Что такое реакция горения. Как протекает реакция горения

Баланс – (от фр. balance – буквально “весы”) – количественное выражение сторон какого-либо процесса, которые должны уравновешивать друг друга. Другими словами, баланс – это равновесие, уравновешивание. Процессы горения на пожаре подчиняются фундаментальным законам природы, в частности, законам сохранения массы и энергии.

Для решения многих практических задач, а также для выполнения пожарно-технических расчетов необходимо знать количество воздуха, необходимого для горения, а также объем и состав продуктов горения. Эти данные необходимы для расчета температуры горения веществ, давления при взрыве, избыточного давления взрыва, флегматизирующей концентрации флегматизатора, площади легкосбрасываемых конструкций.

Методика расчета материального баланса процессов горения определяется составом и агрегатным состоянием вещества. Свои особенности имеет расчет для индивидуальных химических соединений, для смеси газов и для веществ сложного элементного состава.

Индивидуальные химические соединения – это вещества, состав которых можно выразить химической формулой. Расчет процесса горения в этом случае производится по уравнению реакции горения.

Составляя уравнение реакции горения, следует помнить, что в пожарно-технических расчетах принято все величины относить к 1 молю горючего вещества. Это, в частности, означает, что в уравнении реакции горения перед горючим веществом коэффициент всегда равен 1 .

Состав продуктов горения зависит от состава исходного вещества.

Элементы, входящие в состав горючего вещества

Продукты горения

Углерод С

Углекислый газ СО 2

Водород Н

Вода Н 2 О

Сера S

Оксид серы (IV) SO 2

Азот N

Молекулярный азот N 2

Фосфор Р

Оксид фосфора (V) Р 2 О 5

Галогены F, Cl, Br, I

Галогеноводороды HCl , HF , HBr , HI

Горение пропана в кислороде

    Записываем реакцию горения:

С 3 Н 8 + О 2 = СО 2 + Н 2 О

2. В молекуле пропана 3 атома углерода, из них образуется 3 молекулы углекислого газа.

С 3 Н 8 + О 2 = 3СО 2 + Н 2 О

3. Атомов водорода в молекуле пропана 8, из них образуется 4 молекулы воды:

С 3 Н 8 + О 2 = 3СО 2 + 4Н 2 О

4. Подсчитаем число атомов кислорода в правой части уравнения

5. В левой части уравнения так же должно быть 10 атомов кислорода. Молекула кислорода состоит из двух атомов, следовательно, перед кислородом нужно поставить коэффициент 5.

С 3 Н 8 + 5О 2 = 3СО 2 + 4Н 2 О

Коэффициенты, стоящие в уравнении реакции, называются стехиометрическими коэффициентами и показывают, сколько молей (кмолей) веществ участвовало в реакции или образовалось в результате реакции.

Стехиометрический коэффициент, показывающий число молей кислорода, необходимое для полного сгорания вещества, обозначается буквой .

В первой реакции = 5.

Горение глицерина в кислороде

1. Записываем уравнение реакции горения.

С 3 Н 8 О 3 + О 2 = СО 2 + Н 2 О

2. Уравниваем углерод и водород:

С 3 Н 8 О 3 + О 2 = 3СО 2 + 4Н 2 О.

3. В правой части уравнения 10 атомов кислорода.

В составе горючего вещества есть 3 атома кислорода, следовательно, из кислорода в продукты горения перешли 10 – 3 = 7 атомов кислорода.

Таким образом, перед кислородом необходимо поставить коэффициент 7: 2 = 3,5

С 3 Н 8 О 3 +3,5О 2 = 3СО 2 + 4Н 2 О.

В этой реакции = 3,5.

Горение аммиака в кислороде

Аммиак состоит из водорода и азота, следовательно, в продуктах горения будут вода и молекулярный азот.

NH 3 + 0,75 O 2 = 1,5 H 2 O + 0,5 N 2 = 0,75.

Обратите внимание, что перед горючим веществом коэффициент 1, а все остальные коэффициенты в уравнении могут быть дробными числами.

Горение сероуглерода в кислороде

Продуктами горения сероуглерода CS 2 будут углекислый газ и оксид серы (IV).

CS 2 + 3 O 2 = CO 2 + 2 SO 2 = 3.

Чаще всего в условиях пожара горение протекает не в среде чистого кислорода, а в воздухе. Воздух состоит из азота (78 %), кислорода (21 %), окислов азота, углекислого газа, инертных и других газов (1 %). Для проведения расчетов принимают, что в воздухе содержится 79 % азота и 21 % кислорода. Таким образом, на один объем кислорода приходится 3,76 объемов азота (79:21 = 3,76).

