В лизосомах клетки, как и в митохондриях, происходит. А32

Морфобиологическая характеристика основных органелл клетки (рибосомы, митохондрии, комплекс Гольджи, лизосомы, эндоплазматический ретикулум).

1. Рибосомы

· Строение : ультрамикроскопические органеллы, округлой или грибовидной формы, состоящие из 2х частей – субъединиц. Они не имеют мембранного строения и состоят из белка и р-РНК. Субъединицы образуются в ядрышке. Объединяются вдоль молекулы и-РНК в цепочки – полирибосомы – в цитоплазме.

· Функции : универсальные органеллы всех клеток животных и растений. Находятся в цитоплазме в свободном состоянии или на мембранах ЭПС; кроме того, что содержатся в митохондриях и хлоропластах. В рибосомах синтезируются белки по принипу матричного синтеза; образуется полипептидная цепочка – первичная стурктура молекулы белка.

2. Митохондрии

· Строение : микроскопические органеллы имеющие 2х мембранное строение. Внешняя мембрана – гладкая, внутренняя – обретает выросты (кристы). В полужидком веестве митохондрии находятся ферменты: рибосомы, ДНК, РНК. Размножаются делением.

· Функции : являются дыхательным и энергетическим центром клетки.

3. Комплекс Гольджи

· Строение : микроскопические 1 мембранные органеллы, состоящие из цепочки плоских цистерн, по краям которых ответвляются трубочки, отделяющие мелкие пузырьки. Имеют 2 полюса: строительный и секреторный.

· Функции : в цистернах накапливаются продукты синтеза, распада и вещества, поступившие в клетку, а также вещества, которые выводятся из клетки. Упакованные в пузырьки, они поступают в цитоплазму: одни используются, другие выводятся наружу. В растительной клетки участвуют в построении клеточной стенки.

4. Лизосомы

· Строение : микроскопические 1 мембранные органеллы, округлой формы. Их число зависит от жизнедеятельности клетки и ее физиологического состояния. В лизосомах находятся лизирующие (растворяющие) ферменты, синтезированные на рибосомах. Обособляются от диктиосом в виде пузырьков.

· Функции : переваривание пищи, попавшей в животную клетку при фагоцитозе, защитная функция. В клетках любых организмов осуществляет автолиз (саморастворение органелл, особенно в условиях пищевого или кислородного голодания. У растений органеллы растворяются при образовании пробковой ткани, сосудов древесины, волокон.

5. Эндоплазматический ретикулум или эндоплазматическая сеть

· Строение : ультрамикроскопическая система мембран, образующая трубочки, канальцы, цистерны, пузырьки. Строение мембран универсальное (как и наружной), вся сеть объединена в единое целое с наружной мембраной ядерной оболочки и наружной клеточной мембраной. Гранулярная ЭПС несет рибосомы, а гладкая лишена.

· Функции : обеспечивает транспорт веществ как внутри клетки, так и между соседними клетками. Делит клетку на отельные секции в которых одновременно происходят различные физиологические процессы и химические реакции. Гранулярная ЭПС участвует в синтезе белка. В каналах ЭПС молекулы белка приобретают вторичную, третичную и четвертичную структуры, синтезируются жиры и транспортируется АТФ.

Митохондрии – это постоянные мембранные орга-неллы округлой или палочковидной (нередко ветвящейся) формы. Толщин – 0,5 мкм, длина – 5–7 мкм. Количество митохондрий в большинстве животных клеток – 150-1500; в женских яйцеклетках – до нескольких сотен тысяч, в сперматозоидах – одна спиральная митохондрия, закрученная вокруг осевой части жгутика.

Основные функции митохондрий:

1) играют роль энергетических станций клеткок;

2) хранят наследственный материал в виде митохон-дриальной ДНК.

Побочные функции – участие в синтезе стероидных гормонов, некоторых аминокислот (например, глюта-миновой).

Строение митохондрий

Митохондрия имеет две мембраны: наружную (гладкую) и внутреннюю (образующую выросты – листовидные (кристы) и трубчатые (тубулы)).

У митохондрий внутренним содержимым является матрике – коллоидное вещество, в котором с помощью электронного микроскопа были обнаружены зерна диаметром 20–30 нм (они накапливают ионы кальция и магния, запасы питательных веществ, например, гликогена).

В матриксе размещается аппарат биосинтеза белка органеллы: 2–6 копий кольцевой ДНК, лишенной гистоновых белков, рибосомы, набор т-РНК, ферменты редупликации, транскрипции, трансляции наследственной информации.

Митохондрии размножаются путем перешнуровки, митохондриям свойственна относительная автономность внутри клетки.

Лизосомы – это пузырьки диаметром 200–400 мкм. (обычно). Имеют одномембранную оболочку, которая снаружи иногда бывает покрыта волокнистым белковым слоем. Основная функция – внутриклеточное переваривание различных химических соединений и клеточных структур.

Выделяют первичные (неактивные) и вторичные лизосомы (в них протекает процесс переваривания). Вторичные лизосомы образуются из первичных. Они подразделяются на гетеролизосомы и аутолизо-сомы.

В гетеролизосомах (или фаголизосомах) протекает процесс переваривания материала, который поступает в клетку извне путем активного транспорта (пино-цитоза и фагоцитоза).

В аутолизосомах (или цитолизосомах) подвергаются разрушению собственные клеточные структуры, которые завершили свою жизнь.

Вторичные лизосомы, которые уже перестали переваривать материал, называются остаточными тельцами. В них нет гидролаз, содержится непереваренный материал.

При нарушении целостности мембраны лизосом или при заболевании клетки гидролазы поступают внутрь клетки из лизосом и осуществляют ее самопереваривание (автолиз). Этот же процесс лежит в основе процесса естественной гибели всех клеток (апо-птоза).

Микротельца

Микротельца составляют сборную группу органелл. Они представляют собой пузырьки диаметром 100–150 нм, отграниченные одной мембраной. Содержат мелкозернистый матрикс и нередко белковые включения.

9. Строение и функции эндоплазматического ретикулума, комплекса Гольджи

Эндоплазматическая сеть

Эндоплазматический ретикулум (ЭПС) – система сообщающихся или отдельных трубчатых каналов и уплощенных цистерн, расположенных по всей цитоплазме клетки. Они отграничены мембранами (мембранными органеллами). Иногда цистерны имеют расширения в виде пузырьков. Каналы ЭПС могут соединяться с поверхностной или ядерной мембранами, контактировать с комплексом Гольджи.

В данной системе можно выделить гладкую и шероховатую (гранулярную) ЭПС.

Шероховатая ЭПС

На каналах шероховатой ЭПС в виде полисом расположены рибосомы. Здесь протекает синтез белков, преимущественно продуцируемых клеткой на экспорт (удаление из клетки), например, секретов железистых клеток. Здесь же происходят образование липидов и белков цитоплазматической мембраны и их сборка. Плотно упакованные цистерны и каналы гранулярной ЭПС образуют слоистую структуру, где наиболее активно протекает синтез белка. Это место называется эргастоплазмой.

Гладкая ЭПС

На мембранах гладкой ЭПС рибосом нет. Здесь протекает в основном синтез жиров и подобных им веществ (например, стероидных гормонов), а также углеводов. По каналам гладкой ЭПС также происходит перемещение готового материала к месту его упаковки в гранулы (в зону комплекса Гольджи). В печеночных клетках гладкая ЭПС принимает участие в разрушении и обезвреживании ряда токсичных и лекарственных веществ (например, барбитуратов). В поперечно-полосатой мускулатуре канальцы и цистерны гладкой ЭПС депонируют ионы кальция. Комплекс Гольджи

Пластинчатый комплекс Гольджи – это упаковочный центр клетки. Представляет собой совокупность дик-тиосом (от нескольких десятков до сотен и тысяч на одну клетку). Диктиосома – стопка из 3-12 уплощенных цистерн овальной формы, по краям которых расположены мелкие пузырьки (везикулы). Более крупные расширения цистерн дают вакуоли, содержащие резерв воды в клетке и отвечающие за поддержание тургора. Пластинчатый комплекс дает начало секреторным вакуолям, в которых содержатся вещества, предназначенные для вывода из клетки. При этом просекрет, поступающий в вакуоль из зоны синтеза, (ЭПС, митохондрии, рибосомы), подвергается здесь некоторым химическим превращениям.

Комплекс Гольджи дает начало первичным лизосомам. В диктиосомах также синтезируются полисахариды, гли-копротеиды и гликолипиды, которые затем идут на построение цитоплазматических мембран.

Митохондрии — одни из самых важных составляющих любой клетки. Их еще называют хондриосомами. Это грануловидные или нитевидные органеллы, которые являются составляющей частью цитоплазмы растений и животных. Именно они являются производителями молекул АТФ, которые так необходимы для многих процессов в клетке.

Что такое митохондрии?

Митохондрии - это энергетическая база клеток, их деятельность основана на окислении и применении энергии, освободившейся при распаде молекул АТФ. Биологи на простом языке его называют станцией вырабатывания энергии для клеток.

В 1850 г. митохондрии выявили в виде гранул в мышцах. Их число менялось в зависимости от условий роста: они скапливаются больше в тех клетках, где большой дефицит кислорода. Это происходит чаще всего при физических нагрузках. В таких тканях появляется острая нехватка энергии, которую восполняют митохондрии.

Появление термина и место в теории симбиогенеза

В 1897 г. Бенд впервые ввел понятие «митохондрия», чтобы обозначить зернистую и нитчатую структуру в По форме и величине они разнообразны: толщина составляет 0,6 мкм, длина - от 1 до 11 мкм. В редких ситуациях митохондрии могут быть большого размера и разветвленным узлом.

В теории симбиогенеза дается четкое представление о том, что такое митохондрии и как они появились в клетках. В ней говорится, что хондриосома возникла в процессе поражения клетками бактерий, прокариотами. Так как они не могли автономно применять кислород для выработки энергии, это препятствовало полному их развитию, а прогеноты могли развиваться беспрепятственно. В течение эволюции связь между ними дала возможность прогенотам передать свои гены теперь уже эукариотам. Благодаря такому прогрессу митохондрии теперь не являются независимыми организмами. Их генофонд не может быть реализован в полной мере, так как происходит его частичная блокировка ферментами, которые есть в любой клетке.

Где они живут?

Митохондрии сосредотачиваются в тех районах цитоплазмы, где появляется необходимость в АТФ. Например, в мышечной ткани сердца они располагаются неподалеку от миофибрилл, а в сперматозоидах формируют защитную маскировку вокруг оси жгута. Там они вырабатывают очень много энергии для того, чтобы "хвост" крутился. Именно таким образом сперматозоид двигается к яйцеклетке.

В клетках новые митохондрии образуются с помощью простого деления предыдущих органелл. Во время него сохраняется вся наследственная информация.

Митохондрии: как они выглядят

По форме митохондрии напоминает цилиндр. Они часто встречаются в эукариотах, занимая от 10 до 21 % объема клетки. Их размеры и формы во многом разнятся и способны меняться в зависимости от условий, но ширина постоянна: 0,5-1 мкм. Перемещения хондриосом зависят от того, в каких местах клетки совершается быстрая трата энергии. Передвигаются по цитоплазме, применяя для передвижения структуры цитоскелета.

Заменой разных по габаритам митохондрий, работающих отдельно друг от друга и снабжающих энергией некоторые зоны цитоплазмы, являются длинные и разветвленные митохондрии. Они способны обеспечить энергией участки клеток, находящиеся далеко друг от друга. Подобная совместная работа хондриосом наблюдается не только у одноклеточных организмов, но и у многоклеточных. Самое сложное строение хондриосом встречается в мышцах скелета млекопитающих, где самые большие разветвленные хондриосомы стыкуются друг с другом, используя межмитохондриальные контакты (ММК).

Они представляют собой узкие просветы между прилегающими друг к другу митохондриальными мембранами. Данное пространство обладает высокой электронной плотностью. ММК больше встречаются в клетках где связываются вместе с работающими хондриосомами.

Чтобы лучше разобраться в вопросе, нужно кратко расписать значимость митохондрии, строение и функции этих удивительных органелл.

Как они устроены?

Для понимания, что такое митохондрии, необходимо узнать их строение. Этот необычный источник энергии имеет форму шара, но чаще вытянут. Две мембраны располагаются близко друг к другу:

  • наружная (гладкая);
  • внутренняя, которая образует выросты листовидной (кристы) и трубчатой (тубулы) формы.

Если не принимать во внимание размер и форму митохондрии, строение и функции у них одинаковые. Хондриосома разграничена двумя мембранами, размером 6 нм. Наружная мембрана митохондрии напоминает емкость, которая ограждает их от гиалоплазмы. Внутреннюю мембрану от внешней отъединяет участок шириной 11-19 нм. Отличающей чертой внутренней мембраны считается ее способность выпячиваться внутрь митохондрии, принимая форму сплющенных гребней.

Внутреннюю полость митохондрии заполняет матрикс, который имеет мелкозернистую структуру, где иногда обнаруживают нити и гранулы (15-20 нм). Нити матрикса создают органеллы, а гранулы небольших размеров - рибосомы митохондрии.

На первой стадии проходит в гиалоплазме. На данной ступени идет начальное окисление субстратов или глюкозы до Данные процедуры проходят без кислорода - анаэробное окисление. Следующая стадия образования энергии заключается в аэробном окислении и распада АТФ, данный процесс происходит в митохондриях клеток.

Что делают митохондрии?

Основными функциями этой органеллы являются:


Наличие в митохондриях своей дезоксирибонуклеиновой кислоты еще раз подтверждает симбиотическую теорию появления этих органелл. Также, помимо основной работы, они участвуют в синтезе гормонов и аминокислот.

Митохондриальная патология

Мутации, происходящие в геноме митохондрии, приводят к удручающим последствиям. Носителем человека является ДНК, которая передается потомкам от родителей, а митохондриальный геном передается только от матери. Объясняется данный факт очень просто: цитоплазму с заключенными в ней хондриосомами дети получают вместе с женской яйцеклеткой, в сперматозоидах они отсутствуют. Женщины с данным отклонением могут передать потомству митохондриальное заболевание, больной мужчина - нет.

В обычных условиях хондриосомы располагают одинаковой копией ДНК - гомоплазмия. В геноме митохондрии могут происходить мутации, вследствие совместного существования здоровых и мутированных клеток возникает гетероплазмия.

Благодаря современной медицине на сегодняшний день выявлены более 200 заболеваний, поводом возникновения чего послужила мутация митохондрии ДНК. Не во всех случаях, но терапевтическому поддержанию и лечению митохондриальные болезни поддаются хорошо.

Вот мы и разобрались с вопросом о том, что такое митохондрии. Как и все остальные органеллы, они очень важны для клетки. Они косвенно принимают участие во всех процессах, для которых нужна энергия.

А. Фотосинтез.

Б. Хемосинтез.

В. Энергетический обмен.

Г. Пластический обмен.

40. Вирусы содержат:

А. Только ДНК.

Б. Только РНК.

В. Либо ДНК, либо РНК.

Г. Совместно ДНК и РНК.

41. Атомы какого металла входят в состав эритроцитов:

В. Железа.

Г. Магний.

42. Бесцветные клетки крови, способные к амебоидному движению сквозь стенки сосудов:

А. Эритроциты.

Б. Лейкоциты.

В. Тромбоциты.

Г. Тромбоциты.

43. Клетки крови, способные вырабатывать антитела:

А. Лейкоциты.

Б. Тромбоциты.

В. Лимфоциты.

Г. Эритроциты.

44. Как расположены молекулы жидкостей и как они движутся?

А. Молекулы расположены на расстояниях, соизмеримых с размерами самих молекул, и перемещаются свободно относительно друг друга.

Б. Молекулы расположены на больших расстояниях (по сравнению с размерами молекул) друг от друга и движутся беспорядочно.

В. Молекулы расположены в строгом порядке и колеблются около определённых положений равновесия.

45. Какие из приведённых свойств принадлежат газам?(3 варианта ответа)

А. Занимают весь предоставленный им объём.

Б. Трудно сжимаются.

В. Имеют кристаллическое строение.

Г. Легко сжимаются.

Д. Не имеют собственной формы.

46. В мензурке находится вода объёмом 100 см3. Её переливают в стакан вместимостью 200 см3. Изменится ли объём воды?

А. Увеличится.

Б. Уменьшится.

В. Не изменится.

47. Молекулы плотно упакованы, сильно притягиваются друг к другу, каждая молекула колеблется около определённого положения. Какое это тело?

Б. Жидкость.

В. Твёрдое тело.

Г. Таких тел нет.

48. В каком состоянии может находиться вода?

А. Только в жидком состоянии.

Б. Только в газообразном состоянии.

В. Только в твёрдом состоянии.

Г. Во всех трёх состояниях.

49. Есть ли такое вещество, у которого молекулы расположены на больших расстояниях, сильно притягиваются друг к другу и колеблются около определённых положений?

Б. Жидкость.

В. вёрдое тело.

Г. Такого вещества не существует.

50. Укажите вещества, имеющие белковую природу:

А. Ферменты.

Б. Гормоны.

В. Липиды.

Г. Углеводы.

Д. Пигменты.

Е. Аминокислоты.

51. Выберите функцию, которая в организме выполняется почти исключительно белками:

А. Энергетическая.

Б. Регуляторная.

В. Информационная.

Г. Ферментативная.

52. К полисахаридам относится:

А. Сахароза.

Б. Рибоза.

В. Крахмал.

Г. Глюкоза.

53. Из приведенного ниже списка выберите: 1) моносахариды; 2) дисахариды.

А. Глюкоза.

Б. Рибоза.

В. Сахароза.

Г. Фруктоза.

Д. Мальтоза.

Вариант 3

1. Сила, возникающая в результате деформации тела и направленная в сторону, противоположную перемещению частиц тела, называется:



А. силой упругости.

Б. силой тяжести.

В. весом тела.

2. Человек, масса которого 80 кг, держит на плечах мешок массой 10 кг. С какой силой давит человек на землю?

3. Определите кинетическую энергию тела массой 200г, которое движется со скоростью 72м/с.

4. Совершается ли работа и если да, то какого знака?

Пример: Груз массой 120 кг поднимают на высоту 50 см;

5. Сила тяготения - это сила обусловленная:
А. Гравитационным взаимодействием.

Б. Электромагнитным взаимодействием.

В. И гравитационным, и электромагнитным взаимодействием.
6. Чему равна постоянная Больцмана?

А. 1,3 * 1012 кг/моль.

Б. 1,38 *1023 К/Дж.

В. 1,38 * 10-23 Дж/К.

Г. 1,3 * 10-12 моль/кг.

7. Как называются явления, обусловленные изменением температуры тела?

А. Электрические.

Б. Тепловые.

В. Магнитные.

Митохондрии являются органоидами всех эукариотических клеток. Они характеризуются обилием внутренних мембран. Две мембраны - внешняя и внутренняя - отделяют их от цитоплазмы. Мембраны образуют в митохондриях большие внутренние компартменты, в которых происходят реакции окислительного фосфорилирования. В результате этих процессов энергия реакций окисления преобразуется в энергию, заключенную в молекулах АТФ. При этом митохондрии исключительно эффективно используют для окисления сахара и жирные кислоты.

Митохондрии (греч. mitos-нить, chondros-зерно) занимают в эукариотических клетках значительную часть цитоплазмы. Подсчеты показывают, что на одну печеночную клетку приходится около тысячи митохондрий. Это примерно 20% общего объема цитоплазмы и около 30-35% общего количества белка в клетке. В ооцитах насчитывается до 300000 митохондрий, в гигантских амебах до 500000. В клетках зеленых растений митохондрий меньше, чем в клетках животных.

Митохондрии были описаны еще в конце прошлого века, так как их размеры довольно велики, то они сопоставимы с размерами бактериальной клетки, и хорошо различимы с помощью светового микроскопа. В типичном случае митохондрии представляют собой цилиндр диаметром 0,5 мкм и длиной до 1 мкм. Однако у разных организмов длина митохондрий колеблется в значительных пределах от 7 до 10 мкм. В клетках дрожжей, клетках мышечной ткани, у трипаносом присутствуют разветвленные паукообразные митохондрии. Они обладают достаточно высокой плотностью, благодаря чему их можно наблюдать в живых клетках. Такие наблюдения с помощью микрокиносьемки показывают, что форма митохондрий в живых клетках весьма изменчива, это необыкновенно подвижные и пластичные органоиды. В течение минуты они могут изменить свою цилиндрическую форму 15-20 раз, принимая вид пузырьков, гантелей, теннисной ракетки, они могут изгибаться и выпрямляться.

Локализация митохондрий в клетках определяется двумя факторами. Во-первых, она зависит от расположения других органоидов и включений. В растительных дифференцированных клетках митохондрии отодвигаются к периферии клетки центральной вакуолью, в клетках меристемы они располагаются более-менее равномерно. В делящихся клетках митохондрии располагаются также периферически, их вытесняет веретено деления. Ориентацию митохондрий могут определять микротрубочки цитоплазмы. Во-вторых, митохондрии скапливаются в энергозависимых участках клетки. В скелетных мышцах - между миофибрилл, в сперматозоидах плотно обвивают жгутик, у простейших, снабженных ресничками, митохондрии лежат у основания ресночек под плазматической мембраной. В нервных клетках - около синапсов, где происходит передача нервных импульсов. В секреторных клетках митохондрии связаны с зонами шероховатой ЭПС.

Реальная возможность понять тонкое строение митохондрий и их функций появилась только после 1948 г., когда были разработаны методы выделения митохондрий из клеток и началось их биохимическое исследование. Каждая митохондрия окружена двумя высокоспециализированными мембранами, играющими основную роль в ее работе. Эти мембраны образуют два изолированных митохондриальных компартмента - межмембранное пространство и внутренний матрикс. Внутренняя мембрана образует многочисленные кристы, увеличивающие ее общую поверхность.

Матрикс содержит высококонцентрированную смесь сотен различных ферментов, необходимых для окисления пирувата, жирных кислот, и ферментов цикла лимонной кислоты. 67% всего белка митохондрий приходится на матрикс. В матриксе содержится собственная ДНК, представленная несколькими идентичными молекулами и близка к бактериальной по составу нуклеотидов, кроме того она тоже кольцевая как у бактерий. Матрикс митохондрий включает и специфические митохондриальные рибосомы. По своим свойствам они также близки к бактериальным (70S).

Присутствие ДНК, рибосом и ферментов, участвующих в работе митохондриального генома, говорит о некоторой автономности митохондрий.

В митохондриях происходит синтез АТФ на основе окисления органических субстратов и фосфорилирования АДФ. Высвобождение энергии при аэробном окислении пищи называется дыханием.