Тождественное равенство. Тождественно равные выражения: определение, примеры

§ 2. Тождественные выражения, тождество. Тождественное преобразование выражения. Доказательства тождеств

Найдем значения выражений 2(х - 1) 2х - 2 для данных значений переменной х. Результаты запишем в таблицу:

Можно прийти к выводу, что значения выражений 2(х - 1) 2х - 2 для каждого данного значения переменной х равны между собой. По распределительным свойством умножения относительно вычитания 2(х - 1) = 2х - 2. Поэтому и для любого другого значения переменной х значение выражения 2(х - 1) 2х - 2 тоже будут равны между собой. Такие выражения называют тождественно равными.

Например, синонимами являются выражения 2х + 3х и 5х, так как при каждом значении переменной х эти выражения приобретают одинаковых значений (это вытекает из распределительной свойства умножения относительно сложения, поскольку 2х + 3х = 5х).

Рассмотрим теперь выражения 3х + 2у и 5ху. Если х = 1 и в = 1, то соответствующие значения этих выражений равны между собой:

3х + 2у =3 ∙ 1 + 2 ∙ 1 =5; 5ху = 5 ∙ 1 ∙ 1 = 5.

Однако можно указать такие значения х и у, для которых значения этих выражений не будут между собой равными. Например, если х = 2; у = 0, то

3х + 2у = 3 ∙ 2 + 2 ∙ 0 = 6, 5ху = 5 ∙ 20 = 0.

Следовательно, существуют такие значения переменных, при которых соответствующие значения выражений 3х + 2у и 5ху не равны друг другу. Поэтому выражения 3х + 2у и 5ху не являются тождественно равными.

Исходя из вышеизложенного, тождественностями, в частности, являются равенства: 2(х - 1) = 2х - 2 и 2х + 3х = 5х.

Тождеством является каждое равенство, которым записано известные свойства действий над числами. Например,

а + b = b + а; (а + b) + с = а + (b + с); а(b + с) = ab + ас;

ab = bа; (аb)с = a(bc); a(b - с) = ab - ас.

Тождественностями есть и такие равенства:

а + 0 = а; а ∙ 0 = 0; а ∙ (-b) = -ab;

а + (-а) = 0; а ∙ 1 = а; а ∙ (-b) = аb.

1 + 2 + 3 = 6; 5 2 + 12 2 = 13 2 ; 12 ∙ (7 - 6) = 3 ∙ 4.

Если в выражении-5х + 2х - 9 свести подобные слагаемые, получим, что 5х + 2х - 9 = 7х - 9. В таком случае говорят, что выражение 5х + 2х - 9 заменили тождественным ему выражением 7х - 9.

Тождественные преобразования выражений с переменными выполняют, применяя свойства действий над числами. В частности, тождественными преобразованиями с раскрытие скобок, возведение подобных слагаемых и тому подобное.

Тождественные преобразования приходится выполнять при упрощении выражения, то есть замены некоторого выражения на тождественно равное ему выражение, которое должно короче запись.

Пример 1. Упростить выражение:

1) -0,3 m ∙ 5n;

2) 2(3х - 4) + 3(-4х + 7);

3) 2 + 5а - (а - 2b) + (3b - а).

1) -0,3 m ∙ 5n = -0,3 ∙ 5mn = -1,5 mn;

2) 2(3х 4) + 3(-4 + 7) = 6 x - 8 - 1 + 21 = 6x + 13;

3) 2 + 5а - (а - 2b) + (3b - a) = 2 + - а + 2 b + 3 b - а = 3а + 5b + 2.

Чтобы доказать, что равенство является тождеством (иначе говоря, чтобы доказать тождество, используют тождественные преобразования выражений.

Доказать тождество можно одним из следующих способов:

  • выполнить тождественные преобразования ее левой части, тем самым сведя к виду правой части;
  • выполнить тождественные преобразования ее правой части, тем самым сведя к виду левой части;
  • выполнить тождественные преобразования обеих ее частей, тем самым возведя обе части до одинаковых выражений.