В соответствии с законом Авогадро и соотношение молей этих газов будет 1: 3,76. Таким образом, можно записать, что молекулярный состав воздуха (О 2 + 3,76 N 2 ).

Составление реакций горения веществ в воздухе аналогично составлению реакций горения в кислороде. Особенность состоит только в том, что азот воздуха при температуре горения ниже 2000 0 С в реакцию горения не вступает и выделяется из зоны горения вместе с продуктами горения.

Горение водорода в воздухе

Н 2 + 0,5(О 2 + 3,76 N 2 ) = Н 2 О + 0,5 3,76 N 2 = 0,5.

Обратите внимание, что стехиометрический коэффициент перед кислородом 0,5 необходимо поставить и в правой части уравнения перед азотом.

Горение пропанола в воздухе

С 3 Н 7 ОН + 4,5(О 2 + 3,76 N 2 ) =3СО 2 + 4Н 2 О +4,5 3,76 N 2

В составе горючего есть кислород, поэтому расчет коэффициента проводят следующим образом: 10 – 1 = 9; 9: 2 = 4,5.

Горение анилина в воздухе

С 6 Н 5 N Н 2 + 7,75(О 2 + 3,76 N 2 ) =6СО 2 + 3,5Н 2 О + 0,5 N 2 +7,75 3,76 N 2

В этом уравнении азот в правой части уравнения встречается дважды: азот воздуха и азот из горючего вещества.

Горение угарного газа в воздухе

СО + 0,5(О 2 + 3,76 N 2 ) =СО 2 + 0,5 3,76 N 2

Горение хлорметана в воздухе

СН 3 С l + 1,5(О 2 + 3,76 N 2 ) =СО 2 + НС l + Н 2 О +1,5 3,76 N 2

Горение диэтилтиоэфира в воздухе

2 Н 5 ) 2 S + 7,5(О 2 + 3,76 N 2 ) =4СО 2 + 5Н 2 О + SO 2 + 7,5 3,76 N 2

Горение диметилфосфата в воздухе

(СН 3 ) 2 НР О 4 + 3(О 2 + 3,76 N 2 ) =2СО 2 + 3,5Н 2 О + 0,5Р 2 О 5 + 3 3,76 N 2

В процессах горения исходными веществами являются горючее вещество и окислитель, а конечными - продукты горения.

1. Запишем уравнение реакции горения бензойной кислоты.

С 6 Н 5 СООН + 7,5(О 2 + 3,76 N 2 ) =7СО 2 + 3Н 2 О +7,5 3,76 N 2

2. Исходные вещества: 1 моль бензойной кислоты;

7,5 молей кислорода;

7,53,76 молей азота.

Газов воздуха всего 7,54,76 молей.

Всего (1 + 7,54,76) молей исходных веществ.

3. Продукты горения: 7 молей углекислого газа;

3 моля воды;

7,53,76 моля азота.

Всего (7 + 3 + 7,53,76) молей продуктов горения.

Аналогичные соотношения и в том случае, когда сгорает 1 киломоль бензойной кислоты.

Смеси сложных химических соединений или вещества сложного элементного состава нельзя выразить химической формулой, их состав выражается чаще всего в процентном содержании каждого элемента. К таким веществам можно отнести, например, нефть и нефтепродукты, древесину и многие другие органические вещества.

I. Горение и медленное окисление

Горение – это первая химическая реакция, с которой познакомился человек. Огонь… Можно ли представить наше существование без огня? Он вошел в нашу жизнь, стал неотделим от нее. Без огня человек не сварит пищу, сталь, без него невозможно движение транспорта. Огонь стал нашим другом и союзником, символом славных дел, добрых свершений, памятью о минувшем.


Мемориал славы в г. Сыктывкаре

Пламя, огонь, как одно из проявлений реакции горения, имеет и свое монументальное отражение. Яркий пример – мемориал славы в г. Сыктывкаре.

Раз в четыре года в мире происходит событие, сопровождающееся переносом «живого» огня. В знак уважения к основателям олимпиад огонь доставляют из Греции. По традиции один из выдающихся спортсменов доставляет этот факел на главную арену олимпиады.

Об огне сложены сказки, легенды. В старину люди думали, что в огне живут маленькие ящерицы – духи огня. А были и такие, которые считали огонь божеством и строили в его честь храмы. Сотни лет горели в этих храмах, не угасая, светильники, посвященные богу огня. Поклонение огню было следствием незнания людьми процесса горения.


