Что такое когерентность волн. Когерентные волны

Монохроматическая плоская электромагнитная волна описывается следующим выражением для напряженности поля в любой точке пространства, определяемой радиус-вектором r :

где Е 0 , , и являются постоянными величинами. Однако всякая реальная световая волна образуется наложением колебаний различных частот, заключенных в конечном интервале . Согласно формуле разбросу частот соответствует разброс значений волнового числа . Следует отметить, что разброс волнового вектора может быть связан также с разбросом направлений распространения волн, который характеризуется векторной величиной .

Сначала обсудим временную когерентность , которая связана с разбросом частот . Рассмотрим случай наложения в некоторой точке пространства двух световых колебаний с несколько различающимися частотами :

Интерференционный член

при сделанных предположениях будет зависеть от времени и разности частот

Всякий оптический прибор, с помощью которого наблюдается интерференция света (фотопленка, человеческий глаз и др.), обладает определенной инертностью, которая характеризуется временем регистрации прибором интерференционной картины. При этом оптический прибор регистрирует картину, усредненную по промежутку времени . Если за это время косинус в интерференционном члене

с равной вероятностью принимает все значения от –1 до +1 , то среднее значение интерференционного члена будет равно нулю. Интерференционная картина не будет видна, то есть регистрируемая прибором интенсивность окажется равной сумме интенсивностей, создаваемых в данной точке каждой волной в отдельности. Если же за время значение косинуса остается практически неизменным, то прибор зарегистрирует интерференцию. Таким образом, для характеристики когерентных свойств световых волн вводится время когерентности , которое определяется как время, за которое изменение разности фаз волн, накладывающихся в данной точке пространства, достигает значения :

прибор не зафиксирует интерференцию, а при

прибор обнаружит интерференционную картину. За время когерентности волна распространяется на расстояние

называемое длиной когерентности .

Для наблюдения интерференционной картины обычно используют пучки света от одного источника, но прошедшие разные расстояния до точки наблюдения. Это означает, что интерферируют волны, испущенные источником в разное время. Если частота источника «плавает», то при разности хода волн до точки наблюдения разница во времени испускания волн будет , что означает невозможность наблюдения интерференции.

В качестве примера укажем типичные значения длины когерентности для естественного оптического источника с узкополосным светофильтром с шириной полосы пропускания вблизи середины видимого диапазона ( нм ) и для газового лазера - источника оптического излучения с высокой временной когерентностью, для которого ширина полосы на два-три порядка меньше. В первом случае оценка длины когерентности даёт значение

а во втором случае - для лазера -

Таким образом, наблюдение интерференционной картины от обычных оптических источников возможно лишь при малых разностях хода волн, например, при интерференции в тонких пленках, в то время как использование лазерного излучения существенно упрощает эту задачу.

В идеализированном случае при наложении монохроматических воли со строго фиксированными и равными частотами () время и длина когерентности становятся бесконечно большими, поэтому, естественно, в таких условиях интерференционная картина наблюдалась бы при любых разностях хода.

Изменение разности фаз колебаний может происходить не только из-за разбросa частот , но и вследствие разброса волновых векторов . Поэтому наряду с временной когерентностью, определяемой временем когерентности, вводится понятие пространственной когерентности . Возникновение в некоторой точке пространства колебаний, возбуждаемых волнами с целым набором различных по направлению векторов , имеет место, если эти волны испускаются различными участками протяженного источника света.

Рассмотрим для определенности светящийся диск АВ, который из точки М виден под углом (рис. 4.1)

Рис. 4.1. Пространственная когерентность света от протяженного источника:
угол характеризует разброс волновых векторов Ак

Угол характеризует разброс волновых векторов . Таким образом, в фазу электромагнитной волны

надо подставить выражения:

где - проекция радиус-вектора r на направление вектора . В формулах (4.7) и ниже предполагается, что . Вектор , как видно из рисунка, можно считать параллельным протяженному источнику, и, соответственно, фронту волны.

Когерентностью называется согласованное протекание нескольких колебательных или волновых процессов. Степень согласования может быть различной. Соответственно вводится понятие степени когерентности двух волн.

Пусть в данную точку пространства приходят две световые волны одинаковой частоты, которые возбуждают в этой точке колебания одинакового направления (обе волны поляризованы одинаковым образом):

Е = А 1 соs(wt + a 1),

Е = A 2 cos(wt + a 2), тогда амплитуда результирующего колебания

А 2 = А 1 2 +А 2 2 + 2А 1 А 2 соsj, (1)

где j = a 1 - a 2 = const.

Если частоты колебаний в обеих волнах w одинаковы, а разность фаз j возбуждаемых колебаний остается постоянной во времени, то такие волны называются когерентными.

Приналожении когерентных волн они дают устойчивое колебание с неизменной амплитудой А = соnst, определяемой выражением (1) и в зависимости от разности фаз колебаний лежащей в пределах |а 1 –А 2 ê £ A £ а 1 +А 2.

Т.о., когерентные волны при интерференции друг с другом дают устойчивое колебание с амплитудой не больше суммы амплитуд интерферирующих волн.