Пример 2. Доказать тождество:

1) 2х - (х + 5) - 11 = х - 16;

2) 206 - 4а = 5(2а - 3b) - 7(2а - 5b);

3) 2(3x - 8) + 4(5х - 7) = 13(2x - 5) + 21.

Р а з в’ я з а н н я.

1) Преобразуем левую часть данного равенства:

2х - (х + 5) - 11 = - х - 5 - 11 = х - 16.

Тождественными преобразованиями выражение в левой части равенства свели к виду правой части и тем самым доказали, что данное равенство является тождеством.

2) Преобразуем правую часть данного равенства:

5(2а - 3b) - 7(2а - 5b) = 10а - 15 b - 14а + 35 b = 20b - 4а.

Тождественными преобразованиями правую часть равенства свели к виду левой части и тем самым доказали, что данное равенство является тождеством.

3) В этом случае удобно упростить как левую, так и правую части равенства и сравнить результаты:

2(3х - 8) + 4(5х - 7) = - 16 + 20х - 28 = 26х - 44;

13(2х - 5) + 21 = 26х - 65 + 21 = 26х - 44.

Тождественными преобразованиями левую и правую части равенства свели к одному и тому же виду: 26х - 44. Поэтому данное равенство является тождеством.

Какие выражения называют тождественными? Приведите пример тождественных выражений. Какое равенство называют тождеством? Приведите пример тождества. Что называют тождественным преобразованием выражения? Как доказать тождество?

  1. (Устно) Или есть выражения тождественно равными:

1) 2а + а и 3а;

2) 7х + 6 и 6 + 7х;

3) x + x + x и x 3 ;

4) 2(х - 2) и 2х - 4;

5) m - n и n - m;

6) 2а ∙ р и 2р ∙ а?

  1. Являются ли тождественно равными выражения:

1) 7х - 2х и 5х;

2) 5а - 4 и 4 - 5а;

3) 4m + n и n + 4m;

4) а + а и а 2 ;

5) 3(а - 4) и 3а - 12;

6) 5m ∙ n и 5m + n?

  1. (Устно) является Ли тождеством равенство:

1) 2а + 106 = 12аb;

2) 7р - 1 = -1 + 7р;

3) 3(х - у) = 3х - 5у?

  1. Раскройте скобки:
  1. Раскройте скобки:
  1. Сведите подобные слагаемые:
  1. Назовите несколько выражений, тождественных выражения 2а + 3а.
  2. Упростите выражение, используя переставляющейся и соединительную свойства умножения:

1) -2,5 х ∙ 4;

2) 4р ∙ (-1,5);

3) 0,2 х ∙ (0,3 г);

4)- х ∙ <-7у).

  1. Упростите выражение:

1) -2р ∙ 3,5;

2) 7а ∙ (-1,2);

3) 0,2 х ∙ (-3у);

4) - 1 m ∙ (-3n).

  1. (Устно) Упростите выражение:

1) 2х - 9 + 5х;

2) 7а - 3b + 2а + 3b;

4) 4а ∙ (-2b).

  1. Сведите подобные слагаемые:

1) 56 - 8а + 4b - а;

2) 17 - 2р + 3р + 19;

3) 1,8 а + 1,9 b + 2,8 а - 2,9 b;

4) 5 - 7с + 1,9 г + 6,9 с - 1,7 г.

1) 4(5х - 7) + 3х + 13;

2) 2(7 - 9а) - (4 - 18а);

3) 3(2р - 7) - 2(г - 3);

4) -(3m - 5) + 2(3m - 7).

  1. Раскройте скобки и сведите подобные слагаемые:

1) 3(8а - 4) + 6а;

2) 7р - 2(3р - 1);

3) 2(3x - 8) - 5(2x + 7);

4) 3(5m - 7) - (15m - 2).

1) 0,6 x + 0,4(x - 20), если x = 2,4;

2) 1,3(2а - 1) - 16,4, если а = 10;

3) 1,2(m - 5) - 1,8(10 - m), если m = -3,7;

4) 2x - 3(x + у) + 4у, если x = -1, у = 1.

