Уравнения с двумя переменными и их геометрическое решение. Графическое решение неравенств, системы совокупностей неравенств с двумя переменными Графическое решение неравенств с двумя переменными

https://accounts.google.com


Подписи к слайдам:

Неравенства с двумя переменными и их системы Урок 1

Неравенства с двумя переменными Неравенства 3х – 4у  0; и являются неравенствами с двумя переменными х и у. Решением неравенства с двумя переменными называется пара значений переменных, обращающая его в верное числовое неравенство. При х = 5 и у = 3 неравенство 3х - 4у  0 обращается в верное числовое неравенство 3  0. Пара чисел (5;3) является решением данного неравенства. Пара чисел (3;5) не является его решением.

Является ли пара чисел (-2; 3) решением неравенства: № 482 (б, в) Не является Является

Решением неравенства называется упорядоченная пара действительных чисел, обращающая это неравенство в верное числовое неравенство. Графически это соответствует заданию точки координатной плоскости. Решить неравенство - значит найти множество его решений

Неравенства с двумя переменными имеют вид: Множество решения неравенства - совокупность всех точек координатной плоскости, удовлетворяющих заданному неравенству.

Множества решения неравенства F(x,y) ≥ 0 х у F(x,y)≤0 х у

F(x, у)>0 F(x, у)

Правило пробной точки Построить F(x ; y)=0 Взяв из какой - либо области пробную точку установить, являются ли ее координаты решением неравенства Сделать вывод о решении неравенства х у 1 1 2 А(1;2) F(x ; y)=0

Линейные неравенства с двумя переменными Линейным неравенством с двумя переменными называется неравенство вида ax + bx +c  0 или ax + bx +c

Найдите ошибку! № 484 (б) -4 2 x 2 -6 y 6 -2 0 4 -2 - 4

Решить графически неравенство: -1 -1 0 x 1 -2 y -2 2 2 1 Строим сплошными линиями графики:

Определим знак неравенства в каждой из областей -1 -1 0 x 1 -2 y -2 2 2 1 3 4 - + 1 + 2 - 7 + 6 - 5 +

Решение неравенства - множество точек, из областей, содержащих знак плюс и решения уравнения -1 -1 0 x 1 -2 y -2 2 2 1 3 4 - + 1 + 2 - 7 + 6 - 5 +

Решаем вместе № 485 (б) № 486 (б, г) № 1. Задайте неравенством и изобразите на координатной плоскости множество точек, у которых: а) абсцисса больше ординаты; б) сумма абсциссы и ординаты больше их удвоенной разности.

Решаем вместе № 2. Задайте неравенством открытую полуплоскость, расположенную выше прямой АВ, проходящей через точки А(1;4) и В(3;5). Ответ: у  0,5х +3,5 № 3. При каких значениях b множество решений неравенства 3х – b у + 7  0 представляет собой открытую полуплоскость, расположенную выше прямой 3х – b у + 7 = 0. Ответ: b  0.

Домашнее задание П. 21, № 483; № 484(в,г); № 485(а); № 486(в).

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Неравенства с двумя переменными и их системы Урок 2

Системы неравенств с двумя переменными

Решением системы неравенств с двумя переменными называется пара значений переменных, которая каждое из неравенств системы в верное числовое неравенство. № 1. Изобразить множество решений систем неравенств. № 496 (устно)

а) x у 2 2 x у 2 2 б)

Решаем вместе № 1. При каких значениях k система неравенств задаёт на координатной плоскости треугольник? Ответ: 0

Решаем вместе x у 2 2 2 2 № 2. На рисунке изображён треугольник с вершинами А(0;5), В(4;0), С(1;-2), D(-4 ;2). Задайте этот четырёхугольник системой неравенств. А В С D

Решаем вместе № 3. При каких k и b множеством точек координатной плоскости, задаваемым системой неравенств является: а)полоса; б) угол; в) пустое множество. Ответ: а) k= 2,b  3; б) k ≠ 2, b – любое число; в) k = 2; b

Решаем вместе № 4. Какая фигура задаётся уравнением? (устно) 1) 2) 3) № 5. Изобразите на координатной плоскости множество решений точек, задаваемое неравенством.