Если j = p, тогда соsj = -1 и а 1 = А 2 , a амплитуда суммарного колебания равна нулю, и интерферирующие волны полностью гасят друг друга.

В случае некогерентных волн j непрерывно изменяется, принимая с равной вероятностью любые значения, вследствие чего среднее по времени значение t = 0. Поэтому

А 2 > = <А 1 2 > + <А 2 2 >,

откуда интенсивность, наблюдаемая при наложении некогерентных волн, равна сумме интенсивностей, создаваемых каждой из волн в отдельности:

I = I 1 + I 2 .

В случае когерентных волн, соsj имеет постоянное во времени значение (но свое для каждой точки пространства), так что

I = I 1 + I 2 + 2Ö I 1 × I 2 cosj (2)

В тех точках пространства, для которых соsj >0, I> I 1 +I 2 ; в точках, для которых соsj<0, IПри наложении когерентных световых волн происходит перераспределение светового потока в пространстве, в результате чего в одних местах возникают максимумы, а в других - минимумы интенсивности. Это явление называется интерференцией волн. Особенно отчетливо проявляется интерференция в том случае, когда интенсивности обеих интерферирующих волн одинаковы: I 1 =I 2 . Тогда согласно (2) в максимумах I = 4I 1 , в минимумах же I = 0. Для некогерентных волн при том же условии получается всюду одинаковая интенсивность I = 2I 1 .

Все естественные источники света (Солнце, лампочки накаливания и т.д.) не когерентны.

Некогерентность естественных источников света обусловлена тем, что излучение светящегося тела слагается из волн, испускаемых многими атомами. Отдельные атомы излучают цуги волн длительностью порядка 10 -8 с и протяженностью около 3 м. Фаза нового цуга никак не связана с фазой предыдущего цуга. В испускаемой телом световой волне излучение одной группы атомов через время порядка 10 -8 с сменяется излучением другой группы, причем фаза результирующей волны претерпевает случайные изменения.

Некогерентными и не могущими интерферировать др. с др. являются волны, испускаемые различными естественными источниками света. А можно ли вообще для света создать условия, при которых наблюдались бы интерференционные явления? Как, пользуясь обычными некогерентными излучателями света, создать взаимно когерентные источники?

Когерентные световые волны можно получить, разделив (с помощью отражений или преломлений) волну, излучаемую одним источником света, на две части, Если заставить эти две волны пройти разные оптические пути, а потом наложить их др. на др., наблюдается интерференция. Разность оптических длин путей, проходимых интерферирующими волнами, не должна быть очень большой, так как складывающиеся колебания должны принадлежать одному и тому же результирующему цугу волн. Если эта разность ³1м, наложатся колебания, соответствующие разным цугам, и разность фаз между ними будет непрерывно изменяться хаотическим образом.

Пусть разделение на две когерентные волны происходит в точке О (рис.2).

До точки Р первая волна проходит в среде показателем преломления n 1 путь S 1 , вторая волна проходит в среде с показателем преломления n 2 путь S 2 . Если в точке О фаза колебания равна wt, то первая волна возбудит в точке Р колебание А 1 соsw(t – S 1 /V 1), а вторая волна -колебание А 2 соsw(t – S 2 /V 2), где V 1 и V 2 - фазовые скорости. Следовательно, разность фаз колебаний, возбуждаемых волнами в точке Р, будет равна

j = w(S 2 /V 2 – S 1 /V 1) = (w/c)(n 2 S 2 – n 1 S 1).

Заменим w/с через 2pn/с = 2p/lо (lо - длина волны в), тогдаj = (2p/lо)D, где (3)

D= n 2 S 2 – n 1 S 1 = L 2 - L 1

есть величина, равная разности оптических длин, проходимых волнами путей, и называется оптической разностью хода.

Из (3) видно, что если оптическая разность хода равна целому числу длин волн в вакууме:

D = ±mlо (m = 0,1,2), (4)

то разность фаз оказывается кратной 2p и колебания, возбуждаемые в точке Р обеими волнами, будут происходить с одинаковой фазой. Т.о., (4) есть условие интерференционного максимума.

Если оптическая разность хода D равна полуцелому числу длин волн в вакууме:

D = ± (m + 1/2)lо (m =0, 1,2, ...) (5)

то j = ± (2m + 1)p, так что колебания в точке Р находятся в противофазе. Следовательно, (5) есть условие интерференционного минимума.

Принцип получения когерентных световых волн разделением волны на две части, проходящие различные пути, может быть практически осуществлен различными способами - с помощью экранов и щелей, зеркал и преломляющих тел.

Впервые интерференционную картину от двух источников света наблюдал в 1802 году английский ученый Юнг. В опыте Юнга (рис.3) свет от точечного источника (малое отверстие S) проходит через две равноудаленные щели (отверстия) А 1 и А 2 , являющиеся как бы двумя когерентными источниками (две цилиндрические волны). Интерференционная картина наблюдается на экране Ё, расположенном на некотором расстоянии l параллельно А 1 А 2 . Начало отсчета выбрано в точке 0, симметричной относительно щелей.