  1. Упростите выражение и найдите его значение:

1) 0,7 x + 0,3(x - 4), если x = -0,7;

2) 1,7(у - 11) - 16,3, если в = 20;

3) 0,6(2а - 14) - 0,4(5а - 1), если а = -1;

4) 5(m - n) - 4m + 7n, если m = 1,8; n = -0,9.

  1. Докажите тождество:

1) -(2х - у)=у - 2х;

2) 2(x - 1) - 2x = -2;

3) 2(x - 3) + 3(x + 2) = 5x;

4) с - 2 = 5(с + 2) - 4(с + 3).

  1. Докажите тождество:

1) -(m - 3n) = 3n - m;

2) 7(2 - р) + 7р = 14;

3) 5а = 3(а - 4) + 2(а + 6);

4) 4(m - 3) + 3(m + 3) = 7m - 3.

  1. Длина одной из сторон треугольника а см, а длина каждой из двух других сторон на 2 см больше нее. Запишите в виде выражения периметр треугольника и упростите выражение.
  2. Ширина прямоугольника равна х см, а длина на 3 см больше ширины. Запишите в виде выражения периметр прямоугольника и упростите выражение.

1) х - (х - (2х - 3));

2) 5m - ((n - m) + 3n);

3) 4р - (3р - (2р - (г + 1)));

4) 5x - (2x - ((у - х) - 2у));

5) (6а - b) - (4 a – 33b);

6) - (2,7 m - 1,5 n) + (2n - 0,48 m).

  1. Раскройте скобки и упростите выражение:

1) а - (а - (3а - 1));

2) 12m - ((а - m) + 12а);

3) 5y - (6у - (7у - (8у - 1)));

6) (2,1 a - 2,8 b) - (1a – 1b).

  1. Докажите тождество:

1) 10x - (-(5x + 20)) = 5(3x + 4);

2) -(- 3р) - (-(8 - 5р)) = 2(4 - г);

3) 3(а - b - с) + 5(а - b) + 3с = 8(а - b).

  1. Докажите тождество:

1) 12а - ((8а - 16)) = -4(4 - 5а);

2) 4(х + у - <) + 5(х - t) - 4y - 9(х - t).

  1. Докажите, что значение выражения

1,8(m - 2) + 1,4(2 - m) + 0,2(1,7 - 2m) не зависит от значения переменной.

  1. Докажите, что при любом значении переменной значение выражения

а - (а - (5а + 2)) - 5(а - 8)

является одним и тем же числом.

  1. Докажите, что сумма трех последовательных четных чисел делится на 6.
  2. Докажите, что если n - натуральное число, то значение выражения -2(2,5 n - 7) + 2 (3n - 6) является четным числом.

Упражнения для повторения

  1. Сплав массой 1,6 кг содержит 15 % меди. Сколько кг меди содержится в этом сплаве?
  2. Сколько процентов составляет число 20 от своего:

1) квадрата;

  1. Турист 2 ч шел пешком и 3 ч ехал на велосипеде. Всего турист преодолел 56 км. Найдите, с какой скоростью турист ехал на велосипеде, если она на 12 км/ч больше за скорость, с которой он шел пешком.

Интересные задачи для учеников ленивых

  1. В чемпионате города по футболу участвуют 11 команд. Каждая команда играет с другими по одному матчу. Докажите, что в любой момент соревнований найдется команда, которая проведет к этому моменту четное число матчей или не провела еще ни одного.

Числа и выражения, из которых составлено исходное выражение, можно заменять тождественно равными им выражениями. Такое преобразование исходного выражения приводит к тождественно равному ему выражению.

Например, в выражении 3+x число 3 можно заменить суммой 1+2 , при этом получится выражение (1+2)+x , которое тождественно равно исходному выражению. Другой пример: в выражении 1+a 5 степень a 5 можно заменить тождественно равным ей произведением, например, вида a·a 4 . Это нам даст выражение 1+a·a 4 .