Олимпийский огонь

М.В.Ломоносов говорил: «Изучение природы огня и без химии предпринимать отнюдь невозможно».

Горение - реакция окисления, протекающая с достаточно большой скоростью , сопровождающаяся выделением тепла и света.

Схематически этот процесс окисления можно выразить следующим образом:


Реакции, протекающие с выделением теплоты, называются экзотермическими (от греч. «экзо» - наружу).

При горении идет интенсивное окисление, в процессе горения появляется огонь, следовательно, такое окисление протекает очень быстро. Если скорость реакции окажется достаточно большой? Может произойти взрыв. Так взрываются смеси горючих веществ с воздухом или кислородом. К сожалению, известны случаи взрывов смесей воздуха с метаном, водородом, парами бензина, эфира, мучной и сахарной пылью и т.п., приводящие к разрушениям и даже человеческим жертвам.

Для возникновениягорениянеобходимы:

  • горючее вещество
  • окислитель (кислород)
  • нагревание горючего вещества до температуры воспламенения

Температура воспламенения у каждого вещества различна.

В то время как эфир может воспламениться от горячей проволоки, для того чтобы поджечь дрова, нужно нагреть их до нескольких сот градусов. Температура воспламенения веществ различна. Сера и дерево воспламеняются при температуре около 270 °С, уголь – около 350 °С, а белый фосфор – около 40 °С.

Однако не всякое окисление непременно должно сопровождаться появлением света.

Существует значительное число случаев окисления, которые мы не можем назвать процессами горения, ибо они протекают столь медленно, что остаются незаметными для наших органов чувств. Лишь по прошествии определенного, часто весьма продолжительного времени мы можем уловить продукты окисления. Так, например, обстоит дело при весьма медленном окислении (ржавлении) металлов


или при процессах гниения.

Разумеется, при медленном окислении выделяется теплота, но это выделение вследствие продолжительности процесса протекает медленно. Однако сгорит ли кусок дерева быстро или подвергнется медленному окислению на воздухе в течение многих лет, все равно – в обоих случаях при этом выделится одинаковое количество теплоты.

Медленное окисление – это процесс медленного взаимодействия веществ с кислородом с медленным выделением теплоты (энергии).

Примеры взаимодействия веществ с кислородом без выделения света : гниение навоза, листьев, прогоркание масла, окисление металлов (железные форсунки при длительном употреблении становятся тоньше и меньше), дыхание аэробных существ, т. е. дышащих кислородом, сопровождается выделением теплоты, образованием углекислого газа и воды.

Познакомимся с характеристикой процессов горения и медленного окисления приведённой в таблице.

Характеристика процессов горения и медленного окисления

Признаки реакции

Процесс

Горение

Медленное окисление

Образование новых веществ

Да
(оксиды)

Да
(оксиды)

Выделение теплоты

Да

Да

Скорость выделения теплоты

Большая

Небольшая
(идет медленно)

Появление света

Да

Нет

Вывод : реакции горения и медленного окисления – это экзотермические реакции, отличающиеся скоростью протекания этих процессов.

II. Тепловой эффект химической реакции.

В каждом веществе запасено определенное количество энергии. С этим свойством веществ мы сталкиваемся уже за завтраком, обедом или ужином, так как продукты питания позволяют нашему организму использовать энергию самых разнообразных химических соединений, содержащихся в пище. В организме эта энергия преобразуется в движение, работу, идет на поддержание постоянной (и довольно высокой!) температуры тела.

Любая химическая реакция сопровождается выделением или поглощением энергии. Чаще всего энергия выделяется или поглощается в виде теплоты (реже - в виде световой или механической энергии). Эту теплоту можно измерить. Результат измерения выражают в килоджоулях (кДж) для одного МОЛЯ реагента или (реже) для моля продукта реакции. Количество теплоты, выделяющееся или поглощающееся при химической реакции, называется тепловым эффектом реакции (Q ) . Например, тепловой эффект реакции сгорания водорода в кислороде можно выразить любым из двух уравнений:

2 H 2 (г) + O 2 (г) = 2 H 2 О(ж) + 572 кДж

2 H 2 (г) + O 2 (г) = 2 H 2 О(ж) + Q

Это уравнение реакции называется термохимическимуравнением . Здесь символ "+ Q " означает, что при сжигании водорода выделяется теплота. Эта теплота называется тепловым эффектом реакции . В термохимических уравнениях часто указывают агрегатные состояния веществ.