Решаем вместе № 497(в,г), 498(в)

Домашнее задание П.22 №496, №497(а,б), №498(а,б), № 504.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Неравенства с двумя переменными и их системы Урок 3

Найдите ошибку! -4 2 x 2 -6 y 6 -2 0 4 -2 - 4

Найдите ошибку! | | | | | | | | | | | | | | | | | | 1 x y 2

Определите неравенство 0 - 6 - 1 5 3 1 2 у х - 3 - 2 1 -3 4

0 - 6 - 1 5 3 1 2 у х - 3 - 2 1 -3 4 Определите неравенство

0 - 3 - 1 5 3 1 2 у х - 3 - 2 1 Определите знак неравенства ≤

Решить графически систему неравенств -1 -1 0 x 1 -2 y -2 2 2 1

Неравенства и системы неравенств высших степеней с двумя переменными № 1. Изобразите на координатной плоскости множество точек, задаваемых системой неравенств

Неравенства и системы неравенств высших степеней с двумя переменными № 2. Изобразите на координатной плоскости множество точек, задаваемых системой неравенств

Неравенства и системы неравенств высших степеней с двумя переменными № 3. Изобразите на координатной плоскости множество точек, задаваемых системой неравенств Преобразуем первое неравенство системы:

Неравенства и системы неравенств высших степеней с двумя переменными Получим равносильную систему

Неравенства и системы неравенств высших степеней с двумя переменными № 4. Изобразите на координатной плоскости множество точек, задаваемых системой неравенств

Решаем вместе № 502 Сборник Галицкого. № 9.66 б) y ≤ |3x -2| 0 - 6 - 1 5 3 1 2 у х - 3 - 2 1 -3 4

. № 9.66(в) Решаем вместе 0 - 6 - 1 5 3 1 2 у х - 3 - 2 1 -3 4 |y| ≥ 3x - 2

Решаем вместе № 9.66(г) 0 - 6 - 1 5 3 1 2 у х - 3 - 2 1 -3 4 |y|

Решить неравенство: x y -1 -1 0 1 -2 -2 2 2 1

0 - 6 - 1 5 3 1 2 у х - 3 - 2 1 -3 4 Запишите систему неравенств

11:11 3) Какую фигуру задает множество решений системы неравенств? Найдите площадь каждой фигуры. 6)Сколько пар натуральных чисел являются решениями системы неравенств? Вычислите сумму всех таких чисел. Решение тренировочных упражнений 2) Запишите систему неравенств с двумя переменными, множество решений которой изображено на рисунке 0 2 х у 2 1) Изобразите на координатной плоскости множество решений системы: 4) Задайте системой неравенств кольцо, изображенное на рисунке. 5)Решите систему неравенств у х 0 5 10 5 10

Решение тренировочных упражнений 7) Вычислите площадь фигуры, заданной множеством решений системы неравенств и найдите наибольшее расстояние между точками этой фигуры 8) При каком значении m система неравенств имеет только одно решение? 9)Укажите какие-нибудь значения k и b , при которых система неравенств задает на координатной плоскости: а) полосу; б) угол.

Это интересно Английский математик Томас Гарриот (Harriot T., 1560-1621) ввёл знакомый нам знак неравенства, аргументируя его так: "Если символом равенства служат два параллельных отрезка, то символом неравенства должны быть пересекающиеся отрезки". В 1585 году молодой Гарриот был послан королевой Англии в исследовательскую экспедицию по Северной Америке. Там он увидел популярную среди индейцев татуировку в виде Вероятно поэтому Гарриот предложил знак неравенства в двух его видах: ">" больше, чем… и "

Это интересно Символы ≤ и ≥ нестрогого сравнения предложил Валлис в 1670 году. Первоначально черта была выше знака сравнения, а не под ним, как сейчас. Общее распространение эти символы получили после поддержки французского математика Пьера Бугера (1734), у которого они приобрели современный вид.