Данное преобразование, несомненно, искусственно, и обычно является подготовкой к каким-либо дальнейшим преобразованиям. Например, в сумме 4·x 3 +2·x 2 , учитывая свойства степени, слагаемое 4·x 3 можно представить в виде произведения 2·x 2 ·2·x . После такого преобразования исходное выражение примет вид 2·x 2 ·2·x+2·x 2 . Очевидно, слагаемые в полученной сумме имеют общий множитель 2·x 2 , таким образом, мы можем выполнить следующее преобразование - вынесение за скобки. После него мы придем к выражению: 2·x 2 ·(2·x+1) .

Прибавление и вычитание одного и того же числа

Другим искусственным преобразованием выражения является прибавление и одновременное вычитание одного и того же числа или выражения. Такое преобразование является тождественным, так как оно, по сути, эквивалентно прибавлению нуля, а прибавление нуля не меняет значения.

Рассмотрим пример. Возьмем выражение x 2 +2·x . Если к нему прибавить единицу и отнять единицу, то это позволит в дальнейшем выполнить еще одно тождественное преобразование - выделить квадрат двучлена : x 2 +2·x=x 2 +2·x+1−1=(x+1) 2 −1 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.

Основные свойства сложения и умножения чисел.

Переместительное свойство сложения: от перестановки слагаемых значение суммы не меняется. Для любых чисел a и b верно равенство

Сочетательное свойство сложения: чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего. Для любых чисел a, b и c верно равенство

Переместительное свойство умножения: от перестановки множителей значение произведения не изменяется. Для любых чисел а, b и c верно равенство

Сочетательное свойство умножения: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего.

Для любых чисел а, b и c верно равенство

Распределительное свойство: чтобы умножить число на сумму, можно умножить это число на каждое слагаемое и сложить полученные результаты. Для любых чисел a, b и c верно равенство

Из переместительного и сочетательного свойств сложения следует: в любой сумме можно как угодно переставлять слагаемые и произвольным образом объединять их в группы.

Пример 1 Вычислим сумму 1,23+13,5+4,27.

Для этого удобно объединить первое слагаемое с третьим. Получим:

1,23+13,5+4,27=(1,23+4,27)+13,5=5,5+13,5=19.

Из переместительного и сочетательного свойств умножения следует: в любом произведении можно как угодно переставлять множители и произвольным образом объединять их в группы.

Пример 2 Найдём значение произведения 1,8·0,25·64·0,5.

Объединив первый множитель с четвёртым, а второй с третьим, будем иметь:

1,8·0,25·64·0,5=(1,8·0,5)·(0,25·64)=0,9·16=14,4.

Распределительное свойство справедливо и в том случае, когда число умножается на сумму трёх и более слагаемых.

Например, для любых чисел a, b, c и d верно равенство

a(b+c+d)=ab+ac+ad.

Мы знаем, что вычитание можно заменить сложением, прибавив к уменьшаемому число, противоположное вычитаемому:

Это позволяет числовое выражение вида a-b считать суммой чисел a и -b, числовое выражение вида a+b-c-d считать суммой чисел a, b, -c, -d и т. п. Рассмотренные свойства действий справедливы и для таких сумм.

Пример 3 Найдём значение выражения 3,27-6,5-2,5+1,73.

Это выражение является суммой чисел 3,27, -6,5, -2,5 и 1,73. Применив свойства сложения, получим: 3,27-6,5-2,5+1,73=(3,27+1,73)+(-6,5-2,5)=5+(-9) =-4.

Пример 4 Вычислим произведение 36·().

Множитель можно рассматривать как сумму чисел и -. Используя распределительное свойство умножения, получим:

36()=36·-36·=9-10=-1.

Тождества

Определение. Два выражения, соответственные значения которых равны при любых значениях переменных, называются тождественно равными.

Определение. Равенство, верное при любых значениях переменных, называется тождеством.