Реакции протекающие с выделением энергии называются ЭКЗОТЕРМИЧЕСКИМИ (от латинского "экзо" – наружу). Например, горение метана:


CH 4 + 2O 2 = CO 2 + 2H 2 O + Q

Реакции протекающиес поглощением энергии называются ЭНДОТЕРМИЧЕСКИМИ (от латинского "эндо" - внутрь). Примером является образование оксида углерода (II) CO и водорода H 2 из угля и воды, которое происходит только при нагревании.

C + H 2 O = CO + H 2 – Q

Тепловые эффекты химических реакций нужны для многих технических расчетов.

Тепловые эффекты химических реакций нужны для многих технических расчетов. Представьте себя на минуту конструктором мощной ракеты, способной выводить на орбиту космические корабли и другие полезные грузы (рис.).


Рис. Самая мощная в мире российская ракета "Энергия" перед стартом на космодроме Байконур. Двигатели одной из её ступеней работают на сжиженных газах - водороде и кислороде.

Допустим, вам известна работа (в кДж), которую придется затратить для доставки ракеты с грузом с поверхности Земли до орбиты, известна также работа по преодолению сопротивления воздуха и другие затраты энергии во время полета. Как рассчитать необходимый запас водорода и кислорода, которые (в сжиженном состоянии) используются в этой ракете в качестве топлива и окислителя?

Без помощи теплового эффекта реакции образования воды из водорода и кислорода сделать это затруднительно. Ведь тепловой эффект - это и есть та самая энергия, которая должна вывести ракету на орбиту. В камерах сгорания ракеты эта теплота превращается в кинетическую энергию молекул раскаленного газа (пара), который вырывается из сопел и создает реактивную тягу.

В химической промышленности тепловые эффекты нужны для расчета количества теплоты для нагревания реакторов, в которых идут эндотермические реакции. В энергетике с помощью теплот сгорания топлива рассчитывают выработку тепловой энергии.

Врачи-диетологи используют тепловые эффекты окисления пищевых продуктов в организме для составления правильных рационов питания не только для больных, но и для здоровых людей - спортсменов, работников различных профессий. По традиции для расчетов здесь используют не джоули, а другие энергетические единицы - калории (1 кал = 4,1868 Дж). Энергетическое содержание пищи относят к какой-нибудь массе пищевых продуктов: к 1 г, к 100 г или даже к стандартной упаковке продукта. Например, на этикетке баночки со сгущенным молоком можно прочитать такую надпись: "калорийность 320 ккал/100 г".

№2. Головоломка «Не повторяющиеся буквы».

Для решения этой головоломки внимательно просмотри каждую строчку. Выбери из них ни разу не повторяющиеся буквы. Если ты сделаешь это правильно, то сможешь из этих букв составить пословицу о правилах обращения с огнем.


ДОПОЛНИТЕЛЬНО:

Образцы выполнения с/р2

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА. РАВНОВЕСИЕ. КИНЕТИКА.

ЗАДАЧА 1. Теплота сгорания топлива.

Имеем газовую топливную смесь: 50%СН 4 + 50%С 4 Н 10 .

Суммарный объем V=1000 л=1м 3 .

1. Напишите химические уравнения реакций горения газовых составляющих заданной топливной смеси.

Реакция горения метана:

СН 4 (г) + 2О 2 (г) ® СО 2 (г) + 2Н 2 О (ж)

Реакция горения бутана:

С 4 Н 10 (г) + 13/2О 2 (г) ® 4СО 2 (г) + 5Н 2 О (ж) .

Энтальпия Δ r Н 0 298 этих химических реакций является теплотой сгорания газового топлива ΔН 0 сг.

2. Рассчитайте, сколько теплоты можно получить при сжигании заданного объема топливной смеси заданного состава (объемные %), условия считать нормальными.

С использованием закона Гесса рассчитаем теплоту сгорания газового топлива ΔН 0 сг при стандартном состоянии и 298 К, используя табличные данные (см. приложение, табл.) теплоты образования всех веществ, участвующих в реакции горения (Δ f Н 0 298):

для метана

ΔН 0 сг СН4 = Δ r Н 0 298 = Δ f Н 0 СО2 + Δ f Н 0 Н2О - Δ f Н 0 СН4 - 2Δ f Н 0 О2 =

393,62 + 2 . (-285,84) – (-74,78) - 0 = -802,28 кДж/моль.

для бутана

ΔН 0 сг С4Н10 = Δ r Н 0 298 = 4Δ f Н 0 СО2 + 5Δ f Н 0 Н2О - Δ f Н 0 С4Н10 - 13/2Δ f Н 0 О2 =

4 . (- 393,62) + 5 . (-285,84) – (-126,15) - 0 = -2877,53 кДж/моль.