Видеоурок «Неравенства с двумя переменными» предназначен для обучения алгебре по данной теме в 9 классе общеобразовательной школы. Видеоурок содержит описание теоретических основ решения неравенств, подробно описывает процесс решения неравенств графическим способом, его особенности, демонстрирует примеры решения заданий по теме. Задача данного видеоурока - при помощи наглядного представления информации облегчить понимание материала, способствовать формированию умений в решении задач с применением изученных математических методов.

Основными инструментами видеоурока являются использование анимации в представлении графиков и теоретических сведений, выделение понятий, особенностей, важных для понимания и запоминания материала, цветом и другими графическими способами, голосовое сопровождение объяснения с целью более легкого запоминания информации и формирования умения использования математического языка.

Видеоурок начинается и представления темы и примера, демонстрирующего понятие решения неравенства. Для формирования понимания смысла понятия решения представлено неравенство 3х 2 -у<10, в которое подставляется пара значений х=2 и у=6. Демонстрируется, как после подстановки данных значений неравенство становится верным. Понятие решения данного неравенства как пары значений (2;6) выведено на экран, подчеркивая его важность. Затем представляется определение рассмотренного понятия для запоминания его учениками или записи в тетрадь.

Важной частью умения решать неравенства является умение изобразить на координатной плоскости множество его решений. Формирование такого умения в данном уроке начинается с демонстрации нахождения множества решений линейных неравенств ax+byc. Отмечаются особенности задания неравенства - х и у являются переменными, a, b, c - некоторыми числами, среди которых a и b не равны нулю.

Примером такого неравенства является х+3у>6. Чтобы преобразовать неравенство в равносильное неравенство, отражающее зависимость значений у от значений х, обе части неравенства делятся на 3, у остается в одной части уравнения, а х переносится в другую. Произвольно выбирается значение х=3 для подстановки в неравенство. Отмечается, что данное значение х подставить в неравенство и заменить знак неравенства знаком равенства, можно найти соответствующее значение у=1. Пара (3;1) будет являться решением уравнения у=-(1/3)х+2. Если же подставлять любые значения у, большие 1, то неравенство с данным значением х будет верно: (3;2), (3;8) и др. Аналогично данному процессу нахождения решения рассматривается общий случай для поиска множества решений данного неравенства. Поиск множества решений неравенства начинается с подстановки некоторого значения х 0 . В правой части неравенства получается выражение -(1/3)х 0 +2. Некоторая пара чисел (х 0 ;у 0) является решением уравнения у=-(1/3)х+2. Соответственно решениями неравенства у>-(1/3)х 0 +2 будут соответствующие пары значений с х 0 , где у больше значений у 0 . То есть решениями этого неравенства будут пары значений (х 0 ;у).

Чтобы найти на координатной плоскости множество решений неравенства х+3у>6, на ней демонстрируется построение прямой, соответствующей уравнению у=-(1/3)х+2. На данной прямой отмечается точка М с координатами (х 0 ;у 0). При этом отмечается, что все точки К(х 0 ;у) с ординатами у>у 0 , то есть расположенные выше данной прямой, будут удовлетворять условиям неравенства у>-(1/3)х+2. Из анализа делается вывод о том, что данным неравенство задается множество точек, которые располагаются выше прямой у=-(1/3)х+2. Это множество точек составляют полуплоскость над данной прямой. Так как неравенство строгое, сама прямая не входит в число решений. На рисунке данный факт отмечен пунктирным обозначением.

Обобщая данные, полученные в результате описания решения неравенства х+3у>6, можно говорить о том, что прямая х+3у=6 разбивается плоскость на две полуплоскости, при этом расположенная выше полуплоскость отражает множество значений удовлетворяющих неравенству х+3у>6, а распложенная ниже прямой - решение неравенства х+3у<6. Данный вывод является важным для понимания, каким образом решаются неравенства, поэтому выведен на экран отдельно в рамке.