Усиление и ослабление света в произвольной точке Р экрана зависит от оптической разности хода лучей D =L 2 – L 1 . Для получения различимой интерференционной картины расстояние между источниками А 1 А 2 =d должно быть значительно меньше расстояния до экрана l . Расстояние х, в пределах которого образуются интерференционные полосы, значительно меньше l . При этих условиях можно положить S 2 – S 1 » 2l . Тогда S 2 – S 1 » xd/l . Умножив на n,

Подучим D = nxd/l . (6)

Подставив (6) в (4) получим, что максимумы интенсивности будут наблюдаться при значениях х, равных х max = ± ml l/d (m = 0, 1,2,.,.).(7)

Здесь l = l 0 /n - длина волны в среде, заполняющей пространство между источниками и экраном.

Координаты минимумов интенсивности будут:

х min = ±(m +1/2)ll/d (m = 0,1,2,...). (8)

Расстояние между двумя соседними максимумами интенсивности называется расстоянием между интерференционными полосами, а расстояние между соседними минимумами - шириной интерференционной полосы. Из (7) и (8) следует, что расстояние между полосами и ширина полосы имеют одинаковое значение, равное Dх = l l/d. (9)

Измеряя параметры, входящие в (9), можно определить длину волны оптического излучения l. Согласно (9) Dх пропорционально 1/d, поэтому чтобы интерференционная картина была четко различима, необходимо соблюдение упоминавшегося выше условия: d<< l . Главный максимум, соответствующий m = 0, проходит через точку 0. Вверх и вниз от него на равных расстояниях друг от друга располагаются максимумы (минимумы) первого (m =1), второго (m = 2) порядков и т.д.

Такая картина справедлива при освещении экрана монохроматическим светом (l 0 = const). При освещении белым светом интерференционные максимумы (и минимумы) для каждой длины волны будут, согласно формуле (9), смещены друг относительно друга и иметь вид радужных полос. Только для m = 0 максимумы для всех длин волн совпадают, и в середине экрана будет наблюдаться светлая полоса, по обе стороны от которой симметрично расположатся спектрально окрашенные полосы максимумов первого, второго порядков и т д. (ближе к центральной светлой полосе будут находиться зоны фиолетового цвета, дальше – зоны красного цвета).

Интенсивность интерференционных полос не остается постоянной, а изменяется вдоль экрана по закону квадрата косинуса.

Наблюдать интерференционную картину можно с помощью зеркала Френеля, зеркала Лойда, бипризмы Френеля и других оптических устройств, а также при отражении света от тонких прозрачных пленок.

14.ИНТЕРФЕРЕНЦИЯ СВЕТА ПРИ ОТРАЖЕНИИ ОТ ТОНКИХ ПЛАСТИНОК. ПОЛОСЫ РАВНОЙ ТОЛЩИНЫ И РАВНОГО НАКЛОНА. Большой практический интерес представляет интерференция в тонких пластинках и пленках.

Пусть на тонкую плоскопараллельную пластину толщиной b, изготовленную из прозрачного вещества с показателем преломления n, из воздуха (n возд » 1) падает плоская световая волна, которую можно рассматривать как параллельный пучок лучей (рис.4), под углом Q 1 к перпендикуляру.

На поверхности пластины в точке А луч разделится на два параллельных луча света, из которых один образуется за счет отражения от верхней поверхности пластинки, а второй – от нижней поверхности. Разность хода, приобретаемая лучами 1 и 2 до того, как они сойдутся в точке С, равна

D = nS 2 – S 1 ± l 0 /2

где S 1 - длина отрезка АВ, а S 2 – суммарная длина отрезков АО и ОС, а член ± l 0 /2 обусловлен потерей полуволны при отражении света от границы раздела двух сред с различными показателями преломления.

Из геометрического рассмотрения получается формула для оптической разности хода дучей1и2:

D = 2bÖ(n 2 – sin 2 Q 1) = 2bn соsQ 2 ,

а с учетом потери полуволны для оптической разности хода получим

D = 2bÖ(n 2 – sin 2 Q 1) ± l 0 /2 = 2bn соsQ 2 ± l 0 /2. (10)

Вследствие ограничений, накладываемых временной и пространственной когерентностью, интерференция при освещении пластинки например солнечным светом наблюдается только в том случае, если толщина пластинки не превышает нескольких сотых миллиметра. При освещении светом с большей степенью когерентности (например, лазером) интерференция, наблюдается и при отражении от более толстых пластинок или пленок.

Практически интерференцию от плоскопараллельной пластинки наблюдают, поставив на пути отраженных пучков линзу, которая собирает лучи в одной из точек экрана, расположенного в фокальной плоскости линзы (рис.5). Освещенность в произвольной точке Р экрана зависит от значения величины D, определенной по формуле (10). При D = mlо получаются максимумы, при D = (m + 1/2)lо - минимумы интенсивности (m - целое число).

Пусть тонкая плоскопараллельная пластинка освещается рассеянным монохроматическим светом (рис.5). Расположим параллельно пластинке линзу, в фокальной плоскости которой поместим экран. В рассеянном свете имеются лучи самых разнообразных направлений. Лучи, параллельные плоскости рисунка и падающие на пластинку под углом в), после отражения от обеих поверхностей пластинки соберутся линзой в точке Р и создадут в этой точке освещенность, определяемую значением оптической разности хода.

