Что находится за пределами Вселенной? Устройство Вселенной. Тайны космоса

Портал сайт – это информационный ресурс, на котором Вы сможете получить много полезных и интересных знаний, связанных с Космосом. В первую очередь речь пойдет о нашей и других Вселенных, о небесных телах, черных дырах и явлениях в недрах космического пространства.

Совокупность всего существующего, материи, отдельных частиц и пространства между этими частицами называют Вселенной. По представлениям ученых и астрологов, возраст Вселенной составляет примерно 14 миллиардов лет. По размерам видимая часть Вселенной занимает около 14 млрд световых лет. А некоторые утверждают, что Вселенная простирается на 90 миллиардов световых лет. Для большего удобства в подсчетах подобных расстояний принято применять величину парсек. Один парсек равен 3,2616 световых лет, то есть парсек – это расстояние, по которому средний радиус орбиты Земли просматривается под углом одной угловой секунды.

Вооружившись данными показателями, можно подсчитать космическое расстояние от одного объекта к другому. К примеру, расстояние от нашей планеты до Луны составляет 300000 км, или 1 световая секунда. Следовательно, до Солнца это расстояние увеличивается до 8,31 световых минут.

Всю свою историю люди пытались разгадать загадки, связанные с Космосом и Вселенной. В статьях портала сайт Вы сможете узнать не только о Вселенной, но и о современных научных подходах к ее изучению. Весь материал опирается на самые передовые теории и факты.

Следует заметить, что во Вселенную входит большое число известных людям различных объектов. Самые широко известные среди них – это планеты, звезды, спутники, черные дыры, астероиды и кометы. О планетах на данный момент понятно больше всего, поскольку на одной из них мы живем. У некоторых планет есть собственные спутники. Так, у Земли есть свой спутник – Луна. Помимо нашей планеты, есть еще 8, которые вращаются вокруг Солнца.

В Космосе много звезд, но каждая из них не похожа друг на друга. Они имеют разные температуры, размеры и яркость. Поскольку все звезды разнятся, их классифицируют следующим образом:

Белые карлики;

Гиганты;

Сверхгиганты;

Нейтронные звезды;

Квазары;

Пульсары.

Самое плотное известное нам вещество – это свинец. В некоторых планетах плотность их же вещества может в тысячи раз превосходить плотность свинца, что ставит перед учеными много вопросов.

Все планеты вращаются вокруг Солнца, но оно также не стоит на месте. Звезды могут собираться в скопления, которые, в свою очередь, также вращаются вокруг пока не известного нам центра. Эти скопления называются галактиками. Наша галактика называется Млечный путь. Все проведенные исследования на данный момент говорят, что большая часть материи, которую создают галактики, пока что для человека невидима. Из-за этого ее назвали темной материей.

Самыми интересными считаются центры галактик. Некоторые астрономы считают, что возможным центром галактики является Черная дыра. Это уникальное явление, образовавшееся в результате эволюции звезды. Но пока все это лишь теории. Проведение экспериментов или исследование подобных явлений пока что невозможно.

Помимо галактик, во Вселенной присутствуют туманности (состоящие из газа, пыли и плазмы межзвездные облака), реликтовое излучение, которые пронизывают все пространство Вселенной, и многие другие малоизвестные и даже неизвестные вообще объекты.

Кругооборот эфира Вселенной

Симметрия и равновесие материальных явлений – это главный принцип структурной организации и взаимодействия в природе. Причем во всех формах: звездной плазмы и вещества, мирового и высвобожденного эфиров. Вся суть таких явлений состоит в их взаимодействиях и превращениях, большинство из которых представлены невидимым эфиром. Его еще именуют реликтовым излучением. Это микроволновое космическое фоновое излучение, имеющее температуру 2,7 К. Бытует мнение, что именно этот колеблющийся эфир и является первоосновой для всего наполняющего Вселенную. Анизотропия распределения эфира связана с направлениями и интенсивностью его перемещения в разных областях невидимого и видимого пространства. Вся трудность изучения и исследования вполне сопоставима с трудностями изучения турбулентных процессов в газах, плазмах и жидкостях материй.

Почему многие ученые считают, что Вселенная многомерная?

После проведения экспериментов в лабораториях и в самом Космосе были получены данные, из которых можно предположить, что мы живем во Вселенной, в которой размещение любого объекта можно охарактеризовать временем и тремя пространственными координатами. Из-за этого возникает предположение, что Вселенная четырехмерная. Однако некоторые ученые, разрабатывая теории элементарных частиц и квантовой гравитации, возможно, придут к мнению, что существование большого количества измерений просто необходимо. Некоторые модели Вселенной не исключают такого их количества, как 11 измерений.

Следует учесть, что существование многомерной Вселенной возможно при высокоэнергетических явлениях – черные дыры, большой взрыв, барстеры. По крайней мере, это одна из идей ведущих космологов.

Модель расширяющейся Вселенной базируется на общей теории относительности. Ее предложили для адекватного объяснения структуры красного смещения. Расширение началось в одно время с Большим взрывом. Ее состояние иллюстрирует поверхность надутого резинового шарика, на который нанесли точки – внегалактические объекты. Когда такой шарик надувается, все его точки удаляются друг от друга независимо от положения. По теории Вселенная может либо расширяться бесконечно, либо сжаться.