Далее рассматривается пример решения нестрогого неравенства второй степени у>=(х-3) 2 . Для определения множества решений рядом на рисунке строится парабола у=(х-3) 2 . На параболе отмечается точка М(х 0 ;у 0), значения которой будут решениями уравнения у=(х-3) 2 . В данной точке строится перпендикуляр, на котором выше параболы отмечается точка К(х 0 ;у), которая будет решением неравенства у>(х-3) 2 . Можно сделать вывод о том, что исходному неравенству удовлетворяют координаты точек, расположенных на данной параболе у=(х-3) 2 и выше ее. На рисунке данную область решений отмечают штрихованием.

Следующим примером, демонстрирующим положение на плоскости точек, являющихся решением неравенства второй степени, является описание решения неравенства х 2 +у 2 <=9. На координатной плоскости строится окружность радиусом 3 с центром в начале координат. Отмечается, что решениями уравнения будут точки, сумма квадратов координат которых не превышает квадрата радиуса. Также отмечается, что окружность х 2 +у 2 =9 разбивает плоскость на области внутри окружности и вне круга. Очевидно, что множество точек внутренней части круга удовлетворяют неравенству х 2 +у 2 <9, а внешняя часть - неравенству х 2 +у 2 >9. Соответственно, решением исходного неравенства будет множество точек окружности и области внутри ее.

Далее рассматривается решение уравнения ху>8. На координатной плоскости рядом с заданием строится гипербола, удовлетворяющая уравнению ху=8. Отмечается точка М(х 0 ;у 0), принадлежащая гиперболе и К(х 0 ;у) выше ее параллельно оси у. Очевидно, что координаты точки К соответствуют неравенству ху>8, так как произведение координат данной точки превосходит 8. Указывается, что таким же способом доказывается соответствие точек, принадлежащих области В, неравенству ху<8. Следовательно, решением неравенства ху>8 будет множество точек, лежащих в областях А и С.

Видеоурок «Неравенства с двумя переменными» может послужить наглядным пособием учителю на уроке. Также материал поможет ученику, самостоятельно осваивающему материал. Полезно использование видеоурока при дистанционном обучении.

Видеоурок «Системы неравенств с двумя переменными» содержит наглядный учебный материал по данной теме. В урок включено рассмотрение понятия о решении системы неравенств с двумя переменными, примеров решения подобных систем графическим способом. Задача данного видеоурока - формировать умение учеников решать системы неравенств с двумя переменными графическим способом, облегчить понимание процесса поиска решений таких систем и запоминания метода решения.

Каждое описание решения сопровождается рисунками, которые отображают решение задачи на координатной плоскости. На таких рисунках наглядно показаны особенности построения графиков и расположения точек, соответствующих решению. Все важные детали и понятия выделены при помощи цвета. Таким образом, видеоурок является удобным инструментом для решения задач учителя на уроке, освобождает учителя от подачи стандартного блока материала для проведения индивидуальной работы с учениками.

Видеоурок начинается с представления темы и рассмотрения примера поиска решений системы, состоящей из неравенств x<=y 2 и у<х+3. Примером точки, координаты которой удовлетворяют условиям обеих неравенств, является (1;3). Отмечается, что, так как данная пара значений является решением обоих неравенств, то она является одним из множества решений. А все множество решений будет охватывать пересечение множеств, которые являются решениями каждого из неравенств. Данный вывод выделен в рамку для запоминания и указания на его важность. Далее указывается, что множество решений на координатной плоскости представляет собой множество точек, которые являются общими для множеств, представляющих решения каждого из неравенств.

Понимание сделанных выводов о решении системы неравенств закрепляется рассмотрением примеров. Первым рассматривается решение системы неравенств х 2 +у 2 <=9 и x+y>=2. Очевидно, что решения первого неравенства на координатной плоскости включают окружность х 2 +у 2 =9 и область внутри нее. Эта область на рисунке заполняется горизонтальной штриховкой. Множество решений неравенства x+y>=2 включает прямую x+y=2 и полуплоскость, расположенную выше. Данная область также обозначается на плоскости штрихами другого направления. Теперь можно определить пересечение двух множеств решений на рисунке. Оно заключено в сегменте круга х 2 +у 2 <=9, который покрыт штриховкой полуплоскости x+y>=2.