Лучи, идущие в других плоскостях, но падающие на пластинку под тем же углом Q 1 ¢ соберутся линзой в других точках, отстоящих от центра экрана О на такое же расстояние, как и точка Р. Освещенность во всех этих точках будет одинакова. Т.о. лучи, падающие на пластинку под одинаковым углом Q 1 ¢, создадут на экране совокупность одинаково освещенных точек, расположенных по окружности с центром в точке О. Аналогично, лучи, падающие под другим углом Q" 1 создадут на экране совокупность одинаково (но иначе, поскольку А иная) освещенных точек, расположенных по окружности другого радиуса.

В результате на экране возникнет система чередующихся светлых и темных круговых полос с общим центром в точке O ). Каждая полоса образована лучами, падающими на пластинку под одинаковым углом Q 1 . Поэтому получающиеся в описанных условиях интерференционные полосы носят назв. полос равного наклона. При ином расположении линзы относительно пластинки (экран во всех случаях должен совпадать с фокальной плоскостью линзы) форма полос равного наклона будет другой. Роль линзы может играть хрусталик глаза, а экрана - сетчатка глаза.

Согласно (10) положение максимумов зависит от lо. Поэтому в белом свете получается совокупность смещенных др. относительно др. полос, образованных лучами разных цветов, и интерференционная картина приобретает радужную окраску.

Интерференционная картина от тонкого прозрачного клина переменной толщины была изучена еще Ньютоном. Пусть на такой клин (рис.6) падает параллельный пучок лучей.

Рис.6.

Теперь лучи, отразившиеся от разных поверхностей клина, не будут параллельными. Но и в этом случае отраженные волны будут когерентными во всем пространстве над клином , и при любом расстоянии экрана от клина на нем наблюдаться интерференционная картина в виде полос, параллельных вершине клина 0. Каждая из таких полос возникает в результате отражения от участков клина с одинаковой толщиной, вследствие чего их называют полосами равной толщины. Практически полосы равной толщины наблюдают, поместив вблизи клина линзу и за ней экран. Роль линзы может играть хрусталик, а роль экрана - сетчатка глаза. При наблюдении в белом свете полосы будут окрашенными, так что поверхность пластинки или пленки представляется имеющей радужную окраску. Такую окраску имеют, например, расплывшиеся по поверхности воды тонкие пленки нефти и масла, а также мыльные пленки. Заметим, что интерференция от тонких пленок может наблюдаться не только в отраженном, но и в проходящем свете.

Классическим примером полос равной толщины являются кольца Ньютона, Они наблюдаются при отражении света от соприкасающихся др. с др. плоскопараллельной толстой стеклянной пластинки и плоско-выпуклой линзы с большим радиусом кривизны (рис.7).

Роль тонкой пленки, от поверхности которой отражаются когерентные волны, играет воздушный зазор между пластинкой и линзой (вследствие большой толщины пластинки и линзы за счет отражений от других поверхностей интерференционные полосы не возникают). При нормальном падении света полосы равной толщины имеют вид концентрических окружностей, при наклонном падении - эллипсов. Найдем радиусы колец Ньютона, получающиеся при нормальном падении света на пластину. В этом случае sinQ 1 = О и D равна удвоенной толщине зазора (предполагается n 0 = 1). Из рис. 7 следует, что

R 2 = (R – b) 2 + r 2 » R 2 – 2Rb + r 2 , (12)

где R - радиус кривизны линзы, r - радиус окружности, всем точкам которой соответствует одинаковый зазор b. Считаем b 2 < 2Rb. Из (12) b = г 2 /2R. Чтобы учесть возникающее при отражении от пластинки изменение фазы на p, нужно к D = 2b = r 2 /R прибавить lо/2. В результате получится

D = r 2 /R + lо/2. (13)

В точках, для которых D = m"lо = 2m"(lо/2), возникают максимумы, в точках, для которых D = (m" + 1/2)lо = (2m"+ 1)(lо/2), - минимумы интенсивности.

Оба условия можно объединить в одно: D = mlо/2, причем четным значениям m будут соответствовать максимумы, а нечетным -минимумы интенсивности. Подставив сюда (13) и разрешив получившееся уравнение относительно r, найдем радиусы светлых и темных колец Ньютона:

r m = ÖRlо(m- 1)/2,(m =1,2,3,...). (14)

Четным m соответствуют радиусы светлых колец, нечетным m - радиусы темных колей. Значению m =1 соответствует г = 0, в этой точке наблюдается минимум интенсивности, обусловленный изменением фазы на p при отражении световой волны от пластинки.

Измеряя расстояния между полосами интерференционной картины для тонких пластин или радиусы колец Ньютона, можно определить длины волн световых лучей и, наоборот, по известной l найти радиус кривизны линзы.

Интерференцию можно наблюдать и в проходящем свете, причем в данном случае не наблюдается потери полуволны. Следовательно, оптическая разность хода для проходящего и отраженного света отличается на l 0 /2, т.е. максимумам интерференции в отраженном свете соответствуют минимумы в проходящем, и наоборот.