Удельная теплота сгорания Q Т газового топлива:

Q T = - (ΔН сг. 1000/22,4) , кДж/м 3 ,

где 22,4 л/моль – молярный объем газа при н.у.

для метана

Q T , СН4 = - (-802,28 . 1000 / 22,4) =35816 кДж/м 3 .

для бутана

Q T , С4Н10 = - (-2877,53 . 1000 / 22,4) =128461 кДж/м 3 .

Суммарное количество теплоты, полученное при сгорании данной топливной смеси с учетом объемов газов:

Q = Q T , СН4 . V СН4 + Q T , С4Н10 . V С4Н10 =

35816 . (1 . 0,5)+128461 . (1 . 0,5) =82138,5 кДж.

3. Из заданной топливной смеси выберите наиболее энергоэффективное топливо. Рассчитайте удельную теплоту сгорания этого топлива Q T , кДж/м 3 . Рассчитайте минимальный объем этого топлива для получения 100 МДж теплоты.

Наиболее энергоэффективное топливо в данной топливной смеси – бутан, удельная теплота сгорания Q T , С4Н10 = 128461 кДж/м 3 .

Для получения 100 МДж теплоты необходимо сжечь:

V С4Н10 = Q / Q T , С4Н10 =100000/128461=0,778 м 3 = 778 л.

ЗАДАЧА 2. Химическая термодинамика.

1. Напишите термохимические уравнения реакций, тепловой эффект которых является теплотой образования всех реагентов заданной химической реакции.

Для химической реакции

СO 2 (г) + C (к) « 2CО (г)

Вещество C (к) – простое, устойчивое при 298 К и давлении 100 кПа, энтальпия его образования DH 0 f , 298 , = 0.

Термохимические уравнения реакций, тепловой эффект которых является теплотой образования реагентов заданной химической реакции СO 2 (г) и CО (г) :

O 2 (г) + C (к) « CО 2 (г) , DH 0 f , 298 = -393,51 кДж/моль,

(см. табл.);

1/2 O 2 (г) + C (к) « CО (г) , DH 0 f , 298 = -110,5 кДж/моль,

(см. табл.).

2. Рассчитайте величины энтальпии D r H 0 298 , энтропии D r S 0 298 . табл. к задачам 1, 2) при стандартном состоянии (с.с.) всех реагентов и температуре 298 К. Сделайте вывод о тепловом эффекте реакции.

По табличным данным (см. табл.) запишем термодинамические функции состояния реагентов заданной химической реакции при стандартном состоянии и 298 К

С использованием закона Гесса рассчитаем энтальпию Δ r Н 0 298 , энтропию r S 0 298 и энергию Гиббса Δ r G 0 298 химической реакции при стандартном состоянии и 298 К:

Δ r Н 0 298 = 2Δ f Н 0 298 СОг - Δ f Н 0 298 Ск - Δ f Н 0 298 СО2г =

2(-110,5) – 0 – (-393,5) = 172,5 кДж.

Δ r Н 0 298 >0 - реакция эндотермическая, идет с поглощением теплоты.

r S 0 298 = 2 S 0 f , 298,СО(г) - S 0 f , 298,С(к) - S 0 f , 298,СО2(г) = 2(197,54) – 5,74 – 213,68 =

175,66 Дж/К.

r S 0 298 >0 – система стала более неупорядоченной вследствие образования дополнительного количества газа.

3. Рассчитайте величину энергии Гиббса D r G 0 298 заданной химической реакции (п.1 . табл. к задачам 1, 2) при стандартном состоянии (с.с.) всех реагентов и температуре 298 К. Определите, в каком направлении будет самопроизвольно протекать данная реакция при стандартном состоянии всех реагентов и температуре 298 К.

Δ r G 0 298 = 2Δ f G 0 298 СОг - Δ f G 0 298 Ск - Δ f G 0 298 СО2г =

2(-137,14) – 0 – (-394,38) = 120,15 кДж.

Δ r G 0 298 >0 – самопроизвольное протекание реакции в прямом направлении при стандартном состоянии и 298 К невозможно. Реакция протекает в обратном направлении.

4. Определите область температур, при которых возможно самопроизвольное протекание прямой реакции при стандартном состоянии всех реагентов без учета зависимости D r H 0 и D r S 0 от температуры. Постройте график зависимости энергии Гиббса реакции от температуры D r G 0 = f (Т ).