Далее разбирается решение системы линейных неравенств y>=x-3 и y>=-2x+4. На рисунке рядом с условием задания строится координатная плоскость. На ней строится прямая, соответствующая решениям уравнения y=x-3. Областью решения неравенства y>=x-3 будет область, расположенная над данной прямой. Она заштриховывается. Множество решений второго неравенства располагается над прямой y=-2x+4. Данная прямая также строится на той же координатной плоскости и область решений штрихуется. Пересечением двух множеств является угол, построенный двумя прямыми, вместе с его внутренней областью. Область решений системы неравенств заполнена двойной штриховкой.

При рассмотрении третьего примера описан случай, когда графиками уравнений, соответствующих неравенствам системы, являются параллельные прямые. Решить необходимо систему неравенств y<=3x+1 и y>=3x-2. На координатной плоскости строится прямая, соответствующая уравнению y=3x+1. Область значений, соответствующих решениям неравенства y<=3x+1, лежит ниже данной прямой. Множество решений второго неравенства лежит выше прямой y=3x-2. При построении отмечается, что данные прямые параллельны. Область, являющаяся пересечением двух множеств решений, представляет собой полосу между данными прямыми.

Видеоурок «Системы неравенств с двумя переменными» может применяться в качестве наглядного пособия на уроке в школе или заменить объяснение учителя при самостоятельном изучении материала. Подробное понятное объяснение решения систем неравенств на координатной плоскости может помочь подать материал при дистанционном обучении.

Фестиваль исследовательских и творческих работ учащихся

«Портфолио»

Уравнения и неравенства с двумя переменными

и их геометрическое решение.

Федорович Юлия

ученица 10 класса

МОУ СОШ №26

Руководитель:

Кульпина Е.В.

учитель математики

МОУ СОШ №26

г.Зима, 2007г.

    Введение.

2. Уравнения с двумя переменными, их геометрическое решение и применение.

2.1 Системы уравнений.

2.2 Примеры решения уравнений с двумя переменными.

2.3. Примеры решения систем уравнений с двумя переменными.

3. Неравенства и их геометрическое решение.

3.1. Примеры решения неравенств с двумя переменными

4. Графический метод решения задач с параметрами.

5.Заключение.

6.Список использованной литературы.

1.Введение

Я взяла работу на эту тему, потому что изучение поведения функций и построение их графиков является важным разделом математики, и свободное владение техникой построения графиков часто помогает решать многие задачи, и порой является единственным средством их решения. Также графический метод решения уравнений позволяет определить число корней уравнения, значения корня, найти приближенные, а иногда точные значения корней.

В технике и физике часто используются именно графическим способом задания функций. Ученый- сейсмолог, анализируя сейсмограмму, узнает, когда было землетрясение, где оно произошло, определяет силу и характер толчков. Врач, исследовавший больного, может по кардиограмме судить о нарушениях сердечной деятельности: изучение кардиограммы помогает правильно поставить диагноз заболевания. Инженер – радиоэлектроник по характеристике полупроводникового элемента выбирает наиболее подходящий режим его работы. Количество таких примеров легко увеличить. Более того, по мере развития математики растет проникновение графического метода в самые различные области жизни человека. В частности, использование функциональных зависимостей и построение графиков широко применяется в экономике. Значит, растет и важность изучения рассматриваемого раздела математики в школе, в вузе, и особенно- важность самостоятельной работы над ним.

С развитием вычислительной техники, с ее прекрасными графическими средствами и высокими скоростями выполнения операций, работа с графиками функций стала значительно интересней, наглядней, увлекательней. Имея аналитическое представление некоторой зависимости, можно построить график быстро, в нужном масштабе и цвете, используя для этого различные программные средства.

    Уравнения с двумя переменными и их геометрическое решение.

Уравнение вида f (x ; y )=0 называется уравнением с двумя переменными.

Решением уравнения с двумя переменными называется упорядоченная пара чисел (α, β), при подстановке которой (α – вместо х, β – вместо у) в уравнении имеет смысл выражение f (α; β)=0

Например, для уравнения ((х +1)) 2 + у 2 =0 упорядоченная пара чисел (0;0) есть его решение, так как выражение ((0+1)
) 2 +0 2 имеет смысл и равно нулю, но упорядоченная пара чисел (-1;0) не является решением, так как не определен
и поэтому выражение ((-1+1)) 2 +0 2 не имеет смысла.