Другим практическим применением интерференции являются прецизионные измерения линейных размеров. Для этого служат приборы, называемые интерферометрами.

Интерферометры также позволяют определять незначительные изменения показателя преломления прозрачных тел (газов, жидкостей и твердых тел) в зависимости от давления, температуры, примесей и т.п.

2.1.1. Условия максимума и минимума интерференции когерентных волн

Когерентными называют две волны, у которых одинаковые частоты, и разность фаз не изменяется со временем.

Интерференция света – пространственное перераспределение светового потока при наложении двух (или нескольких) волн, в результате чего в одних местах возникают максимумы, а в других минимумы интенсивности.

Для получения когерентных световых волн применяют метод разделения волны, излучаемой одним источником, на две части, которые после прохождения разных оптических путей накладываются друг на друга и наблюдается интерференционная картина. Практически это можно осуществить с помощью щелей, зеркал, лазеров и экранов.

Две когерентные волны, приходя в данную точку, вызывают в ней гармонические колебания:

y 1 =y 01 ·cos(ωt+φ 1),

y 2 =y 02 ·cos(ωt+φ 2)

Если разность фаз указанных колебаний удовлетворяет равенству:

∆φ ≡ φ 2 -φ 1 =2m·π, (2.1)

то амплитуда результирующего колебания является суммой амплитуд интерферирующих волн (см. рис. 2.1):

Если же разность фаз составляет нечетное число π, т.е.:

∆φ=(2m+1)·π, (2.2)

то волны ослабляют друг друга; амплитуда результирующего колебания становится равной:

y 0 =|y 02 - y 01 |

При равенстве амплитуд интерферирующих колебаний в первом случае имеем:

y 0 =2y 01 =2y 02 ,

а во втором - y 0 =0.

Уравнения двух когерентных волн, распространяющихся в двух различных средах с показателями преломления n 1 и n 2 , имеют вид:

y 1 =y 01 ·cos(ωt-k 1 х 1),

y 2 =y 02 ·cos(ωt-k 2 х 2),

Если в первой среде волна проходит расстояние х=l 1 , а во второй - х=l 2 , то ∆φ=k 1 l 1 -k 2 l 2 =2π(l 1 /λ 1 -l 2 /λ 2).

Т.к. n 1 =λ 0 /λ 1 , а n 2 =λ 0 /λ 2 , где λ 0 – длина волны в вакууме, то условия максимума и минимума интерференции принимают вид:

σ ≡ n 1 l 1 -n 2 l 2 =m·(λ 0 /2)·2 (2.3)

σ ≡ n 1 l 1 -n 2 l 2 =(2m+1)·(λ 0 /2) (2.4)

l 1 – геометрическая длина пути 1-ой волны в 1-ой среде,

n 1 l 1 – оптическая длина пути 1-ой волны в 1-ой среде,

σ – оптическая разность хода.

Если оптическая разность хода (n 1 l 1 -n 2 l 2) двух интерферирующих волн равна целому числу длин волн в вакууме (или четному числу полуволн), то при интерференции получается максимум колебаний. Если же оптическая разность хода равна нечетному числу полуволн, то при интерференции получается минимум колебаний.

Ошибочно думать, что в точках волнового поля, в которых наблюдается минимум колебаний, происходит бесследное исчезновение энергии волн. В действительности нет нарушения закона сохранения энергии и в данном явлении, т.к. в результате интерференции происходит лишь перераспределение энергии волнового поля.

2.1.2. Интерференция при отражении света от тонких пластинок

Пусть на плоскопараллельную оптически прозрачную пластинку толщиной d падает плоская монохроматическая световая волна (см. рис. 2.2).

На верхней поверхности происходит расщепление светового пучка на отраженный и проведший в пластинку лучи (1 и 2 соответственно). Если пластинку окружает воздух, показатель преломления которого считаем равным 1, то пластинка, у которой n>1, является оптически более плотной средой. При отражении световой волны от оптически более плотной среды наблюдается потеря полуволны. В результате чего оптическая разность хода между волнами, отраженными от нижней-3 и верхней-1 поверхности пластинки составляет:

σ 13 =2n d - (λ 0 /2)

Если выполняется равенство σ 13 = mλ 0 , то пластинка представляется нам в отраженном свете освещенной, если же σ 13 = (2m+1)(λ 0 /2), тo пластинка не видна. Указанное явление получило важное практическое применение в «просветлении» оптических систем.

При использовании многолинзовых оптических систем (объективы фотоаппаратов, теле- или кинокамер, стереотруб, биноклей и др.) возникает проблема ослабления светового пучка, прошедшего через систему стекол, появления бликов отраженных пучков света. Для устранения такого рода помех поверхности линз покрывают тонким слоем светопрозрачного вещества (см. рис. 2.3).

При этом толщину слоя подбирают такой, чтобы отраженные лучи 1 и 3 гасили друг друга. Вещество слоя имеет промежуточный показатель преломления, т.е. n 1

Поставленная цель достигается, если:

2n 2 d =λ 0 /2.