Найдём значения выражений 3(x+y) и 3x+3y при x=5, y=4:

3(x+y)=3(5+4)=3·9=27,

3x+3y=3·5+3·4=15+12=27.

Мы получили один и тот же результат. Из распределительного свойства следует, что вообще при любых значениях переменных соответственные значения выражений 3(x+y) и 3x+3y равны.

Рассмотрим теперь выражения 2x+y и 2xy. При x=1, y=2 они принимают равные значения:

Однако можно указать такие значения x и y, при которых значения этих выражений не равны. Например, если x=3, y=4, то

Выражения 3(x+y) и 3x+3y являются тождественно равными, а выражения 2x+y и 2xy не являются тождественно равными.

Равенство 3(x+y)=x+3y, верное при любых значениях x и y, является тождеством.

Тождествами считают и верные числовые равенства.

Так, тождествами являются равенства, выражающие основные свойства действий над числами:

a+b=b+a, (a+b)+c=a+(b+c),

ab=ba, (ab)c=a(bc), a(b+c)=ab+ac.

Можно привести и другие примеры тождеств:

a+0=a, a+(-a)=0, a-b=a+(-b),

a·1=a, a·(-b)=-ab, (-a)(-b)=ab.

Тождественные преобразования выражений

Замену одного выражения другим, тождественно равным ему выражением называют тождественным преобразованием или просто преобразованием выражения.

Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Чтобы найти значение выражения xy-xz при заданных значениях x, y, z, надо выполнить три действия. Например, при x=2,3, y=0,8, z=0,2 получаем:

xy-xz=2,3·0,8-2,3·0,2=1,84-0,46=1,38.

Этот результат можно получить, выполнив лишь два действия, если воспользоваться выражением x(y-z), тождественно равным выражению xy-xz:

xy-xz=2,3(0,8-0,2)=2,3·0,6=1,38.

Мы упростили вычисления, заменив выражение xy-xz тождественно равным выражением x(y-z).

Тождественные преобразования выражений широко применяются при вычислении значений выражений и решении других задач. Некоторые тождественные преобразования уже приходилось выполнять, например, приведение подобных слагаемых, раскрытие скобок. Напомним правила выполнения этих преобразований:

чтобы привести подобные слагаемые, надо сложить их коэффициенты и результат умножить на общую буквенную часть;

если перед скобками стоит знак "плюс", то скобки можно опустить, сохранив знак каждого слагаемого, заключённого в скобки;

если перед скобками стоит знак "минус", то скобки можно опустить, изменив знак каждого слагаемого, заключённого в скобки.

Пример 1 Приведём подобные слагаемые в сумме 5x+2x-3x.

Воспользуемся правилом приведения подобных слагаемых:

5x+2x-3x=(5+2-3)x=4x.

Это преобразование основано на распределительном свойстве умножения.

Пример 2 Раскроем скобки в выражении 2a+(b-3c).

Применив правило раскрытия скобок, перед которыми стоит знак "плюс":

2a+(b-3c)=2a+b-3c.

Проведённое преобразование основано на сочетательном свойстве сложения.

Пример 3 Раскроем скобки в выражении a-(4b-c).

Воспользуемся правилом раскрытия скобок, перед которыми стоит знак "минус":

a-(4b-c)=a-4b+c.

Выполненное преобразование основано на распределительном свойстве умножения и сочетательном свойстве сложения. Покажем это. Представим в данном выражении второе слагаемое -(4b-c) в виде произведения (-1)(4b-c):

a-(4b-c)=a+(-1)(4b-c).

Применив указанные свойства действий, получим:

a-(4b-c)=a+(-1)(4b-c)=a+(-4b+c)=a-4b+c.

После того, как мы разобрались с понятием тождеств, можно переходить к изучению тождественно равных выражений. Цель данной статьи – объяснить, что это такое, и показать на примерах, какие выражения будут тождественно равными другим.

Yandex.RTB R-A-339285-1

Тождественно равные выражения: определение

Понятие тождественно равных выражений обычно изучается вместе с самим понятием тождества в рамках школьного курса алгебры. Приведем основное определение, взятое из одного учебника:

Определение 1

Тождественно равными друг другу будут такие выражения, значения которых будут одинаковы при любых возможных значениях переменных, входящих в их состав.