Возможность самопроизвольного протекания реакции при стандартном состоянии определяется неравенством r G 0 T < 0.

Т.е. , если

r G 0 T = ∆ r H 0 298 +∆ r с 0 p dT - Т r S 0 298 - Т r с 0 p / T )dT < 0

r G 0 T ≈ ∆ r H 0 298 - Т r S 0 298 < 0

r G 0 Т = (172,5 – Т . 175,66 . 10 -3) < 0 , отсюда Т > 982 К.

График зависимости D r G 0 = f (Т ):

r G 0 Т

298 982 2300 Т

С учетом температурных интервалов существования реагентов температурная область самопроизвольного протекания реакции при стандартном состоянии 982 < Т < 2300 К.

5. Рассчитайте величину энергии Гиббса D r G 298 химической реакции при заданных значениях парциальных давлений газов (п.2 . табл. к задачам 1, 2) и температуре 298 К. Определите, изменится ли направление протекания процесса при 298 К при изменении парциальных давлений газов по сравнению со стандартным состоянием.

Расчет энергии Гиббса химической реакции при любой температуре и любых относительных парциальных давлениях газов производится по уравнению изотермы Вант-Гоффа:

Δ r G Т = r G 0 Т + RT ln .

Рассчитаем Δ r G 298 при 298 К и давлениях газов: р СО = 2 . 10 3 Па,

р СО2 = 8 . 10 5 Па.

Относительные парциальные давления газов:

СО = 2 . 10 3 Па/10 5 Па = 0,02; СО2 = 8 . 10 5 Па/10 5 Па = 8.

Δ r G 298 = Δ r G 0 298 + RTln (р 2 СО /р СО2) = 120,15 +8,31 . 10 -3 . 298 . ln (0,02/8) =

Δ r G 298 >0 – самопроизвольное протекание реакции в прямом направлении при заданных парциальных давлениях газов и 298 К невозможно. Реакция протекает в обратном направлении.

6. Определите, как нужно (теоретически) изменить парциальное давление любого из исходных газов (р А или р В ) для изменения направления протекания процесса по сравнению со стандартным состоянием при 298 К и стандартном парциальном давлении всех других компонентов химической реакции.

При стандартном состоянии и 298 К возможно самопроизвольное протекание реакции в обратном направлении, т.к. Δ r G 0 298 >0.

Для изменения направления протекания процесса по сравнению состандартным состояниемпри 298 К можно изменить парциальное давление СО 2 , (состояние всех других компонентов стандартное). Условием самопроизвольного протекания реакции в прямом направлении является Δ r G 298 < 0.

По уравнению изотермы Вант-Гоффа:

Δ r G Т = r G 0 Т + RT ln< 0

Δ r G 298 = 120,15 + 8,31 . 10 -3. 298 ln < 0

Решаем неравенство ln < - 48,5и получаем: < 10 -21 .

Таким образом,р СО < р СО2 ≈ в 10 5 раз.

Таким образом, для изменения направления протекания процесса по сравнению состандартным состояниемпри 298 К и давлении р СО = 10 5 Па нужно увеличить парциальное давление СО 2 в 10 5 раз, т.е. парциальное давление СО 2 должно быть: р СО2 > 10 25 Па.

При таком давлении СО 2 заданная химическая реакция может самопроизвольно протекать в прямом направлении при 298 К.

ЗАДАЧА 2. Химическое равновесие.

Для химической реакции

СO 2 (г) + C (к) « 2CО (г)

1. Рассчитайте энергию Гиббса D r G 0 Т и константу равновесия К р данной реакции при стандартном состоянии и температурах 298 К, 500 К, 800 К, 1000 К с учетом зависимости D r H 0 Т и D r S 0 Т от температуры при постоянной величине удельной теплоемкости веществ с р = const . Постройте график зависимости

К р = f (Т ).

Рассчитаем изменение теплоемкости системы (∆ r c 0 р = const):

r с 0 р = 2с 0 р 298СОг – с 0 р 298Ск – с 0 р 298СО2г =

2 . (29,14)–8,54–37,41 =12,33 Дж/К.