Откуда: d = λ 0 /(4·n 2) = λ в /4.

Длина волны зеленого света (наиболее благоприятного для восприятия человеческим глазом) составляет 0,55мкм. Следовательно, толщина пленки составляет десятые доли микрометра. (Объяснить самостоятельно - почему просветленная оптика в отраженном свете представляется нам окрашенной в сиреневый цвет).

2.1.3. Интерференция в тонком клине



Представим себе, что плоская световая монохроматическая волна падает на тонкий клин, изготовленный из оптически прозрачного вещества, перпендикулярно к его основанию (см. рис. 2.4).

Клин настолько тонок, что отраженные лучи 1 и 3 идут практически параллельно друг другу вертикально вверх. Рассматриваемый сверху в отраженном свете клин представится нам «полосатым», причем световые полосы, чередуемые с темными полосами, будут параллельны острой кромке клина и будут находиться на равном расстоянии друг от друга - х.

Для двух соседних максимумов интерференции (двух соседних полос) можем записать:

2nd - (λ 0 /2) = mλ 0

2n(d+h) - (λ 0 /2) = (m+1)λ 0

Вычитая из одного равенства другое, получим:

Т.к. h = х·tgφ ≈ х·φ,

то 2nхφ = λ 0 .

Откуда следует:

х = λ 0 /2nφ ,

следовательно, расстояние между соседними светлыми (темными) полосами тем больше, чем тоньше клин. В пределе при φ → 0 поверхность клина представляется нам либо равномерно освещенной, либо равномерно затемненной.

Явление интерференции в оптически прозрачном клине нашло очень важное применение в технологии изготовления оптических линз. Ведь линза представляет своеобразный клин (хотя его поверхности не являются плоскими). Наблюдая за поверхностью линзы в отраженном свете можно по искривлению интерференционных полос обнаружить очень незначительные дефекты - неровности поверхности, неоднородность стекла.

2.1.4. Интерферометр Майкельсона

Рекордная точность в измерениях длины линейных отрезков (перемещений) достигается с помощью интерферометра Майкельсона, схема которого изображена на рис. 2.5.

Пучок света от источника S падает на полупрозрачную пластинку P 1 , покрытую тонким слоем серебра. Половина упавшего светового потока отражается пластиной Р 1 в направлении луча 1, половина проходит сквозь пластинку и распространяется в направлении луча 2. Пучок 1 отражается от зеркала З 1 , и возвращается к P 1 . Пучок 2, отразившись от зеркала З 2 , тоже возвращается к пластине Р 1 . Прошедшие через пластинку Р 1 лучи 1 / и 2 / когерентны между собой и имеют одинаковую интенсивность. Результат интерференции этих пучков зависит от оптической разности хода от пластинки Р 1 до зеркал 3 1 и З 2 и обратно. Луч 2 проходит толщину пластинки трижды, луч 1 - только 1 раз. Чтобы скомпенсировать возникающую за счет этого разную (вследствие дисперсии) для различных длин волн и различных температур оптическую разность хода, на пути луча 1 ставится точно такая, как Р 1 , но не посеребренная пластинка Р 2 .Тем самым уравниваются пути лучей 1 и 2 в стекле. Интерференционная картина наблюдается с помощью зрительной трубы Т. Вращая микрометрический винт В, можно плавно перемещать зеркало 3 2 , тем самым можно изменять оптическую разность хода между лучами 1 / и 2 / .

2n·∆L=2·N·λ 0 /2 (max) , где n = 1.

Пусть в результате вращения микрометрического винта зеркало З 2 переместилось вдоль измеряемого отрезка на ∆L, при этом наблюдая в зрительную трубу, мы зафиксировали N интерференционных миганий. Нетрудно получить ∆L=N·λ 0 /2. Откуда следует, что цена деления измерительного прибора составляет λ 0 /2, т.е. для зеленого света она равна 0,27 мкм.

2.1.5. Интерференционные рефрактометры

Позволяют определить незначительные изменения показателя преломления прозрачных тел в зависимости от давления, температуры и т.д.

На пути интерферирующих лучей помещаются две одинаковые кюветы длиной l . Одна заполнена газом с известным показателем преломления n 0 , а другая – с неизвестным – n х.Возникает дополнительная разность хода δ = (n х – n 0)∙l , которая приводит к сдвигу интерференционных полос. Величина показывает, на какую часть ширины интерференционной полосы сместилась интерференционная картина. (Т.к. δ = (n х · l – n 0 ∙ l ) = m λ)

Измеряя m 0 (при известных l, n 0 , λ), можно найти n х.

Cтраница 1


Когерентные волны, выходящие из кристаллической пластинки В (рис. 34.10), не могут интерферировать, так как они поляризованы во взаимно перпендикулярных плоскостях. Анализатор выделяет из падающих на него когерентных волн составляющие, поляризованные в одной плоскости, и, таким образом, создаст условия, необходимые для осуществления интерференции этих волн.  

Когерентные волны - волны одинаковой частоты, колебания в которых отличаются постоянной разностью фаз, не изменяющейся во времени, достаточном для наблюдения.  

Когерентные волны - волны одинаковой частоты, колебания в которых отличаются постоянной разностью фаз, не изменяющейся со временем.  

Когерентные волны двух когерентных источпнкон света могут складываться, или интерферировать. И результате интерференции происходит либо усиление, либо ослабление световых колебаний и образуются интерференционные полосы.  

Когерентные волны, выходящие из кристаллической пластинки В (рис. 34.10), не могут интерферировать, так как они поляризованы во взаимно перпендикулярных плоскостях. Анализатор выделяет из падающих на него когерентных волн составляющие, поляризованные в одной плоскости, и таким образом создает условия, необходимые для осуществления интерференции этих волн. Результат интерференции зависит от разности фаз Др, приобретенной обыкновенной и необыкновенной волнами в пластинке, от соотношения амплитуд этих волн и угла ft между главными плоскостями анализатора и поляризатора.  

Когерентные волны можно получить, если источники волн связаны и совершают колебания совместно, например, если волны вызываются двумя стерженьками, погруженными в воду в точках G.  

Когерентные волны, выходящие из кристаллической пластинки К, не могут интерферировать, так как они поляризованы во взаимно перпендикулярных плоскостях.  

Когерентные волны получаются посредством разделения пучка света от одного источника на два или несколько отдельных пучков. На рис. 400 показаны два способа получения когерентных световых пучков.  

Когерентные волны, выходящие из кристаллической пластинки К, не могут интерферировать, так как они поляризованы во взаимно перпендикулярных плоскостях. Анализатор, разлагая приходящие к нему когерентные волны, поляризованные во взаимно перпендикулярных плоскостях и обладающие определенными разностями фаз Дф -, выделяет из них составляющие, которые поляризованы в одной плоскости, и тем самым создает условия, необходимые для осуществления интерференции этих волн.  

Когерентные колебания (когерентные волны) - два колебания, разность фаз между которыми не меняется со временем. Для этого необходимо, во-первых, чтобы частоты этих колебаний были точно равны, и, во-вторых, чтобы фаза каждого из этих колебаний не испытывала каких-либо изменений, отличных от изменений фазы другого колебания. Понятие когерентности относится не только к колебаниям, но и к волнам. Если колебания напряженности электрических (и магнитных) полей в двух волнах когерентны, то эти волны являются когерентными Например, две волны, пришедшие в данную точку от одного и того же передатчика, но различными путями, являются когерентными, если разность хода этих двух волн не меняется со временем. Вопрос о когерентности колебаний и волн играет принципиальную роль в явлении интерференции волн.  

Когерентные колебания (когерентные волны) - два колебания, разность фаз между которыми не меняется со временем. Для этого необходимо, во-первых, чтобы частоты этих колебаний были точно равны и, во-вторых, чтобы фаза каждого из этих колебаний не испытывала каких-либо изменений, отличных от изменений фазы другого колебания.  

Монохроматическая волна - это строго гармоническая (синусоидальная) волна с постоянными во времени частотой, амплитудой и начальной фазой.

или в рассматриваемом случае одинакового направления колебаний векторов 1 и Е=Е 1 2 . (3)

Возводя равенство (3) в квадрат с учетом (1) и произведя усреднение по времени, получим

I=I 1 +I 2 + 2 (4)

где I 1 и I 2 - интенсивности первой и второй волны соответственно [см. (2.20)].

Максимальная интенсивность I макс = I 1 +I 2 +2 будет при условии

когда При I 1 = I 2 = I 0 интенсивность в максимумах увеличится в 4 раза (I макс = 4I 0).

Минимальная интенсивность I мин = I 1 +I 2 -2 будет при условии

когда При I 1 = I 2 = I 0 I мин = 0, т.е. свет + свет = тьма .

Следовательно, при сложении в пространстве двух (или нескольких) световых волн могут возникать в одних местах максимумы, а в других - минимумы интенсивности, т.е. светлые и темные участки, полосы.

Получившаяся картина будет устойчивой (т.е. она сохраняется во времени) при наложении когерентных волн, т.е. волн, излучаемых когерентными источниками.

Когерентные волны. Время и длина когерентности

Две волны [см. (1)] или несколько волн являются полностью когерентными (согласованными), если частоты их одинаковы, амплитуды и разность фаз постоянны, т.е.

w 1 = w 2 , E 10 = const, E 20 = const, j 2 - j 1 = const. (7)

Этомуусловию удовлетворяют монохроматические волны (1), которые неограниченны в пространстве и времени.

Из повседневного опыта известно, что при наложении света от двух независимых (некогерентных) источников излучения, например, двух электрических лампочек, никогда не удается наблюдать явление интерференции. В этом случае j 2 -j 1 изменяется во времени и за время наблюдения j 2 -j 1 )> = 0 и результирующая интенсивность I = I 1 + I 2 , т.е. равна сумме интенсивностей налагаемых друг на друга световых волн, а не и не .


Это объясняется механизмом испускания света атомами источника излучения. В параграфе 2.4 было показано, что продолжительность процесса излучения света атомом t » 10 -8 с . За это время возбужденный атом , растратив свою избыточную энергию на излучение, возвращается в нормальное (невозбужденное) состояние и излучение им света прекращается. Затем, спустя некоторый промежуток времени, атом может вновь возбудиться и начать излучать свет.

Такое прерывистое излучение света атомами в виде отдельных кратковременных импульсов - цугов волн - характерно для любого источника света. Каждый цуг имеет ограниченную протяженность в пространстве Dx = ct и составляет 4 - 16 м в видимом диапазоне.

Вследствие этого, а также из-за уменьшения амплитуды волны, цуг волн отличается от монохроматической волны и его можно представить в виде совокупности (суммы) монохроматических волн, круговые частоты которых лежат в интервале от w-Dw /2 до w+ Dw /2. Можно показать, что

Реальная волна, излучаемая в течение ограниченного промежутка времени и охватывающая ограниченную область пространства тем более не является монохроматической. Спектр ее частот включает частоты от w-Dw/2 до w+ Dw/2.

Промежуток времени t ког , в течение которого разность фаз колебаний, соответствующих волнам с частотами w-Dw /2 и w + Dw /2 изменяется на p , называется периодом когерентности немонохроматической волны

. (9)

Это название связано с тем, что немонохроматическую волну можно приближенно считать когерентной с частотой w в течение промежутка времени Dt £t ког .

Отметим, что для монохроматической волны Dw и Dn равны нулю и t ког ®¥.

Расстояние l ког , на которое распространится волна за время когерентности, называется длиной когерентности l ког = vt ког. (10)

Для видимого солнечного света, имеющего спектр частот от 4 × 10 14 до 8 × 10 14 Гц (l = 0,75 мкм и 0,375 мкм соответственно), ширина спектра Dw = 2pDn = 2p (8-4) × 10 14 = 8p ×10 14 c -1 и согласно (9), (10) t ког = 2,5 × 10 -15 с , l ког = 0,75 × 10 -6 м . (11)

Заметим, что для лазеров непрерывного действия t ког достигает 10 -2 с, а l ког » 10 6 м. Однако из-за неоднородности атмосферы удается наблюдать интерференцию при разности хода в несколько километров.

Пространственная когерентность

Наряду с временной когерентностью для описания когерентных свойств волн в плоскости, перпендикулярной направлению их распространения, вводится понятие пространственной когерентности.

Одной из ее характеристик является радиус когерентности r ког , характеризующий расстояние, на котором может быть получена четкая интерференционная картина (r ког это не радиус окружности).

Произведение l ког r ког 2 = V ког называют объемом когерентности, в пределах которого случайная фаза волны изменяется на величину, не превосходящую p .

Методы получения когерентных волн

Для получения когерентных световых волн с помощью обычных (нелазерных) источников применяют метод разделения света от одного источника на две или нескольких систем волн (световых пучков). В каждой из них представлено излучение одних и тех же атомов источника, так что эти волны когерентны между собой и интерферируют при наложении.

Разделение света на когерентные пучки можно осуществить с помощью экранов и щелей, зеркал и преломляющих тел. Рассмотрим некоторые из этих методов.

Метод Юнга

Источником света служит ярко освещенная щель S , от которой световая волна падает на две узкие щели S 1 и S 2 , параллельные щели S .

Таким образом, щели S 1 и S 2 играют роль когерентных источников. На экране Э (область ВС ) наблюдается интерференционная картина в виде чередующихся светлых и темных полос.

Бипризма Френеля .

Она состоит из двух одинаковых сложенных основаниями призм. Свет от источника S преломляется в обеих призмах, в результате чего за призмой распространяются лучи, как бы исходящие от мнимых источников S 1 и S 2 , являющихся когерентными. Таким образом, на экране Э (область ВС ) наблюдается интерференционная картина.

Оптическая длина пути и разность хода

Пусть две когерентные волны (см. 3.1) создаются одним источником S , но до экрана проходят разные геометрические длины путей l 1 и l 2 в средах с абсолютными показателями преломления n 1 и n 2 , соответственно (рис. 4). Тогда фазы этих волн [см. (1) и (2.9)] wt - j 1 = wt - k 1 l 1 + j 0 , wt - j 2 = wt - k 2 l 1 + j 0, а разность фаз

j 2 -j 1 = k 2 l 2 - k 1 l 1 =, (12)

где l 1 = l/n 1 , l 2 = l/n 2 - длины волн в средах, показатели преломления которых n 1 и n 2 соответственно, l - длина волны в вакууме.

Произведение геометрической длины пути l световой волны на абсолютный показатель преломления n называется оптической длиной пути волны.

Величину (13)

называют оптической разностью хода интерферирующих волн. С учетом этого разность фаз j 2 - j 1 = . (14)

Максимальная интенсивность будет наблюдаться при j 2 - j 1 = 2pm [см. (5)], когда

=ml , , (15)

т.е. когда оптическая разность хода равна целому числу длин волн. Это условие максимума при интерференции.

Минимальная интенсивность будет наблюдаться при [см. (6)], когда

=, (16)

т.е. когда оптическая разность хода равна нечетному числу полуволн (l/2). Это условие минимума при интерференции.