Барионная асимметрия Вселенной

Наблюдаемое во Вселенной значительное увеличение количества элементарных частиц над всем числом античастиц называется барионной асимметрией. К барионам относят нейтроны, протоны и еще некоторые короткоживущие элементарные частицы. Данная диспропорция получилась в эру аннигиляции, а именно через три секунды после Большого взрыва. До этого момента количество барионов и антибарионов соответствовало друг другу. Во время массовой аннигиляции элементарных античастиц и частиц большая их часть объединилась в пары и исчезла, тем самым породив электромагнитное излучение.

Возраст Вселенной на портале сайт

Ученые современности считают, что нашей Вселенной примерно 16 миллиардов лет. По подсчетам минимальный возраст может быть 12-15 миллиардов лет. Минимум отталкивается от самых старых в нашей Галактике звезд. Реальный ее возраст определить можно, только лишь при помощи закона Хаббла, но реальный не значит точный.

Горизонт видимости

Сфера с равным расстоянию радиусом, которое свет проходит за все время существования Вселенной, называется его горизонтом видимости. Существование горизонта прямо пропорционально связано с расширением и сжатием Вселенной. Согласно космологической модели Фридмана, расширяться Вселенная начала от сингулярного расстояния примерно 15-20 миллиардов лет назад. За все время свет проходит в расширяющейся Вселенной остаточное расстояние, а именно 109 световых лет. Из-за этого каждый наблюдатель момента t0 после начала процесса расширения может обозревать лишь небольшую часть, ограниченную сферой, имеющую именно в этот момент радиус I. Те тела и объекты, которые в этот момент находятся за этой границей, в принципе, не наблюдаемы. Отбиваемый от них свет попросту не успевает добраться до наблюдателя. Это невозможно, даже если свет вышел в момент начала процесса расширения.

Из-за поглощения и рассеивания в ранней Вселенной, с учетом большой плотности, фотоны не могли распространяться в свободном направлении. Поэтому наблюдатель способен зафиксировать только то излучение, которое появилось в эпоху прозрачной для излучения Вселенной. Данная эпоха определяется временем т»300 000 лет, плотностью вещества r»10-20 г/см3 и моментом рекомбинации водорода. Из всего вышесказанного следует, что чем ближе в галактике находится источник, тем большим для него будет значение красного смещения.

Большой взрыв

Момент возникновения Вселенной называют Большим взрывом. Данная концепция стоит на том, что изначально была точка (точка сингулярности), в которой присутствовала вся энергия и все вещество. Основой характеристики принято считать большую плотность материи. Что было до этой сингулярности – неизвестно.

Относительно событий и условий, которые происходили к наступлению момента 5*10-44 секунды (момент окончания 1-го кванта времени), никакой точной информации нет. В физическом отношении той эры можно лишь предположить, что тогда температура составляла примерно 1,3*1032 градуса с плотностью материи примерно 1096 кг/м 3 . Эти значения предельны для применения существующих идей. Они появляются благодаря соотношению гравитационной постоянной, скорости света, постоянных Больцмана и Планка и именуются как «планковские».

Те события, которые связаны с 5*10-44 по 10-36 секунды, отражают модель «инфляционной Вселенной». Момент 10-36 секунды относят к модели «горячей Вселенной».

В период с 1-3 по 100-120 секунд образовались ядра гелия и небольшое количество ядер остальных легких химических элементов. С этого момента в газе начало устанавливаться соотношение – водорода 78%, гелия 22%. До одного миллиона лет температура во Вселенной начала понижаться до 3000-45000 К, началась эра рекомбинации. Прежде свободные электроны начали объединяться с легкими протонами и атомными ядрами. Начали появляться атомы гелия, водорода и малое количество атомов лития. Стало прозрачным вещество, а излучение, которое наблюдается до сих пор, отсоединилось от него.

Следующий миллиард лет существования Вселенной отметился понижением температуры от 3000-45000 К до показателя в 300 К. Этот период для Вселенной ученые назвали «Темным возрастом» из-за того, что еще не появилось никаких источников электромагнитного излучения. В этот же период неоднородности смеси первоначальных газов уплотнялись благодаря воздействию гравитационных сил. Смоделировав на компьютере эти процессы, астрономы увидели, что это необратимо приводило к появлению звезд-гигантов, превышающих массу Солнца в миллионы раз. По причине такой большой массы эти звезды нагревались до немыслимо высоких температур и эволюционировали за период десятков миллионов лет, после чего они взрывались как сверхновые. Нагреваясь до больших температур, поверхности таких звезд создавали сильные потоки ультрафиолетового излучения. Таким образом, наступил период переионизации. Плазма, которая образовалась в результате таких явлений, начинала сильно рассеивать электромагнитное излучение в его спектральных коротковолновых диапазонах. В некотором смысле Вселенная начала погружаться в густой туман.

Эти огромные звезды стали первыми во Вселенной источниками химических элементов, которые намного тяжелее за литий. Начали формироваться космические объекты 2-го поколения, в которых содержались ядра этих атомов. Эти звезды начали создаваться из смесей тяжелых атомов. Произошла повторного типа рекомбинация большей части атомов межгалактического и межзвездного газов, что, в свою очередь, привело к новой прозрачности пространства для электромагнитного излучения. Вселенная стала именно такой, которую мы можем наблюдать сейчас.