Рассчитаем энергию Гиббса химической реакции при стандартном состоянии и заданных температурах 298 К, 500 К, 800 К, 1000 К с учетом зависимости ∆ r H 0 Т и ∆ r S 0 Т от температуры, считая постоянной величину удельной теплоемкости веществ с р , по формуле:

r G 0 T = ∆ r H 0 Т – Т . r S 0 Т = r G 0 298 + r с 0 р (Т - 298) Т . ∆ r с 0 р ln (Т / 298).

r G 0 298 =120,15 кДж;

r G 0 500 =120,15+12,33 . 10 -3 . (500-298) - 500 . 12,33 . 10 -3 . ln (500/298)=

r G 0 800 =120,15+12,33 . 10 -3 . (800-298) - 800 . 12,33 . 10 -3 . ln (800/298)=

r G 0 1000 =120,15+12,33 . 10 -3 . (1000-298) - 1000 . 12,33 . 10 -3 . ln (1000/298) =

Термодинамическое условие химического равновесия: r G T = 0.

Энергия Гиббса химической реакции при стандартном состоянии

r G 0 Т связана с константой равновесия К р по соотношению:

r G 0 Т = - RT lnК р

Рассчитав величину r G 0 T реакции, рассчитаем константу равновесия К р по формуле:

K p = exp(-∆G 0 Т /RT ) ,

где R =8,31 Дж/моль. К - универсальная газовая постоянная.

K p, 298 = exp(-∆G 0 Т , 298 / R . 298) = exp(-120,15/8,31 . 10 -3. 298) =8 . 10 -22 ;

K p, 500 = exp(-∆G 0 Т , 500 / R . 500) = exp(-84,67/8,31 . 10 -3. 500) =1,4 . 10 -9 ;

K p, 800 = exp(-∆G 0 Т , 800 / R . 800) = exp(-31,97/8,31 . 10 -3. 800) =8,1 . 10 -3 ;

K p, 1000 = exp(-∆G 0 Т , 1000 / R . 1000) = exp(3,16/8,31 . 10 -3. 1000) =1,46.

При увеличении температуры увеличивается константа равновесия, что объясняется эндотермическим тепловым эффектом данной реакции

(Δ r Н 0 Т >0).

2. Выберите любую температуру из области самопроизвольного протекания реакции в прямом направлении. При этой температуре рассчитайте равновесные концентрации газообразных реагентов, если их исходные концентрации были равны, соответственно, (см. п.3. табл. к задачам 1,2).

При Т =1000 К реакция протекает самопроизвольно в прямом направлении, т.к. r G 0 1000 = - 3,16 кДж <0, K p , 1000 = 1,46.

Выберем температуру Т =1000 для расчета равновесных концентраций газообразных реагентов, если исходные концентрации газообразных реагентов СО 2 и СО были равны: с СО2 = 0,5 моль/л, с СО =0.

Выражения для констант равновесия, выраженных через относительные равновесные парциальные давления газов (р равн ) и равновесные концентрации (с равн) :

К р =
; К с =

K p и K с связаны через уравнение газового состояния:

K с, 1000 =
=
= 0,018

где R =0,082 л. атм/моль. К - универсальная газовая постоянная;

∆ν = 2-1= 1 (изменение числа молей газообразных веществ в ходе реакции).

Таблица материального баланса:

Подставляем равновесные концентрации газообразных реагентов в выражение для K с и решаем алгебраическое уравнение относительно х :

К с =
= 0,018 , х = 0,0387моль/л

С СО равн = 2 . 0,0387 = 0,0774моль/л

С СО2равн = 0,5 - 0,0387 = 0,4613 моль/л.


Горение - это сложный физико-химический процесс взаимодействия горючих компонентов топлива с окислителем, в частности, горение топлива - это реакция быстрого окисления его компонентов, сопровождающаяся интенсивным тепловыделением и резким повышением температуры.

Рассмотрим реакцию горения метана как основного компонента из числа составляющих природного газа:

СН 4 + 2О 2 = СО 2 + 2Н 2 О.

Из уравнения этой реакции следует, что для окисления одной молекулы метана необходимы две молекулы кислорода, т.е. для полного сгорания 1 м 3 метана требуется 2 м 3 кислорода.

В качестве окислителя используется атмосферный воздух, который представляет собой сложную смесь веществ, в числе которых 21 об. % О 2 , 78 об. % N 2 и 1 об. % СО 2 , инертных газов и др. Для технических расчетов обычно принимают условный состав воздуха из двух компонентов: кислорода (21 об. %) и азота (79 об. %). С учетом такого состава воздуха для проведения любой реакции горения на воздухе для полного сжигания топлива потребуется воздуха по объему в 100/21 = 4,76 раза больше, чем кислорода.