Решить уравнение – значит найти множество всех его решений.

Уравнения с двумя переменными может:

а) иметь одно решение. Например, уравнение х 2 +у 2 =0 имеет одно решение (0;0);

б) иметь несколько решений. Например, данное уравнение (‌‌│х │- 1) 2 +(│у │- 2) 2 имеет четыре решения: (1;2),(-1;2),(1;-2),(-1;-2);

в) не иметь решений. Например уравнение х 2 2 + 1=0 не имеет решений;

г) иметь бесконечно много решений. Например, такое уравнение, как х-у+1=0 имеет бесконечно много решений

Иногда бывает полезной геометрическая интерпретация уравнения f (x ; y )= g (x ; y ) . На координатной плоскости хОу множество всех решений – некоторое множество точек. В ряде случаев это множество точек есть некоторая линия, и в этом случае говорят, что уравнение f (x ; y )= g (x ; y ) есть уравнение этой линии, например:

рис.1 рис.2 рис.3




рис.4 рис.5 рис.6

2.1 Системы уравнений

Пусть заданы два уравнения с неизвестными х и у

F 1 (x ; y )=0 и F 2 (x ; y )=0

Будем считать, что первое из этих уравнений задаёт на плоскости переменных х и у линию Г 1 , а второе - линию Г 2 . Чтобы найти точки пересечения этих линий, надо найти все пары чисел (α, β), такие, что при замене в данных уравнениях неизвестной х на число α и неизвестной у на число β, получаются верные числовые равенства. Если поставлена задача об отыскании всех таких пар чисел, то говорят, что требуется решить систему уравнений и записывают эту систему с помощью фигурной скобки в следующем виде

Решением системы называется такая пара чисел (α, β), которая является решением как первого, так и второго уравнений данной системы.

Решить систему – значить найти множество всех ее решений, или доказать, что решений нет.

В ряде случаев геометрическая интерпретация каждого уравнения системы, ибо решения системы соответствуют точкам пересечения линий, задаваемых каждым уравнением системы. Часто геометрическая интерпретация позволяет лишь догадаться о числе решений.

Например, выясним, сколько решений имеет система уравнений

Первое из уравнений системы задает окружность радиусом R=
c центром (0;0), а второе – параболу, вершина которой находится в той же точке. Теперь ясно, что имеются две точки пересечения этих линий. Следовательно, система имеет два решения – это (1;1) и (-1;1)

      Примеры решения уравнений с двумя переменными

Изобразите все точки с координатами (х;у), для которых выполняется равенство.

1. (х-1)(2у-3)=0

Данное уравнение равносильно совокупности двух уравнений


Каждое из полученных уравнений определяет на координатной плоскости прямую.

2. (х-у)(х 2 -4)=0

Решением данного уравнения является множество точек плоскости, координаты, которых удовлетворяют совокупности уравнений


На координатной плоскости решение будет выглядеть так

3.
2

Решение: Воспользуемся определением абсолютной величины и заменим данное уравнение равносильной совокупностью двух систем



у=х 2 +2х у = -х 2 +2х

х 2 +2х=0 х в =1 у в =1

х(х+2)=0

х в =-1 у в =1-2=-1

      Примеры решения систем.

Решить систему графическим способом:

1)

В каждом уравнении выразим переменную у через х и построим графики соответствующих функций:

у =
+1

а) построим график функции у=

График функции у =+1 получается из графика у = путем сдвига на две единицы вправо и на одну единицу вверх:

у = - 0,5х+2 - это линейная функция, графиком которой является прямая

Решением данной системы являются координаты точки пересечения графиков функций.

Ответ (2;1)

3.Неравенства и их геометрическое решение.

