще с 2003 года существует интересный аргумент, защищающий гипотезу о симуляции. Ее автором выступил Ник Бостром (между прочим, философ знаменитого Оксфорда). Он предположил, что некая весьма развитая в технологическом плане цивилизация решила создать симуляцию своих предшественников. В ходе экспериментов было создано огромное количество подобных симуляций, в результате чего усредненное значение сознаний весьма отличается от изначально заданной симуляции сознания предков этой цивилизации. Исходя из этой теории – люди являются данными симуляциями.

Как ни странно, но именно развитие компьютерного мира, позволившее раскрывать все новые секреты Вселенной (от погружения в недра планеты, так и изучения дальних планет), придает весомости теории симуляции. Космолог из MIT Макс Тегмарк убежден — при должном разуме персонаж компьютерной игры (по сути, искусственный интеллект) должен понять, что все подчиняется довольно жестким правилам с установленными границами. Весь мир завязан на расчетах и цифровом коде. Так же происходит и у человечества: куда ни повернись, все упирается в математические расчеты. Так почему же мы не можем быть частью великого компьютерного кода?
Физик-теоретик Джеймс Гейтс согласен с Тегмарком. Он сказал, что очень удивился, увидев математические коды браузеров, поскольку изучал все эти формулы на высших курсах физики.


Скептическое отношение к компьютерной симуляции

Однако, как и у любой гипотезы, в данном случае есть противники. Например, Лиза Рэндалл из университета Гарварда считает, в аргументе Ника Бострома совершенно нет никакой обоснованности. Лиза утверждает, что не понимает, почему теорию симуляции жизни вообще рассматривают с ученой точки зрения. Ведь нафантазировать можно все, что угодно. «Почему кто-то захотел «придумывать» человечество? Зачем им это нужно? И, для начала, нужно доказать возможность существования хотя бы одной из «высших сущностей», что запрограммировала нашу жизнь».
Если подходить к любой проблеме со своей профессиональной точки зрения, то можно принять любое совпадение за правду. Например, IT-специалисты подходят ко всему с компьютерной точки зрения. А, если ты молоток, то и все вокруг будет похоже на гвозди.

Проблема в том, что гипотеза компьютерной симуляции пока что не может быть каким-то образом проверена, и миру не представлены какие-либо доказательства в виде лабораторных экспериментов и смоделированных ситуациях.
Зорен Давуди, физик из Массачусетского технологического института также рассуждает о компьютерной симуляции. Смысл его слов можно передать следующим образом:

«В нашем, обычном мире людей, когда мы создаем программу, неважно какого уровня сложности, все, что находится внутри нее, ограничено самой программой. То есть картинка не может быть четче, чем установленное разрешение, персонаж не сможет быть выше, чем это заложено алгоритмом, а космический корабль рано или поздно врежется в текстуры, которые невозможно преодолеть. Если рассматривать теорию компьютерной симуляции серьезно, то наш мир должен быть ограничен подобными рамками. И, пока эти рамки не найдены, рано говорить о достоверности гипотезы. Только необычные физические явления, такие как распределение света не сплошным потоком, а, к примеру, точками, могут поддержать гипотезу компьютерной симуляции. Но, говорить о том, что гипотеза не может существовать – также невозможно доказать наверняка. Ведь, согласно логике, все доказательства о жизни не внутри симуляции, могут быть симуляцией».

А, если, правда?

Но… если представить, что наша гипотеза о «Матрице» является правильной, и все мы лишь компьютерная симуляция. Что из этого? Ведь выхода нет, придется до конца своего «кода» отрабатывать алгоритм.
Остается надеяться, что «создатели-программисты» не устанут от нас и не решат стереть одним нажатием клавиши.
Компьютерная симуляция в некотором плане затрагивает и религиозные аспекты. Ведь не умирают, а лишь выполняют свою функцию и останавливаются. Или ломаются. Тогда их всегда можно починить или перезапустить.
Проще всего, не ломать голову, и жить, как живем, совершенствуясь и развиваясь. Возможно, наступит время, когда человечеству будут открыты все тайны Вселенной.

Гипотеза о компьютерной симуляции нашей вселенной была выдвинута в 2003 году британским философом Ником Бостромом, но уже получила своих последователей в лице Нила Деграсс Тайсона и Илона Маска, которые высказались, что вероятность гипотезы равна почти 100%. В её основе лежит идея о том, что всё существующее в нашей вселенной является продуктом симуляции, наподобие экспериментов, проводимых машинами из трилогии «Матрица».

Теория симуляции

Теория полагает, что при наличии достаточного числа компьютеров, обладающих большой вычислительной мощностью, становится возможным симулировать детально весь мир, который будет настолько правдоподобным, что его обитатели будут обладать сознанием и интеллектом.

Опираясь на эти идеи, можно предположить: а что мешает нам уже жить в компьютерной симуляции? Может быть, более развитая цивилизация проводит подобный эксперимент, получив необходимые технологии, и весь наш мир является симуляцией?

Многие физики и метафизики уже создали убедительные аргументы в пользу идеи, ссылающиеся на различные математические и логические аномалии. Основываясь на этих аргументах, можно предположить существование космической компьютерной модели.

Математическое опровержение идеи

Однако, двое физиков из Оксфорда и Еврейского университета в Иерусалиме, Зохар Рингель и Дмитрий Коврижин, доказали невозможность существования подобной теории. Свои находки они опубликовали в журнале Science Advances.

Проведя моделирование квантовой системы, Рингель и Коврижин выяснили, что для симуляции всего нескольких квантовых частиц потребуются огромные вычислительные ресурсы, которые из-за природы квантовой физики будут возрастать экспоненциально с увеличением количества симулируемых квантов.

Для хранения матрицы, описывающей поведение 20 спинов квантовых частиц, потребуется терабайт ОЗУ. Экстраполировав эти данные всего на несколько сотен спинов, мы получим, что для создания компьютера с таким объёмом памяти потребуется больше атомов, чем их общее число во вселенной.

Другими словами, учитывая сложность квантового мира, который мы наблюдаем, можно доказать, что любая предложенная компьютерная симуляция вселенной потерпит неудачу.

А, может, всё-таки симуляция?

С другой стороны, продолжая философские рассуждения, человек быстро придёт к вопросу: «Возможно ли, что более развитые цивилизации специально вложили в симулятор эту сложность квантового мира, чтобы сбить нас с пути?» На это Дмитрий Коврижин отвечает:

Это интересный философский вопрос. Но он вне поля действия физики, поэтому я предпочёл бы его не комментировать.

За последние несколько лет — не десятилетий, как можно было подумать, а лет — идея того, что мы живем в виртуальном мире , приобрела неслыханную популярность. Да, на этой идее фильмы вроде «Матрицы» снискали себе славу в свое время, но широкая общественность начала задумываться о глубине этой мысли только с широким распространением Интернета, игр, плодов квантовой механики и, опять же, фильмов на эту тему.

Несколько месяцев назад к этой теме даже обратился один из самых громких голосов современности, «миллиардер, филантроп и плейбой» Элон Маск.

Давайте вернемся к истокам. Почему наш мир может быть… иллюзией?

Идея компьютерной симуляции нашего мира уходит корнями еще к древним грекам. Они называли ее просто сном, мечтой, фантазмом. Первое, что нужно усвоить: наше восприятие реальности уже отделено от самой реальности. Реальность — это просто электрический импульс, который интерпретируется вашим мозгом. Мы воспринимаем мир опосредованно и несовершенно. Если бы мы могли видеть мир как он есть, не было бы ни оптических иллюзий, ни дальтоников, ни волшебных движущихся картинок.

Кроме того, мы испытываем лишь упрощенную версию всей этой опосредованной сенсорной информации. Почему? Потому что наблюдение нашего мира требует слишком много вычислительной мощности — поэтому мозг разбивают ее на эвристику (или упрощенные, но все еще полезные представления). Наш разум постоянно ищет повторяющиеся картинки, узоры, модели, шаблоны в нашем мире и выстраивает их в соответствии с нашим восприятием.

Отсюда можно сделать следующие выводы:

  1. Наше восприятие уже отличается от самой реальности. То, что мы называем реальностью, это лишь попытка нашего мозга обработать входящий поток сенсорных данных, чувственного опыта.
  2. Если наше восприятие реальности зависит от упрощенного потока информации, не имеет значения, каков источник этой информации — будь то физический мир или компьютерная симуляция, которые кормят нас одной и той же информацией. Но насколько реально создать такую мощную симуляцию?

Давайте рассмотрим Вселенную с физической точки зрения.

Краткая история законов Вселенной

С точки зрения физики, в основе всего лежит четыре основных силы: сильное взаимодействие, электромагнитная сила, слабое взаимодействие и гравитация. Эти силы регулируют взаимодействие всех частиц в известной нам Вселенной. Их сочетание и равновесие определяют работу этого мира.

Расчет этих сил и имитация простых взаимодействий — довольно простое занятие, и мы уже это делаем, в некоторой степени. Такой расчет становится тем сложнее, чем больше частиц начинают взаимодействовать друг с другом, но это вопрос вычислительной силы, а не принципиальной возможности.

На данный момент нам не хватает вычислительной мощи, чтобы симулировать целую вселенную. Физики могут сказать, что имитация работы вселенной на компьютере невозможна — не потому что это сложно, а потому что компьютер, который будет имитировать эту работу, должен быть больше самой вселенной. Почему? Потому что вам придется симулировать каждую частицу, а это потребует битов и байтов для хранения ее положения, спина и типа, а также для расчетов.

Не нужно быть профессором, чтобы понять невозможность этого мероприятия. Тем не менее у такого подхода есть свои недостатки, которые вытекают из математического склада большинства физиков.

Существует большая разница между моделированием целой вселенной и созданием виртуального ощущения жизни в целой вселенной.

И здесь нам снова поможет эвристика. Многие вычислительные сценарии были бы невозможны, если бы наш человеческий разум не было так легко обмануть. Расчеты в режиме реального времени, движущиеся изображения, видеопотоки и многое другое — все это дает нам ощущение, что все непрерывно и не прекращается, хотя обман лежит в самой основе привычной нам реальности.

Основной трюк остается одним и тем же: уменьшайте детализацию, пока не найдете лучший баланс между качеством и сложностью, чтобы наш разум не смог обнаружить разницу.

Есть много трюков, которые мы можем использовать, чтобы снизить необходимую расчетную мощность для имитации вселенной на том уровне, на котором сможем в нее поверить. Самый очевидный из них: не нужно рендерить то, на что никто не смотрит.

Вы наверняка знаете о принципе неопределенности Гейзенберга и эффекте наблюдателя. Современная физика говорит нам, что реальность, а точнее мельчайшие частицы, из которых она состоит, зависят от наблюдателя. Грубо говоря, формы не существуют, пока вы на них не смотрите. И попробуйте докажите обратное.

Следующий трюк, который вы можете использовать: создать вселенную, которая будет казаться огромной и безграничной, даже если это не так. Уменьшая детализацию удаленных объектов, можно сэкономить колоссальные объемы вычислительной мощности и генерировать объекты только по мере их обнаружения. К примеру, существует игра No Man’s Sky — в ней используется процедурная генерация миров по мере их обнаружения, и число их воистину бесконечно даже в этой маленькой компьютерной игре.

Скриншоты игры No Man’s Sky

И наконец, можно добавить основных физических принципов, которые существенно усложнят или сделают невозможным достижением любой другой планеты. Существа будут привязаны к своему собственному миру. (Скорость света или экспоненциально расширяющаяся вселенная, кхе-кхе).

Если объединить эти хитрости с математическими уловками вроде повторяющихся шаблонов и основ фрактальной геометрии, можно получить вполне рабочую эвристическую модель вселенной, которая будет казаться почти бесконечной и безграничной. И все же это не объясняет, почему теория виртуальной вселенной приобрела такую популярность. Почему же мы с высокой долей вероятности находимся в таком мире?

Аргумент моделирования и математика

Аргумент моделирования (симуляции) — это логическая цепочка, предложенная философом Оксфордского университета Ником Бостромом. Она основана на некоторых предпосылках, которые в зависимости от вашей точки зрения могут привести к заключению, что наша Вселенная вероятнее всего иллюзорна, смоделирована. Все просто:

  1. Смоделировать вселенную возможно (эту предпосылку мы рассмотрели выше).
  2. Каждая цивилизация либо вымирает (пессимистический взгляд), прежде чем станет технически способной смоделировать вселенную; либо теряет интерес к развитию технологии симуляции; либо продолжает развиваться, пока наконец не станет технически способной смоделировать вселенную — и моделирует. Это всего лишь вопрос времени. Способны ли мы на такое? Конечно, способны.
  3. Как только у такого общества все получится, оно создаст множество разных моделей; число симуляций будет совершенно несчетным. Ведь каждому захочется иметь свою вселенную.
  4. Когда модель достигнет определенного уровня (развития), она тоже создаст собственные имитации и так далее.

Если вы умеете в математику, очень скоро вы доберетесь до точки, когда вам придется признать, что вероятность проживания в реальном мире крайне мала, поскольку она просто мизерная по сравнению с числом существующих симуляций.

Если так посмотреть, может быть наш мир где-то на 20 ступеньке порочной лестницы симуляций, которая уходит из настоящего мира.

Первая мысль, которая возникает после осознания этого, повергает в шок и ужас. Потому что жить в виртуальном мире немного жутко. Но есть и хорошие новости: это не важно.

«Настоящий» — всего лишь слово, информация — всего лишь валюта

Мы уже выяснили, что наше понимание реальности очень отличается от самой реальности. Но давайте также предположим на секундочку, что наша вселенная — компьютерная модель. Симуляция. Имитация настоящего мира, который мы никогда не знали. Это допущение приводит нас к следующей логической цепочке.

  1. Если вселенная смоделирована, то она по сути является комбинацией битов и байтов (или кубитов, или еще чего-то) — то есть информацией.
  2. Если вселенная — это информация или данные, то и вы тоже. Все мы информация.
  3. Если все мы информация, то наши тела являются просто представлением этой информации — вроде аватара. У информации есть одно хорошее свойство: она не привязана к определенному объекту. Ее можно копировать, трансформировать, менять по желанию. Просто нужно иметь соответствующие инструменты.
  4. Любое общество, способное создать виртуальный мир, также способно дать вашей «личностной» информации новый аватар (потому что на это нужно меньше мозгов, чем на создание вселенной).

Все это приводит к мысли, что мы все информация, а информация не привязана к определенному объекту вроде вашего тела. Философы и теологи давно пытаются нащупать связь между душой и телом, причем ученые (те самые, которые с математическим взглядом на мир) скептично смотрят как на философов, так и на концепцию души. В конце концов, теория виртуального мира — это еще одна религия, немного более современная, чем другие. Или предлагающая более рациональное объяснение вселенной.

Давайте подытожим. Реальность — информация, как и мы. Симуляция является частью реальности, которая ее создает, а все, что рождается дальше, уже моделируется с точки зрения тех, кто был смоделирован. Следовательно, реальность — это то, что мы получаем вместе с чувственным опытом. С физической точки зрения, в квантовом пространстве нет объективности — только очень субъективная перспектива.

Выходит, все «реально», пока вы это чувствуете, видите, понимаете, осознаете и постигаете вместе с повседневным опытом. Вселенная, которая была смоделирована, настолько же реальна для своих обитателей, как и настоящий мир для нас. Стоит ли переживать? Нет. Разве что еще раз восхититься тем, как все… хорошо устроено.

Илья Хель