Также тождественно равными считаются такие числовые выражения, которым будут отвечать одни и те же значения.

Это достаточно широкое определение, которое будет верным для всех целых выражений, смысл которых при изменении значений переменных не меняется. Однако позже возникает необходимость уточнения данного определения, поскольку помимо целых существуют и другие виды выражений, которые не будут иметь смысла при определенных переменных. Отсюда возникает понятие допустимости и недопустимости тех или иных значений переменных, а также необходимость определять область допустимых значений. Сформулируем уточненное определение.

Определение 2

Тождественно равные выражения – это те выражения, значения которых равны друг другу при любых допустимых значениях переменных, входящих в их состав. Числовые выражения будут тождественно равными друг другу при условии одинаковых значений.

Фраза «при любых допустимых значениях переменных» указывает на все те значения переменных, при которых оба выражения будут иметь смысл. Это положение мы объясним позже, когда будем приводить примеры тождественно равных выражений.

Можно указать еще и такое определение:

Определение 3

Тождественно равными выражениями называются выражения, расположенные в одном тождестве с левой и правой стороны.

Примеры выражений, тождественно равных друг другу

Используя определения, данные выше, рассмотрим несколько примеров таких выражений.

Для начала возьмем числовые выражения.

Пример 1

Так, 2 + 4 и 4 + 2 будут тождественно равными друг другу, поскольку их результаты будут равны (6 и 6).

Пример 2

Точно так же тождественно равны выражения 3 и 30: 10 , (2 2) 3 и 2 6 (для вычисления значения последнего выражений нужно знать свойства степени).

Пример 3

А вот выражения 4 - 2 и 9 - 1 равными не будут, поскольку их значения разные.

Перейдем к примерам буквенных выражений. Тождественно равными будут a + b и b + a , причем от значений переменных это не зависит (равенство выражений в данном случае определяется переместительным свойством сложения).

Пример 4

Например, если a будет равно 4 , а b – 5 , то результаты все равно будут одинаковы.

Еще один пример тождественно равных выражений с буквами – 0 · x · y · z и 0 . Какими бы ни были значения переменных в этом случае, будучи умноженными на 0 , они дадут 0 . Неравные выражения – 6 · x и 8 · x , поскольку они не будут равны при любом x .

В том случае, если области допустимых значений переменных будут совпадать, например, в выражениях a + 6 и 6 + a или a · b · 0 и 0 , или x 4 и x , и значения самих выражений будут равны при любых переменных, то такие выражения считаются тождественно равными. Так, a + 8 = 8 + a при любом значении a , и a · b · 0 = 0 тоже, поскольку умножение на 0 любого числа дает в итоге 0 . Выражения x 4 и x будут тождественно равными при любых x из промежутка [ 0 , + ∞) .

Но область допустимого значения в одном выражении может отличаться от области другого.

Пример 5

Например, возьмем два выражения: x − 1 и x - 1 · x x . Для первого из них областью допустимых значений x будет все множество действительных чисел, а для второго – множество всех действующих чисел, за исключением нуля, ведь тогда мы получим 0 в знаменателе, а такое деление не определено. У этих двух выражений есть общая область значений, образованная пересечением двух отдельных областей. Можно сделать вывод, что оба выражения x - 1 · x x и x − 1 будут иметь смысл при любых действительных значениях переменных, за исключением 0 .

Основное свойство дроби также позволяет нам заключить, что x - 1 · x x и x − 1 будут равными при любом x, которое не является 0 . Значит, на общей области допустимых значений эти выражения будут тождественно равны друг другу, а при любом действительном x говорить о тождественном равенстве нельзя.

Если мы заменяем одно выражение на другое, которое является тождественно равным ему, то этот процесс называется тождественным преобразованием. Это понятие очень важно, и подробно о нем мы поговорим в отдельном материале.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter