Дипольный момент формула в физике. Электрические свойства молекул и дипольный момент

Вернемся к электрическим системам, которые можно представить как системы точечных зарядов. Положим, что на протяжении интересующей нас системы зарядов электрическое поле однородно. Тогда формула силы, действующей на систему, имеет вид

где полный заряд системы. Если тело электрически нейтрально, как, скажем, атом или молекула, то сила, действующая на такое тело, содержащее равные количества положительных и отрицательных частиц, будет равна нулю. Значит ли это, что электрически нейтральное тело не обладает взаимодействием с электрическим полем? Нетрудно видеть, что нет. В однородном поле силы, действующие на заряды системы, параллельны друг другу. Мы можем отдельно сложить силы, действующие на положительные заряды, и отдельно силы, которые приложены к отрицательным зарядам. Как хорошо известно, равнодействующая параллельных сил приложена в центре «тяжести» тела. Слово «тяжесть» взято в кавычки, так как сейчас речь идет об электрическом центре тяжести. В результате все силы, действующие на заряды системы, находящейся в однородном поле, сведутся к двум антипараллельным силам, приложенным в центрах тяжести положительных и отрицательных зарядов (рис. 95). Если система электрически нейтральна, то обе силы будут одинаковы; полная сила будет равна нулю, но на тело будет действовать пара сил с моментом

Момент сил может подействовать на систему зарядов только в том случае, если центры «тяжести» положительных и отрицательных зарядов сдвинуты друг по отношению к другу.

Вектор равный по величине произведению положительного заряда системы на расстояние между центрами тяжести, носит название дипольного момента системы. Дипольный момент считают направленным от отрицательного центра к положительному. Дипольный момент системы определяет ее поведение в однородном поле. Система, предоставленная сама себе, поворачивается в однородном электрическом поле так, чтобы ее дипольный момент совпал с направлением электрического поля

В однородном поле все действия на нейтральную систему электрических зарядов сводятся к моменту силы где дипольный момент системы, равный произведению количества электричества одного знака на плечо диполя. Таким образом, нет нужды

рассматривать в однородном поле сложное расположение какой-либо системы зарядов; ее надо заменить соответствующим диполем.

Если система находится в неоднородном поле, то дипольный момент уже не будет исчерпывающим образом описывать ее свойства. Это видно из рис. 96. Четыре заряда, расположенных по углам квадрата, образуют электрически нейтральную систему с дипольным моментом, равным нулю (центры тяжести отрицательного и положительного зарядов совпадают).

В однородном поле на такую систему не действуют ни силы, ни момент силы. В неоднородных полях, разумеется, этот квадрат может и перемещаться поступательно и поворачиваться, так как силы, действующие на заряды, вообще говоря, различны. По аналогии с диполем такой системе дано название квадруполь. На том же рисунке изображена еще одна нейтральная система с нулевым дипольным моментом - октуполь.

Значительный интерес для учения о строении вещества, которым мы будем заниматься много позднее, представляет рассмотрение взаимодействий простейших электрических систем. Рассмотрим некоторые из них.

Заряд - заряд.

Взаимодействие двух точечных зарядов происходит по закону Кулона

Заряд-диполь.

Предоставленный сам себе диполь стремится повернуться так, чтобы установиться вдоль силовых линий.

После того как такой поворот произошел, диполь остается неподвижным в однородном поле, а в неоднородном будет втягиваться, как это видно из рис. 97, в область более сильного поля. В случае, если

неоднородное поле есть поле точечного заряда, диполь будет притягиваться к этому заряду. Сила притяжения равна

Если плечо диполя мало, то, приводя к общему знаменателю, мы получим, пренебрегая величиной по сравнению с а величиной по сравнению с следующую интересную формулу:

Обратим внимание на то, что сила взаимодействия заряда и диполя убывает с расстоянием быстрее, чем кулоновская сила, а именно, она обратно пропорциональна кубу расстояния.

Пример. Расстояние между атомами в молекуле равно 1,28 А, дипольный момент молекулы Тогда электрон, находящийся на расстоянии А от молекулы, притягивается к ней с силой дин.

Энергия системы точечных зарядов. Энергия заряженного проводника.

Даже у отдельного точечного заряда q имеется какая-то электростатическая энергия. Поле в этом случае дается выражением так что плотность энергии на расстоянии r от заряда равна

За элемент объема можно принять сферический слой толщиной dr, по площади равный 4πr 2 . Полная энергия будет

Энергия заряженного конденсатора. Пусть потенциал обкладки конденсатора, на которой находится заряд +q , равен, а потенциал обкладки, на которой находится заряд -q , равен. Энергия такой системы

Энергию заряженного конденсатора можно представить в виде

Электрический диполь - идеализированная электронейтральная система, состоящая из точечных и равных по абсолютной величине положительного и отрицательного электрических зарядов.

Другими словами, электрический диполь представляет собой совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга.

Слева силовые линии диполя, справа - пример диполя (молекула воды).

Дипольный момент - векторная физическая величина, характеризующая электрические свойства системы заряженных частиц (распределения зарядов) в смысле создаваемого ею поля и действия на нее внешних полей.

Простейшая система зарядов, имеющая ненулевой дипольный момент - это диполь (две точечные частицы с одинаковыми по величине разноимёнными зарядами). Электрический дипольный момент такой системы по модулю равен произведению величины положительного заряда н а расстояние между зарядами и направлен от отрицательного заряда к положительному, или:

Где - величина положительного заряда, - вектор с началом в отрицательном заряде и концом в положительном.

Во внешнем электрическом поле на электрический диполь действует момент сил который стремится повернуть его так, чтобы дипольный момент развернулся вдоль направления поля.

Диэлектрики и их классификация. Определение вектора поляризации и диэлектрической восприимчивости. Поляризация полярных и неполярных диэлектриков.

Диэлектрик (изолятор) - вещество, плохо проводящее электрический ток.

Основное свойство диэлектрика - способность поляризоваться во внешнем электрическом поле.

Поляризация диэлектриков - явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей под воздействием внешнего электрического поля, других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор поляризации . Физический смысл вектора электрической поляризации - это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации называют просто поляризацией.



Диэлектрическая восприимчивость (поляризуемость) вещества - физическая величина, мера способности вещества поляризоваться под действием электрического поля. Диэлектрическая восприимчивость χ ε - коэффициент линейной связи между поляризацией диэлектрика P и внешним электрическим полем E в достаточно малых полях:

, где ε 0 - электрическая постоянная; произведение ε 0 χ ε называется абсолютной диэлектрической восприимчивостью .

В случае вакуума χ ε = 0 .

У диэлектриков, как правило, она положительна. Диэлектрическая восприимчивость измеряется в ничём (безразмерная величина).

Ряд диэлектриков проявляют особые физические свойства. К ним относятся пьезоэлектрики (которые могут либо под действием деформации индуцировать электрический заряд на своей поверхности, или наоборот), пироэлектрики (поляризация в отсутствие внешних воздействий), сегнетоэлектрики (обладающие в определённом интервале температур собственным дипольным моментом), и.т.д.

µ = δ l

Рис. 2.23. Схема образования диполя в гетероядерной молекуле АВ

2.3. Полярность связи. Дипольный момент молекулы

При образовании ковалентной химической связи между разными атомами (гетероядерные молекулы) электронная плотность распределяется не симметрично относительно ядер. В молекуле она сдвинута в сторону ато-

тельных зарядов электронов не совпадают. Возникает система разных по знаку, но одинаковых по величине электриче-

ских зарядов (δ+ иδ− ) –электрический диполь (рис. 2.23).

Мерой полярности связи (характеристикой диполя) является диполь-

ный момент µ – произведение величины зарядаδ на расстояние между центрами тяжести положительных и отрицательных зарядов (длина диполяl ).

Единицей измерения дипольного момента в системе СИ [Кл м] чаще

используется внесистемная единица Дебай (D ): 1D = 3,33 10-30 Кл м.

В гетероядерных молекулах связь всегда полярна, но если число атомов в молекуле три и более, то возникающая при этом система распределения зарядов может привести к тому, что молекула в целом не будет являться диполем – центры тяжести положительных и отрицательных зарядов совпадают. Как правило, это связано с симметричным строением молекулы.