Неравенство с двумя неизвестными можно представить так: f (x ; y ) >0, где Z = f (x ; y ) – функция двух аргументов х и у . Если мы рассмотрим уравнение f (x ; y ) = 0, то можно построить его геометрическое изображение, т.е. множество точек М(х;у), координаты которых удовлетворяют этому уравнению. В каждой из областей функция f сохраняет знак, остается выбрать те из них, в которых f (x ;у) >0.

Рассмотрим линейное неравенство ax + by + c >0. Если один из коэффициентов a или b отличен от нуля, то уравнение ax + by + c =0 задает прямую, разбивающую плоскость на две полуплоскости. В каждой из них будет сохраняться знак функции z = ax + by + c . Для определения знака можно взять любую точку полуплоскости и вычислить значение функции z в этой точке.

Например:

3х – 2у +6 >0.

f (x ;у) = 3х- 2у +6,

f (-3;0) = -3 <0,

f (0;0) = 6>0.

Решением неравенства является множество точек правой полуплоскости (закрашенной на рисунке 1)

Рис. 1

Неравенству │y│+0,5 ≤
удовлетворяет множество точек плоскости (х;у), заштрихованной на рисунке 2. Для построения данной области воспользуемся определением абсолютной величины и способами построения графика функции с помощью параллельного переноса графика функции по оси ОХ или ОУ



Р
ис.2


f (x ; y ) =

f (0;0) = -1,5<0

f (2;2)= 2,1>0

3.1. Примеры решения неравенств с двумя переменными.

Изобразите множество решений неравенства

а)

    у=х 2 -2х

    у=|х 2 -2х|

    |у|=|х 2 -2х|

f (x ; y )=

f (1;0)=-1<0

f (3;0) = -3<0

f (1;2) =1>0

f (-2;-2) = -6<0

f (1;-2)=1>0

Решением неравенства является закрашенная область на рисунке 3. Для построения данной области применялись способы построения графика с модулем

Рис. 3

1)
2)
<0



f(2;0)=3>0

f(0;2)=-1<0

f(-2;0)=1>0

f(0;-2)=3>0


Для решения данного неравенства воспользуемся определением абсолютной величины


3.2. Примеры решения систем неравенств.

Изобразите множество решений системы неравенств на координатной плоскости

а)

б)


4. Графический метод решения задач с параметрами

Задачами с параметрами называют задачи, в которых участвуют фактически функции нескольких переменных, из которых одна переменная х выбрана в качестве независимой переменной, а оставшиеся играют роль параметров. При решении таких задач особенно эффективны графические методы. Приведем примеры


По рисунку видно, что прямая у=4 пересекает график функции у=
в трех точках. Значит, исходное уравнение имеет три решения при а= 4.

    Найти все значения параметра а , при которых уравнение х 2 -6|х|+5=а имеет ровно три различных корня.

Решение: Построим график функции у=х 2 -6х+5 для х ≥0 и отражаем его зеркально относительно оси ординат. Семейство прямых, параллельных оси абсцисс у=а , пересекает график в трех точках при а =5

3. Найти все значения а, при которых неравенство
имеет хотя бы одно положительное решение.

Множество точек координатной плоскости, значения координаты х и параметра а которых удовлетворяют данному неравенству, представляют собой объединение двух областей, ограниченных параболами. Решением данного задания является множество точек, расположенных в правой полуплоскости при


х+а+х<2

Любому учителю известно, что уроки, посвященные изучению графиков функций, требуют построения большого количества графиков. Чем больше будет построено графиков, тем лучше учащиеся освоят данный материал. Но возникает проблема – ограниченное время урока. Перед учителем встает вопрос о выборе средств и методов обучения с целью обеспечения максимальной эффективности изучения математики. В этом случае приходят на помощь компьютерные технологии. В настоящее время существует много программ, с помощью которых можно рисовать графики функций. Они дают возможность проиллюстрировать свойства функций быстро и наглядно, что повышает и активизирует познавательную деятельность учащихся. На представленном уроке используется программа Advanced Grapher.

Класс : 9.

Технологии: Информационно-коммуникативные технологии.