Наблюдаемая структура Вселенной на портале сайт

Наблюдаемая часть пространственно неоднородна. Большинство скоплений галактик и отдельных галактик формируют ее ячеистую или сотовую структуру. Они конструируют стенки ячеек, которые имеют толщину в пару мегапарсек. Эти ячейки называют «войдами». Они характеризуются большим размером, в десятки мегапарсек, и при этом в них нет вещества с электромагнитным излучением. На долю «войд» припадает около 50% всего объема Вселенной.

Всем привет! Хочу сегодня поделится с Вами впечатлениями о Вселенной. Только представить, нет конца, всегда было интересно, а такое может быть? Из этой статьи можно узнать о звездах, их видах и жизни, о большом взрыве, о черных дырах, о пульсарах и еще о некоторых важных вещах.

– это все что существует: пространство, материя, время, энергия. В нее входят все планета, звезды, и другие космические тела.

– это весь существующий материальный мир, она безгранична в пространстве и времени и разнообразна формами, которые в процессе своего развития принимает материя.

Изучаемая астрономией Вселенная – это часть материального мира, которая доступна исследованиям астрономическими способами, которые отвечают достигнутому уровню науки (эту часть Вселенной иногда называют Метагалактикой).

Метагалактика – доступна современным методам исследования часть Вселенной. Метагалактика вмещает в себя несколько миллиардов .

Вселенная столь огромна, что ее размеры осознать невозможно. Давайте поговорим о Вселенной: ее часть, которая нам видима, простирается на 1,6 млн. млн. млн. млн. км, — и насколько она велика за пределами видимого, никому не ведомо.

Как вселенная приобрела свой сегодняшний вид и из чего она возникла, пытаются объяснить очень многие теории. Согласно самой популярной теории, 13 млрд. лет назад она зародилась в результате гигантского взрыва. Время, космос, энергия, материя – все это возникло вследствие этого феноменального взрыва. Что было до так называемого «большого взрыва», говорить бессмысленно, до него ничего не было.

– по современным представлениям, это состояние Вселенной в прошлом (около 13 млрд. лет назад), когда его средняя плотность во много раз превышала современную. Со временем плотность Вселенной уменьшается из-за ее расширения.

Соответственно при углублении в прошлое плотность увеличивается, аж к тому моменту, когда классические представления о времени и пространстве теряют силу. За начало отсчета времени можно принять этот момент. Интервал времени от 0 до нескольких секунд условно называют периодом большого Взрыва.

Вещество Вселенной, в начале этого периода, получило колоссальные относительные скорости («взорвалось» и отсюда название).

Наблюдаемые в наше время, свидетельства большого Взрыва есть значение концентрации гелия, водорода и некоторых других легких элементов, реликтовое излучение, распределение неоднородностей во Вселенной (например, галактик).

Астрономы полагают, что Вселенная была невероятно раскалена и полна радиации после большого взрыва.

Атомные частицы – протоны, электроны и нейтроны сформировались приблизительно через 10 секунд.

Сами же атомы – атомы гелия и водорода – образовались лишь несколько сотен тысяч лет спустя, когда Вселенная остыла и значительно расширилась в размерах.

Отголоски большого взрыва.

Если большой взрыв произошел 13 млрд. лет назад, к настоящему времени Вселенная должна была бы охладеть до температуры около 3 градусов по Кельвину, то есть до 3 градусов выше абсолютного ноля.

Ученные зарегистрировали фоновые радиошумы, используя телескопы. Эти радиошумы по всему звездному небу, соответствуют этой температуре и их считают до сих пор доходящими до нас отголосками большого взрыва.

Согласно одной из самых популярных научных легенд, Исаак Ньютон увидел, как на землю упало яблоко, и понял, что это случилось под действием исходящей от самой Земли силы тяжести. От массы тела зависит величина этой силы.

Сила тяжести яблока, имеющего малую массу, не влияет на движение нашей планеты, у Земли большая масса и она притягивает яблоко к себе.

На космических орбитах силы притяжения удерживают все небесные тела. По орбите Земли движется Луна и не отдаляется от нее, на околосолнечных орбитах сила притяжения Солнца удерживает планеты, а Солнце удерживает в положении по отношению к другим звездам, сила, которая намного больше гравитационной.

Наше Солнце – звезда, причем довольно обычная и самых средних размеров. Солнце, как и все остальные звезды, представляет собой из светящегося газа шар, и подобно колоссальной печи, выделяющей тепло, свет и другие формы энергии. Солнечную систему образуют планеты на солнечной орбите и конечно же само Солнце.

Другие звезды, потому что очень далеки от нас, кажутся на небе крошечными, но на самом деле, некоторые из них, в сотни раз превышают наше Солнце в диаметре.

Звезды и галактики.

Местоположение звезд астрономы определяют, располагая их в созвездия или по отношению к ним. Созвездие – это группа видимых на определенном участке ночного неба звезд, но не всегда, в действительности, находящихся поблизости.

В звездные архипелаги, именуемые галактиками, группируются звезды в безбрежных космических просторах. Наша Галактика, которая называется млечный Путь, входит Солнце со всеми его планетами. Наша галактика далеко не самая большая, но достаточно огромна, чтобы ее представить.

По отношению к скорости света во Вселенной измеряются расстояния, быстрее нее человечество ничего не знает. Скорость света равна 300 тыс. км/сек. Как световой год, астрономы пользуются такой единицей – это расстояние, прошел бы за год луч света, тот есть 9,46 млн. млн. км.

Проксима в созвездии Кентавра – ближайшая к нам звезда. Она находится на отдалении 4,3 световых года. Мы не видим ее такой, глядя на нее, какой она была более четырех лет назад. А свет Солнца до нас доходит за 8 минут и 20 секунд.

Форму гигантского вращающегося колеса с выступающей осью – ступицей, имеет Млечный путь с сотнями тысяч миллионов его звезд. В 250 тыс. световых лет от его оси – ближе к ободу этого колеса расположено Солнце. Вокруг центра Галактики Солнце оборачивается по своей орбите за 250 млн. лет.

Наша Галактика – одна из многих, и никто не знает, сколько их всего. Более миллиарда Галактик уже открыты, и многие миллионы звезд в каждой из них. В сотнях миллионов световых лет от землян находятся наиболее далекие из уже известных Галактик.

В самое отдаленное прошлое Вселенной мы вглядываемся, изучая их. От нас и друг от друга отдаляются все Галактики. Похоже, что Вселенная все еще расширяется, а большой взрыв был ее первоначалом.

Какие бывают звезды?

Звезды – световые газовые (плазменные) шары, подобные Солнцу. Образуются из пыльно-газовой среды (большим образом из гелия и водорода), вследствие гравитационной неустойчивости.

Звезды бывают разные, но когда-то они все возникли и через миллионы лет они исчезнут. Нашему Солнцу почти 5 млрд. лет и по подсчетам астрономов, оно еще столько же просуществует, а потом начнет умирать.

Солнце – это одинарная звезда, многие другие звезды являются бинарными, то есть, по сути, состоят из двух звезд, которые вращаются друг вокруг друга. Так же астрономам известны тройные и так называемые кратные звезды, которые состоят их многих звездных тел.

Сверхгиганты – самые крупные звезды.

Антарес, диаметром в 350 раз больше диаметра Солнца, относится к этим звездам. Впрочем, очень малая плотность у всех сверхгигантов. Гиганты – менее крупные звезды с диаметром в 10 – 100 раз больше Солнечного.

Их плотность тоже мала, но она больше чем у сверхгигантов. Большинство видимых звезд, включая Солнце, классифицируются как звезды главной последовательности, или средние звезды. Их диаметр может быть как в десять раз меньше, так и в десять раз больше диаметра Солнца.

Красными карликами называются самые малые звезды главной последовательности, а белыми карликами – называются еще меньшие тела, которые уже не относятся к звездам главной последовательности.

Белые карлики (размерами с нашу ) чрезмерно плотны, но очень тусклы. Их плотность во много миллионов раз больше плотности воды. До 5 млрд. белых карликов может быть только в Млечном Пути, хотя ученные до сих пор открыли лишь несколько сотен таких тел.

Давайте для примера посмотрим видео сравнения размеров звезд.

Жизнь звезды.

Каждая звезда, как упоминалось ранее, рождается из облака пыли и водорода. Вселенная полна таких облаков.

Формирование звезды начинается, когда под влиянием какой-то еще (никем не понятной) силы и под действием тяготения происходит, как говорят астрономы, коллапс, или «схлопывание» небесного тела: облако начинает вращаться, а его центр нагревается. Эволюцию звезд можно посмотреть .

Ядерные реакции начинаются, когда внутри звездного облака температура достигает миллиона градусов.

В ходе этих реакций ядра атомов водорода соединяются и образуют гелий. Энергия, производимая реакциями, высвобождается в виде света и тепла, и загорается новая звезда.

Звездная пыль и остаточные газы наблюдаются вокруг новых звезд. Планеты образовались вокруг нашего Солнца из этой материи. Наверняка, вокруг других звезд, образовались похожие планеты, и вероятны какие-то формы жизни на многих планетах, об открытии которых не знает человечество.

Звездные взрывы.

От массы во многом зависит судьба звезды. Когда такая звезда, вроде нашего Солнца, использует свое водородное «топливо» — сжимается гелиевая оболочка, а расширяются внешние слои.

Звезда становится красным гигантом на этом этапе своего существования. После, со временем, ее внешние слои резко отходят, и оставляют за собой лишь малое яркое ядро звезды – белого карлика. Черным карликом (огромной углеродной массой) звезда становится, постепенно охладившись.

Более драматичная судьба ожидает звезды, массой в несколько раз превышающих массу Земли.

Они превращаются в сверхгигантов, намного крупнее красных гигантов, это происходит по мере истощения их ядерного топлива из-за чего они, и расширяются, становясь такими огромными.

После, под воздействием тяготения, происходит резкое схлопывание их ядер. Звезду на куски разносит невообразимым взрывом высвобожденная энергия.

Астрономы такой взрыв называют рождением сверхновой. В миллионы раз ярче Солнца какое-то время светит сверхновая. Впервые, за последние 383 года, в феврале 1987 года, невооруженным глазом было видно сверхновую из соседней галактики с Земли.

В зависимости от исходной массы звезды, после сверхновой может остаться небольшое тело, называемое нейтронной звездой. С диаметром не более нескольких десятков километров, такая звезда, состоит из твердых нейтронов, от этого ее плотность во много раз превышает огромную плотность белых карликов.

Черные дыры.

Сила коллапса ядра в некоторых сверхновых столь велика, что сжатие материи практически не приводит к ее исчезновению. Участок космического пространства с невероятно высокой гравитацией, остается вместо материи. Такой участок называют черной дырой, ее сила настолько мощна, что втягивает все в себя.

Черные дыры не могут быть видимы в силу своей природы. Тем не менее, астрономы полагают, что установили их местонахождение.

Астрономы ищут системы двойных звезд с мощным радиационным излучением и считают, что оно возникает вследствие выхода материи в черную дыру, сопровождающегося нагреванием температур в миллионы градусов.

В созвездии Лебедя (т. н. черная дыра Лебедя Х-1) обнаружен такой источник излучения. Некоторые ученные полагают, что кроме черных дыр, ещё существуют и белые. Эти белые дыры возникают в том месте, где к образованию новых звездных тел готовится приступить собравшаяся материя.

Так же Вселенная таит в себе загадочные образования, именуемые квазарами. Наверное, это ядра далеких галактик, которые ярко светятся, а дальше них, мы ничего не видим во Вселенной.

Вскоре после образования Вселенной, в нашем направлении начал двигаться их свет. Ученные считают, что энергия, равная энергии квазаров, может происходить только от космических дыр.

Пульсары – не менее таинственны. Пульсары – это регулярно испускающие пучки энергии образования. Они, по мнению ученных, являются звездами, которые быстро вращаются, а от них исходят световые лучи, как от космических маяков.

Будущее Вселенной.

Каков удел нашей вселенной не знает никто. Похоже на то, что после изначального взрыва, оно все еще расширяется. Возможны два сценария в очень далеком будущем.

Согласно первому из них, теории открытого пространства, Вселенная будет расширяться до тех пор, пока вся энергия не израсходуется на все звезды и галактики не прекратят своего существования.

Второй – теория закрытого пространства, согласно которой, расширение Вселенной когда-нибудь прекратится, она вновь начнет сжиматься и будет сокращаться, пока в процессе не исчезнет.

Ученные назвали этот процесс по аналогии с большим взрывом — большим сжатием. В результате может произойти еще один большой взрыв, сотворивши новую Вселенную.

Вот так, всему было начало и будет конец, только какой, никто этого не знает...

Шкала расстояний Вселенной

Поскольку Вселенная расширяется, на вопрос о расстояниях до очень далеких галактик трудно ответить. Все зависит от вашей точки зрения.

Туманность Омега

Туманность Орел

Скопление Антлия

Вот в чём заключается проблема определения расстояний в расширяющейся Вселенной: две галактики находятся рядом друг с другом, когда возраст Вселенной - всего 1 миллиард лет. Первая галактика излучает световой импульс. Вторая галактика не воспринимает данный импульс до тех пор, пока Вселенной не исполнится 14 миллиардов лет.

К этому моменту данные галактики разделяет порядка 26 миллиардов световых лет; световой импульс находится в пути в течение 13 миллиардов лет; и картинка, которую получают люди во второй галактике - это образ первой галактики на момент, когда её возраст составлял всего лишь один миллиард лет и когда она находилась на удалении всего 2 миллиарда световых лет.

В космологии общепринятыми являются четыре различные шкалы расстояний:

(1) Фотометрическое расстояние - DL

В расширяющейся Вселенной удалённые галактики намного более трудноразличимы, чем можно было ожидать, поскольку фотоны света растягиваются и развёртываются на обширную зону. Вот почему для того, чтобы разглядеть очень удалённые галактики, требуются огромные телескопы. Наиболее удалённые галактики, видимые через космический телескоп "Хаббл", настолько слабо различимы, что создаётся впечатление, как будто они находятся на удалении порядка 350 миллиардов световых лет, хотя они и находятся намного ближе.

Фотометрическая шкала не отображает реального расстояния, но она применяется для определения того, насколько тусклыми видятся нам очень удалённые галактики.

(2) Расстояние углового диаметра - DA

В расширяющейся Вселенной мы видим галактики у границы видимой Вселенной в тот момент, когда они были очень молодыми, порядка 14 миллиардов лет назад, поскольку свету, чтобы добраться до нас, потребовалось около 14 миллиардов лет.

Однако галактики в то время не только были молодыми, но и располагались намного ближе к нам.

Наиболее слабо различимые галактики, видимые посредством космического телескопа "Хаббл", в момент излучения света находились от нас на удалении всего несколько миллиардов световых лет.

Это означает, что очень удалённые галактики выглядят гораздо более крупными, чем можно было ожидать, как будто они находятся от нас на расстоянии порядка 2 либо 3 миллиардов световых лет (Хотя они тоже выглядят очень-очень тусклыми - см. "Фотометрическое расстояние").

Расстояние углового диаметра - хороший индикатор (особенно в такой плоской галактике, как наша) того, насколько близко к нам находилась определённая галактика, когда излучала свет, который мы видим в данный момент.

(3) Сопутствующее расстояние - DC

Шкала сопутствующего расстояния расширяется вместе со Вселенной. Она даёт нам представление о том, где в настоящее время находятся галактики, несмотря на то, что наблюдаем мы удалённую галактику в том виде, какой она имела, когда была намного младше и меньше. По данной шкале самый дальний край видимой Вселенной в настоящее время находится от нас на удалении 47 миллиардов световых лет, хотя наиболее удалённые галактики, видимые через космический телескоп "Хаббл", находились бы от нас на расстоянии порядка 32 миллиардов световых лет.

Сопутствующее расстояние противоположно расстоянию углового диаметра.

Это расстояние показывает, где галактики находятся в данный момент, а не где они находились, когда излучали свет, который мы видим сейчас.

(4) Аберрационное расстояние - DT

Аберрационное расстояние означает промежуток времени, за который нас достигает свет от удалённых галактик. Именно это и имеется в виду, когда говорят, что видимая Вселенная имеет радиус 14 миллиардов световых лет.

Смысл данного утверждения: возраст Вселенной составляет порядка 14 миллиардов лет, свету же от более удалённых галактик не хватило времени добраться до нас.

Аберрационное расстояние - это в равной степени мера времени и мера расстояния. Основная польза от этой шкалы - она даёт нам представление о возрасте того образа данной галактики, который мы видим в настоящее время.

Для малых расстояний (порядка 2 миллиардов световых лет и меньше) все четыре шкалы расстояний совмещаются и повторяют одна другую, так что определять расстояния до галактик в окружающей нас локальной Вселенной гораздо проще.

Ниже приведены все четыре шкалы расстояний, наложенные на красное смещение. Красное смещение - это мера растягивания света, вызванного расширением Вселенной: галактика с высоким уровнем красного смещения расположена дальше, чем галактика с малым уровнем красного смещения. Наиболее удалённые галактики, видимые через космический телескоп "Хаббл", имеют величину красного смещения 10, в то время как наиболее удалённые протогалактики во Вселенной, вероятно имеют величину красного смещения порядка 15. Граница видимой Вселенной имеет красное смещение на уровне бесконечности. Для сравнения: типичный переносной телескоп не позволяет рассмотреть объекты с красным смещением, значительно превышающим 0.1 (около 1,3 миллиарда световых лет).


Фотометрическое расстояние (DL ) демонстрирует, почему так сложно рассмотреть удалённые галактики: очень молодая и далёкая галактика с уровнем красного смещения 15 кажется удалённой от нас на 560 миллиардов световых лет, хотя расстояние углового диаметра (DA ) показывает, что на момент излучения этой галактикой света, который мы видим сейчас, ей фактически было порядка 2,2 миллиардов световых лет. Аберрационное расстояние (DT ) показывает, что свет от данной галактики путешествовал 13,6 миллиардов лет с момента его излучения до настоящего момента. Сопутствующее расстояние (DC ) показывает, что та же самая галактика сегодня, если бы мы могли видеть её, находилась бы от нас на удалении 35 миллиардов световых лет.

На заре космологии – науки, изучающей Вселенную, – было принято считать, что ученые часто ошибаются в мелочах, но никогда не сомневаются глобально. В наше время ошибки в расчетах удалось свести к минимуму, а вот сомнения разрослись до размеров изучаемого объекта. Десятилетиями космологи строили новые телескопы, придумывали хитроумные детекторы, задействовали суперкомпьютеры и в результате с уверенностью могут утверждать, что Вселенная зародилась 13820 миллионов лет назад из крошечного пузырька в пространстве, по размеру сравнимого с атомом. Впервые ученые с точностью до десятой доли процента создали карту космического микроволнового фона – реликтового излучения, возникшего через 380 тысяч лет после Большого взрыва.

До сих пор неизвестно, что такое темная материя. Темная энергия – еще б?льшая загадка.
Космологи также пришли к выводу, что видимые нам звезды и галактики составляют всего 5% от состава наблюдаемой Вселенной. Большая часть приходится на невидимые темную материю (27%) и темную энергию (68%). По предположению ученых, темная материя формирует структуру Вселенной, связывая воедино разбросанные по разным ее уголкам сгустки материи, хотя до сих пор неизвестно, что такое эта самая темная материя. Темная энергия – еще б?льшая загадка, этим термином принято обозначать неведомую силу, ответственную за постоянно ускоряющееся расширение Вселенной. Первым намеком на существование всепроникающей темной материи стали исследования швейцарского астронома Фрица Цвикки. В 1930-е годы в обсерватории Маунт-Вилсон на юге Калифорнии Цвикки измерял скорости галактик в скоплении Волосы Вероники, вращающихся относительно центра скопления. Он пришел к выводу, что галактики должны были давно разлететься в космическом пространстве, если бы их не удерживала какая-то невидимая человеческому глазу материя. Скопление Волосы Вероники существует как единое целое уже миллиарды лет, из чего Цвикки заключил, что неведомая «темная материя заполняет Вселенную с плотностью, в разы превосходящей ее видимого собрата». Дальнейшие исследования показали, что гравитационное поле темной материи сыграло решающую роль в образовании галактик на первых этапах существования Вселенной – именно сила притяжения собрала воедино облака «строительного материала», жизненно необходимого для рождения первых звезд. Темная материя – не просто замаскировавшаяся обыкновенная барионная (состоящая из протонов и нейтронов) материя: в космическом пространстве ее попросту слишком мало. Безусловно, есть множество небесных тел, ничего не излучающих: черные дыры, тусклые карликовые звезды, холодные скопления газа и планеты-сироты, по какой-то причине вытолкнутые за пределы родных звездных систем. Однако их суммарная масса никак не может более чем пятикратно превышать массу обычной видимой материи. Это дает ученым основание полагать, что темная материя состоит из каких-то более экзотических частиц, пока не наблюдавшихся в экспериментах. Ученые, занимающиеся построением суперсимметричной квантовой теории, предположили существование различных частиц, которые вполне могут подходить на роль заветной темной материи. Подтверждение того, как слабо темная материя взаимодействует не только с барионной, но и с самой собой, космологи обнаружили в трех миллиардах световых лет от Земли в скоплении Пуля, на самом деле являющемся двумя сталкивающимися друг с другом галактическими скоплениями. Астрономы выявили массивные облака горячего газа в центре скопления, которые обычно образуются при столкновении облаков барионной материи. Для дальнейшего изучения исследователи создали карту гравитационного поля скопления Пуля и идентифицировали две области с высокой концентрацией массы поодаль от зоны столкновения – по одной в каждом из сталкивающихся галактических кластеров. Наблюдения показали: в отличие от барионной материи, бурно реагирующей в момент непосредственного контакта, их более тяжелые грузы из темной материи невозмутимо минуют место катастрофы в целости и сохранности, никак не взаимодействуя с царящим в округе хаосом. Конструируемые учеными детекторы для поиска темной материи невероятно изящны с инженерной точки зрения – тут они чем-то напоминают яйца Фаберже, от одного взгляда на которые даже у мастеров-ювелиров захватывает дух. Один из таких детекторов – магнитный альфа-спектрометр стоимостью два миллиарда долларов, установленный на Международной космической станции, ведет сбор данных о возможных столкновениях частиц темной материи друг с другом. Большинство же детекторов нацелены на поиск следов взаимодействия между частицами темной и барионной материи, и попытки зафиксировать их предпринимаются уже на Земле, а точнее, под землей: для минимизации помех, вносимых прилетающими из космического пространства высокоэнергетическими частицами космических лучей, размещать исследовательские комплексы приходится глубоко под земной поверхностью. Детекторы представляют собой массивы кристаллов, охлажденных до сверхнизких температур, другие выглядят как огромные емкости, заполненные жидким ксеноном или аргоном, окруженные датчиками и упакованные в многослойную «луковицу» – обертку из самых разных (от полиэтилена до свинца и меди) экранирующих материалов. Интересный факт: недавно выплавленный свинец обладает небольшой радиоактивностью, что недопустимо при строительстве высокочувствительных детекторов. В экспериментах используется переплавленный свинцовый балласт, который подняли с затонувших кораблей времен Римской империи. За два тысячелетия, которые металл пролежал на дне моря, его радиоактивность заметно снизилась. Вам кажется, что по поводу темной материи полно вопросов? Сущие пустяки по сравнению с нашими представлениями о загадочной темной энергии! Лауреат Нобелевской премии по физике 1979 года Стивен Вайнберг считает ее «центральной проблемой современной физики». Астрофизик Майкл Тёрнер ввел в обиход термин «темная энергия», после того как две группы астрономов в 1998 году объявили об открытии ускоряющегося расширения Вселенной. Они пришли к такому выводу в процессе изучения сверхновых звезд типа Ia, обладающих одинаковой максимальной светимостью, благодаря чему их можно использовать для измерения расстояний до удаленных галактик. Гравитационное взаимодействие между галактиками в их скоплениях должно ограничивать расширение Вселенной, и астрономы ожидали увидеть замедление скорости изменения расстояний между звездными кластерами. Представьте их удивление, когда они выяснили, что все как раз наоборот: Вселенная расширяется, и скорость расширения со временем возрастает. А начался этот процесс, как предполагают ученые, пять-шесть миллиардов лет назад. В последние годы астрономы заняты тщательным картированием Вселенной с беспрецедентно высокой точностью. Это поможет получить больше информации о точном моменте возникновения темной энергии и определить, остается ли она постоянной или изменяется со временем. Но возможности телескопов и цифровых детекторов небезграничны, а значит, чтобы вывести более точную космологическую теорию, необходимо разработать и построить новые инструменты – принцип остается неизменным с момента зарождения астрономии. Для построения такой карты запущено несколько проектов вроде «Спектроскопического обзора барионных осцилляций» (BOSS, Baryon Oscillation Spectroscopic Survey), в рамках которого при помощи 2,5-метрового телескопа в американской обсерватории Апачи-Пойнт ведется измерение расстояний в космосе со сверхвысокой (до процента) точностью. Проект «Обзор темной энергии» (DES, Dark Energy Survey) занимается сбором и изучением информации о 300 миллионах (!) галактик, наблюдения ведутся на 4-метровом телескопе имени Виктора Бланко, расположенном в чилийских Андах. Европейское космическое агентство ESA на 2020 год планирует запуск орбитального телескопа «Евклид», который позволит заглянуть в прошлое и понять, как менялась динамика расширения Вселенной на протяжении нескольких миллиардов лет. А с запуском Большого обзорного телескопа (LSST, Large Synoptic Survey Telescope), строящегося в нескольких километрах от телескопа Бланко, у космологов появятся огромные массивы уникальных данных. Относительно небольшой (диаметр зеркала – 8,4 метра), но достаточно быстрый при съемке, LSST будет оснащен сверхсовременной цифровой камерой в 3,2 гигапикселя, позволяющей разом охватить изрядную часть неба. С помощью такого арсенала технически сложных инструментов ученые надеются измерить скорость расширения Вселенной, выяснить, изменилась ли она с момента возникновения темной энергии, и понять, каково место последней в устройстве мироздания. Это позволит сделать выводы ни много, ни мало о том, что ждет Вселенную в будущем и о том, как нам продолжить ее изучение. Если она будет расширяться со все возрастающей скоростью, всецело находясь во власти темной энергии, большинство галактик окажутся отброшенными из поля зрения друг друга, не оставив астрономам будущего ни одного объекта для наблюдения, кроме ближайших соседей и зияющей космической бездны. Для того чтобы понять природу темной энергии , нам придется переосмыслить фундаментальные представления о самом пространстве. Долгое время космические просторы между звездами и планетами считались абсолютно пустыми, хотя еще Исаак Ньютон говорил, что ему чрезвычайно сложно представить, как гравитация может удерживать Землю, вращающуюся по орбите вокруг Солнца, если между ними нет ничего, кроме вакуума. В XX веке квантовая теория поля показала, что на самом деле пространство не является пустым, а, напротив, повсюду пронизано квантовыми полями. Основные «строительные кирпичики», из которых состоит материя – протоны, электроны и другие частицы, – по сути, являются лишь возмущениями квантовых полей. Когда энергия поля находится на минимальном уровне, пространство выглядит пустым. Но если поле возмущено, все вокруг оживает, заполняясь видимой материей и энергией. Математик Лучано Бой сравнивает пространство с поверхностью воды в альпийском пруду: она становится заметной, когда налетает легкий бриз, покрывая пруд дрожащей рябью. «Пустое пространство на самом деле не пусто, – сказал американский физик Джон Арчибальд Уиллер, – в нем таится настоящая физика, полная сюрпризов и неожиданностей». Темная энергия вполне может подтвердить глубокую пророческую силу слов Уиллера. Стремясь понять механизмы, ответственные за непрекращающееся «раздувание» Вселенной – которое, как оказалось, еще и продолжает ускоряться, – ученые полагаются на эйнштейновскую общую теорию относительности, появившуюся сотню лет назад. Она отлично работает на объектах большого масштаба, но спотыкается на микроуровне, где балом правит квантовая теория и где таится разгадка постоянно ускоряющегося расширения космического пространства. Для объяснения темной энергии может понадобиться нечто принципиально новое – что-то вроде квантовой теории пространства и гравитации. Современная наука бьется над, казалось бы, простой задачей: сколько энергии – темной или какой-либо другой – содержится в заданной ограниченной области пространства? Если в расчетах положиться на квантовую теорию, получается невообразимо большое значение. А если привлечь к проблеме астрономов, их оценка, основанная на наблюдениях за темной энергией, окажется несоизмеримо мала. Разница между двумя числами ошеломляет: 10 в 121-й степени! Это единица со 121 нулем – больше, чем количество звезд в наблюдаемой Вселенной и всех песчинок на нашей планете. Это самый существенный перекос в истории науки, вызванный несогласованностью теории и фактических наблюдений. Очевидно, мы упускаем какое-то фундаментально важное свойство пространства, а значит, и всего, что нас окружает и является его частью, – галактик, звезд, планет и нас самих. Ученым только предстоит выяснить, насколько велик пробел в наших знаниях.

Инструкция

«Открылась бездна, звезд полна; звездам числа нет, бездне – дна», - писал в одном из стихотворений гениальный российский ученый Михаил Васильевич Ломоносов. Это и есть поэтическое утверждение бесконечности Вселенной.

Возраст «бытия» обозримой Вселенной - около 13,7 миллиардов земных лет. Свет, который приходит от далеких галактик «с края мира», идет до Земли более 14 миллиардов лет. Получается, диаметральные размеры Вселенной можно вычислить, если примерно 13,7 умножить на два, то есть 27,4 миллиарда световых лет. Радиальный размер сферической модели - примерно 78 млрд световых лет, а диаметр – 156 млрд световых лет. Это - одна из последних версий американских ученых, результат многолетних астрономических наблюдений и расчетов.

В обозримой вселенной 170 миллиардов галактик, подобных нашей. Наша как бы находится в центре гигантского шара. От самых дальних космических объектов виден реликтовый свет – фантастически древний с точки зрения человечества. Если проникнуть очень глубоко в систему пространство-время, можно увидеть юность планеты Земля.

Существует конечный предел возраста наблюдаемых с Земли светящихся космических объектов. Вычислив предельный возраст, зная время, которое понадобилось свету для того, чтобы пройти расстояние от них до поверхности Земли, и зная константу, скорость света, по известной со школы формуле S=Vxt (путь = скорость, умноженная на время) ученые и определили вероятные размеры наблюдаемой Вселенной.

Представлять Вселенную в форме трехмерного шара – не единственный путь построения модели Вселенной. Есть гипотезы, предполагающие, что Вселенная имеет не три, а бесконечное число измерений. Есть версии, что она, подобно матрешке, состоит из бесконечного множества вложенных друг в друга и отстоящих друг от друга шарообразных образований.

Есть предположение, что Вселенной неисчерпаема по различным критериям и разным осям координат. Люди считали мельчайшей частицей материи «корпускулу», потом «молекулу», потом «атом», потом «протоны и электроны», потом заговорили об элементарных частицах, которые оказались совсем не элементарными, о квантах, нейтрино и кварках… И никто не даст гарантию, что внутри очередной супермикроминичастицы материи не находится очередная Вселенная. И наоборот – что видимая Вселенная не представляет собой только микрочастицу материи Супер-Мега-Вселенной, размеры которой никому не дано даже вообразить и подсчитать, настолько они велики.