Продуктами полного сгорания природного газа являются: диоксид углерода СО 2 , водяные пары Н 2 О, некоторое количество избыточного кислорода О 2 и азот N 2 . Избыточный кислород содержится в продуктах горения только в тех случаях, когда горение происходит с избытком воздуха, а азот в продуктах сгорания содержится всегда, так как является составной частью воздуха и не принимает участия в горении. Продуктами неполного сгорания газа являются: оксид углерода СО, несгоревшие водород Н 2 и метан СН 4 , тяжелые углеводороды С m Н n и сажа. Таким образом, чем больше в продуктах сгорания диоксида углерода СО 2 , тем меньше будет в них оксида углерода СО, т. е. тем полнее будет сгорание. Введено понятие максимально содержание СО 2 в продуктах сгорания – это количество СО 2 , которое можно было бы получить в сухих продуктах сгорания при полном сгорании газа без избытка воздуха.

Наиболее совершенный способ контроля поступления воздуха в топку и полноты его сгорания – анализ продуктов сгорания с помощью автоматических газоанализаторов. Газоанализаторы периодически отбирают пробу отходящих газов и определяют содержание в них диоксида углерода,а также сумму оксида углерода и несгоревшего водорода (СО + Н 2) в объемных процентах. Если показания по стрелке по шкале (СО + Н 2) равны 0, значит горение полное, и в продуктах сгорания нет (СО + Н 2). Если стрелка отклонилась от нуля вправо, то в продуктах сгорания есть (СО + Н 2), т.е. происходит неполное сгорание. На другой шкале стрелка газоанализаторы должна показывать максимальное содержание СО 2 max в продуктах сгорания. Полное сгорание происходит при максимальном проценте диоксида углерода и нулевом содержании (СО + Н 2).

Горение – сложный физико-химический процесс, основу которого составляют химические реакции окислительно-восстановительного типа, приводящие к перераспределению валентных электронов между атомами взаимодействующих молекул.

Примеры реакций горения

метана : СН 4 + 2О 2 = СО 2 + 2Н 2 О;

ацетилена: С 2 Н 2 + 2,5О 2 = 2СО 2 + Н 2 О;

натрия: 2Na + Cl 2 = 2NaCl;

водорода: Н 2 + Cl 2 = 2НCl, 2Н 2 + О 2 = 2Н 2 О;

тротила: С 6 Н 2 (NO 2) 3 CH 3 = 2,5H 2 O + 3,5CO + 3,5C +1,5N 2 .

Сущность окисления – отдача окисляющимся веществом валентных электронов окислителю, который, принимая электроны, восстанавливается, Сущность восстановления – присоединение восстанавливающимся веществом электронов восстановителя, который, отдавая электроны, окисляется. В результате передачи электронов изменяется структура внешнего (валентного) электронного уровня атома. Каждый атом при этом переходит в наиболее устойчивое в данных условиях состояние.

В химических процессах электроны могут полностью переходить из электронной оболочки атомов одного вещества (элемента) в оболочку атомов другого.

Так, при горении металлического натрия в хлоре атомы натрия отдают по одному электрону атомам хлора. При этом на внешнем электронном уровне атома натрия оказывается восемь электронов (устойчивая структура), а атом, лишившийся одного электрона, превращается в положительно заряженный ион. У атома хлора, получившего один электрон, внешний уровень заполняется восемью электронами, и атом превращается в отрицательно заряженный ион. В результате действия кулоновских электростатических сил происходит сближение разноименно заряженных ионов и образуется молекула хлорида натрия (ионная связь):



2Mg + O 2 = 2Mg 2+ O 2– .

Таким образом, горение магния (окисление) сопровождается переходом его электронов к кислороду. В других процессах электроны внешних оболочек двух разных атомов поступают как бы в общее пользование, стягивая тем самым атомы молекул (ковалентная или атомная связь):

.

И, наконец, один атом может отдавать в общее пользование свою пару электронов (молекулярная связь):



.

Выводы из положений современной теории окисления–восстановления:

1. Сущность окисления заключается в потере электронов атомами или ионами окисляющегося вещества, а сущность восстановления – в присоединении электронов к атомам или ионами восстанавливающегося вещества. Процесс, при котором вещество теряет электроны, называется окислением , а присоединение электронов – восстановление .

2. Окисление какого-либо вещества не может произойти без одновременного восстановления другого вещества. Например, при горении магния в кислороде или воздухе происходит окисление магния и одновременно – восстановление кислорода. При полном сгорании образуются продукты, неспособные к дальнейшему горению (СО 2 , Н 2 О, НСl и т.д.), при неполном – получившиеся продукты способны к дальнейшему горению (CO, H 2 S, HCN, NH 3 , альдегиды и т.д.). Схема: спирт – альдегид – кислота.