Если молекулу, даже если она не является диполем, поместить в электрическое поле напряженностью Е , происходит разделение центров тяжести зарядов в результате смещения электронов относительно ядер, и смещения атомов относительно друг друга в молекуле. При этом молекула приобретает наведенный (индуцированный) дипольный момент. Способность молекул приобретать в электрическом поле дипольный момент на-

зывается поляризуемостью.

Дипольный момент наведенного диполя пропорционален напряженности электрического поля: µи = α ε 0 E , гдеα – коэффициент поляризуе-

мости (поляризуемость) атома или молекулы, ε 0 – электрическая постоянная.

Молекула

Дипольный мо-

Дипольный момент

Строение

мент связи, D

молекулы, D

молекулы

3 . ХИМИЧЕСКАЯ СВЯЗЬ В ТВЕРДЫХ ВЕЩЕСТВАХ

И ЖИДКОСТЯХ

3.1. Агрегатные состояния

Вещества в зависимости от внешних условий (температура и давление) и их химического состава могут существовать в трех основных агрегатных состояниях: газообразном, жидком и твердом. При достаточно низких температурах вещества находятся в твердом состоянии, а при относительно высоких – в жидком и газообразном.

При нагревании происходит, как правило, последовательный переход веществ из твердого в жидкое и газообразное состояние (плавление и испарение), а при охлаждении протекают обратные процессы (конденсация и кристаллизация). Эти переходы осуществляются при определенной температуре (температуре фазового перехода), при этом скачкообразно изменяется молярный объем вещества и энтропия (энергетическая характеристика степени разупорядоченности системы), поглощается или выделяется тепловая энергия (энтальпия фазового перехода). Температура перехода из одного состояния в другое зависит от химической природы вещества и давления. Конкретные значения температур фазовых переходов для различных веществ лежат в широких пределах (табл. 3.1). Необходимо отметить, что при определенных условиях возможен фазовый переход твердое состояние – газ (сублимация-кристаллизация).

Таблица 3 . 1

Температуры (° С ), энтальпия (∆ Н 0 , кДж/моль) и энтропии (∆ S 0 , Дж/моль К) фазо-

вых переходов некоторых веществ при атмосферном давлении

Тип кристалла

Фазовый переход

Плавление -

Кипение –

кристаллизация

конденсация

t пл ,° С

∆ Н 0 пл,

∆ S 0пл ,

t кип, ° С

∆ Н 0 исп,

∆ S 0 исп,

Молекулярный

C6 Н6

S(β )

Ковалентный

MgF2

Металлический

Жидкое и твердое агрегатные состояния относят к конденсированному состоянию вещества . Оно отличается от газообразного тем, что энергия взаимодействия между частицами, образующими вещество, сравнима по величине или превышает энергию их теплового движения. Это приводит к тому, что среднее расстояние между частицами (между центрами частиц) в газе при нормальных условиях составляет величину ~ 10 их диаметров, тогда как в конденсированном состоянии оно сравнимо с их диаметром. Молярный объем любого газа при нормальных условиях равен 22,4 л/моль, тогда как молярные объемы твердых веществ и жидкостей примерно в 103 раз меньше (0,01–0,05 л/моль).

Пример. Расчет средних размеров пространства, занимаемого одной частицей при атмосферном давлении.

Газ Жидкость, кристалл

V =a 3 – объем пространстваa – ребро куба

d – средний диаметр частицы

газа при нормальных

условиях

занимает

V ν = 22,4 л/моль и содержит 6,02 1023 молекул (число Авогадро).

3,7 10-26 м3 ,a = 3 V = 3 3,7 10− 26 = 3,3 10-9 м= 33А.

6,02 1023

Размер молекулы азота (две длины связи) d N2 3 Ǻ.

Жидкость.

жидкого брома

(Br2 )

занимает

51,2 cм3 .

М =160 г/моль

молярная масса

ρ =3,12 г/см3 – плотность жидкого брома,V ν – молярный объем жидкого брома.

Средний размер пространства, занимаемого одной частицей:

8,5 10-29 м3

A= 3 V= 3

8,5 10− 29 = 4,4 10-10

м = 4,4 А.

1023

Размер молекулы брома (две длины связи) d Br2 4,56 Ǻ.

Кристалл. 1

моль металлического серебра занимает объем

10,3 cм3 .

М =108 г/моль – молярная масса серебра,ρ =10,50 г/см3 – плотность серебра,V ν – молярный объем серебра.