Оборудование : Компьютер; проектор, интерактивная доска; программа «Advanced Grapher», классная доска; учебник «Алгебра 9 класс». (Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова. Москва «Просвещение», 2011г.), рабочая тетрадь, карточки-тесты.

Цели:

  • Образовательные – ввести понятие решения системы неравенств с двумя переменными; формировать умение решать системы неравенств с двумя переменными, отработать навыки построения множества решений систем неравенств на координатной плоскости;
  • Развивающие – формирование графической и функциональной культуры учащихся;
  • Воспитательные – воспитание интереса к математике и повышение мотивации учебной деятельности через внедрение компьютерных технологий в процесс обучения, побуждать учеников к самоконтролю, взаимоконтролю, самоанализу своей учебной деятельности.

Ход урока

Актуализация знаний .

Учитель. На доске вы видите два неравенства

х 2 +3ху –у 2 <20 и (х-3) 2 +(у-4) 2 <2

  • Как они называются? [Неравенства с двумя переменными]
  • Что является решением такого неравенства? [Пара чисел, которые удовлетворяют неравенству]
  • Определите, является ли пара чисел (-2;3) решением какого либо из этих неравенств? [Являются решением только первого неравенства]
  • Найдите свою пару чисел которая являлась бы решением второго неравенства [Например 3 и 4, 4 и 4, 3 и 5 и т.д.]

Проверка домашнего задания.

Учитель Давайте вспомним, как решаются такие неравенства.

На примере неравенств х 2 +2 > у и (x -1)^2+(y +2)^2<4 рассказать о решениинеравенств с двумя переменными.

Двое учащихся рассказывают и показывают решение неравенств на доске.

  • Чем отличается решение строгого неравенства от нестрогого? [линия функии штриховая]
  • Как можно проверить правильно ли вы выбрали множество? [Правило пробной точки]

Проверим решение №484б и г с помощью программы «Advanced Grapher» на интерактивной доске. (Учитель открывает готовый файл Приложение 1.agr. В окне слева выбирает первую и вторую функцию

Чтобы проверить решение второго неравенства отмените построение предыдущих двух и выберите следующие две)


[Учащиеся сравнивают решение в тетрадях с изображением на интерактивной доске.]

Тестовая работа.

на готовых карточках- координатных плоскостях (Приложение 2) показать решения неравенств а) х>2, б) у<-2; в) -3<у<3; г)│х│<у; д)│ х-2│>у с последующей проверкой на интерактивной доске с помощью программы « Advanced Grapher ». (Приложение 1. agr)

Новая тема.

Учитель. Тема сегодняшнего урока «Системы неравенств с двумя переменными»

  • Как вы думаете, каковы цели сегодняшнего урока?
  • Чему вы должны научиться к концу сегодняшнего урока?

Рассмотрим систему неравенств с двумя переменными.

  • Как вы думаете, что же может, является решением такой системы? [Пара чисел]
  • Какие из пар (4;2), (-5;1), (-2;-1) являются решением этой системы? [Первая]
  • Как по-вашему, сколько решений может иметь такая система? [Множество]
  • Что значит решить систему?c[Найти все решения, или доказать, что таких решений нет]

Учитель. Давайте выясним, какое множество точек задает на координатной плоскости система. Как это сделать? [Решить по отдельности каждое неравенство и найти их пересечение решений.]

Пример 1

Ребята в тетрадях рисуют графики функций, а учитель поэтапно показывает графики на интерактивной доске (Приложение 1.agr)

Как можно проверить правильно ли показано множество решений? [Правило пробной точки]

Пример 2. Выполнение в тетради, затем поэтапная проверка на интерактивной доске (Приложение 1.agr)


Пример 3 Выполнение в тетради, затем поэтапная проверка на интерактивной доске (Приложение 1.agr)


Закрепление .

№497 а, в на обычной доске [Одновременное решение на доске и в тетрадях]

Итоги урока .

– Что называется решением системы неравенств с двумя переменными?

– Как решаются системы линейных неравенств с двумя переменными?

– Как проверить верно ли выбрано решение?

Домашнее задание.

№ 497 (б, г), Доп.задание: Изобразите на координатной плоскости множество решений системы неравенств.