Средний размер пространства, занимаемого одной частицей:

1,7 10-29 м3 ,a = 3 V = 3 1,7 10− 29

2,6 10-10

м = 2,6 А.

1023

Размер атома серебра (два металлических радиуса) d Ag 2,68 Ǻ.

В газах частицы находятся в броуновском движении, при этом отсутствуют ближний и дальний порядок в положении частиц. Газ не имеет собственного объема и, соответственно, формы. В жидкостях броуновское движение осложнено наличием более или менее устойчивого ближнего порядка в положении частиц относительно друг друга за счет возникновения химических связей между отдельными частицами. Жидкость имеет собственный объем, но из-за слабого межмолекулярного взаимодействия под действием силы тяжести принимает форму сосуда, в котором она находится. В твердом состоянии вещества энергия взаимодействия между частицами намного превышает энергию теплового движения, что приводит к фиксированию положений частиц в пространстве, вокруг которых они совершают колебательные и вращательные движения. Это определяет наличие у твердых тел собственной формы и объема и большое сопротивление сдвигу.

Сравнение энергетических характеристик фазовых переходов свидетельствует о существенно меньшей перестройке вещества при плавлении, чем при испарении. Как видно из табл. 3.1, для всех кристаллов с различным типом химической связи теплота (энтальпия) плавления много меньше теплоты испарения. Энтропия фазового перехода, характеризующая изменение степени упорядоченности системы, также для плавления много меньше, чем для испарения.

В газообразном состоянии, где присутствуют слабо или совсем не взаимодействующие между собой молекулы вещества, химическая связь внутри них рассматривается с использованием моделей «классической» ковалентной связи.

При рассмотрении конденсированного состояния вещества химическая связь описывается с использованием моделей ковалентной, ионной и металлической связи. При этом необходимо принимать во внимание близкое расположение частиц, образующих систему. Это обстоятельство в ряде случаев (жидкости, молекулярные кристаллы) обусловливает необходимость учитывать существенный вклад межмолекулярного взаимодействия в энергию химических связей.

Необходимо отметить, что целый ряд веществ может не иметь одного из агрегатных состояний. Чаще всего это относится к жидкому и газообразному состояниям. Данное обстоятельство связано с соотношением между энергией, необходимой для перевода вещества из одного агрегатного состояния в другое, и энергией, достаточной для разрыва внутримолекулярных химических связей. Например, во многих нерастворимых в воде гидроксидах металлов при нагревании раньше протекает реакция дегидратации (Cu(OH)2 → CuO + H2 O), а затем происходит плавление вещества.

3.2.Межмолекулярное взаимодействие

Как было отмечено выше, в конденсированном состоянии вещества на величину энергии химической связи существенно влияют межмолекулярные взаимодействия. Они связаны с электростатическим взаимодействием зарядов, возникающих в результате нарушения симметрии распределения электронной плотности в молекулах.

3.2.1.Межмолекулярные взаимодействия (силы Ван-дер-Ваальса)

В конденсированных фазах (жидкость, твердое тело) расстояние между молекулами соизмеримо с размерами самих молекул. На таких малых расстояниях проявляют себя силы электростатического взаимодействия диполей, как постоянных, так и наведенных. При этом энергия системы понижается.

Межмолекулярные взаимодействия характеризуются отсутствием обмена электронами между частицами, отсутствием специфичности и насыщаемости. Энергия межмолекулярного взаимодействия сравнительно невелика, однако она вносит существенный вклад в энергетическое состояние системы, определяя в значительной степени физические и химические свойства вещества.

На сравнительно больших расстояниях r между молекулами, когда электронные оболочки не перекрываются, действуют только силы притяжения. При этом возможны три механизма возникновения сил притяжения.

1. Ориентационный эффект (диполь – дипольное взаимодействие). Если молекулы полярны, то проявляется электростатическое взаимодействие двух постоянных диполей. Полярные молекулы ориентируются относительно друг друга противоположно заряженными частями, энергия притяжения прямо пропорциональна дипольным моментам (µ i 2 ) и обратно пропорциональна расстоянию между ними (r 6 ). Повышение температуры ослабляет это взаимодействие, так как тепловое взаимодействие стремится

нарушить взаимную ориентацию молекул.

2. Индукционный эффект (взаимодействие диполь – наведенный диполь).

Неполярные молекулы под действием поля полярной молекулы поляризуются, возникает индуцированный диполь. Индуцированный дипольный момент прямо пропорционален поляризуемости молекул (µ и α µ д ). Энергия притяжения таких молекул прямо пропорциональна дипольным моментам (α µ д 2 ) и обратно пропорциональна расстоянию между ними (r 6 ). Так как наведение диполей происходит при любом пространственном расположении молекул, индукционный эффект от температуры не зависит.

3. Дисперсионный эффект (взаимодействие мгновенных диполей).

В отличие от ориентационного и индукционного взаимодействия дисперсионный эффект имеет объяснение только в рамках квантовой механики. Его возникновение можно представить следующим образом: в процессе движения электронов распределение зарядов внутри атомов может стать несимметричным, что приводит к образованию «мгновенных диполей», которые притягиваются друг к другу. Более того, при сближении молекул движение электронов перестает быть независимым и возникает «самосогласованная» система взаимодействующих мгновенных диполей. Энергия притяжения прямо пропорциональна поляризуемостям молекул (α i ) и обратно пропорциональна расстоянию между ними (r 6 ).

Дисперсионный эффект, как наиболее универсальный, проявляется при взаимодействии как полярных, так и неполярных молекул. Причем для неполярных молекул и молекул с небольшим дипольным моментом он является основным.

Индукционный и ориентационный эффекты играют существенную роль при взаимодействии полярных молекул. Для молекул с большим значением дипольного момента основным является ориентационный эффект. Индукционный эффект обычно невелик и становится значительным лишь тогда, когда полярные молекулы сосуществуют с сильно поляризующимися молекулами (табл. 3.2).

На малых расстояниях между молекулами, когда их электронные оболочки сильно перекрываются, электростатическое отталкивание ядер и электронов становится больше их взаимного притяжения. Энергия отталкивания гораздо сильнее зависит от расстояния (r 12 ), чем энергия притяжения. На больших расстояниях межмолекулярное взаимодействие определяется силами притяжения, а на малых силами отталкивания.

Таблица 3 . 2

Относительный вклад каждой составляющей в энергию межмолекулярного взаимодействия для различных молекул

Ориентацион-

Индукционное

Дисперсион-

µ , Кл м

α , м3

Молекула

зуемость

× 1030

< 0,01

3.2.2.Водородная связь

Особым типом межмолекулярного взаимодействия является водородная связь. Она возникает между молекулами, которые содержат в своей структуре атом водорода и малый по размерам атом элемента с большим значением электроотрицательности (кислород, фтор, азот и др.). Поскольку разница в электроотрицательностях водорода и этих элементов велика, то связь сильно поляризована, на атомах возникают сравнительно большие отрицательные и положительные заряды. В то же время небольшой размер этих атомов позволяет им близко подходить друг к другу при ди- поль-дипольном взаимодействии. Поэтому энергия ориентационного взаимодействия значительно больше (примерно на порядок), чем в других случаях. Кроме того, энергия связи существенно увеличивается за счет частичного образования ковалентной составляющей связи между взаимодействующими атомами соседних молекул по донорно-акцепторному механизму. 1s -орбиталь водорода частично оголена благодаря сильной поляризации связи (это еще не Н+ , но уже и не Н0 ), а на электроотрицательном атоме имеются неподеленные электронные пары.

Оба эти фактора приводят к увеличению энергии связи по сравнению с энергией межмолекулярного взаимодействия. Энергия водородной связи составляет величину порядка 100 кДж/моль, энергия межмолекулярного взаимодействия (силы Ван-дер-Ваальса) – 10-20 кДж/моль.

При конденсации молекул, способных к образованию водородных связей, их взаимное расположение будет определяться как направлением в пространстве атомов водорода внутри молекулы, так и направлением в пространстве электронных орбиталей электроотрицательного атома, связанного с атомом водорода соседней молекулы.

Водородная связь определяет многие физические и химические свойства веществ, в частности увеличивается температура плавления и кипения, изменяется плотность вещества. Особую роль водородная связь играет в биохимии, органические молекулы (в том числе и полимеры), содержащие H-O, H-N связи, образуют большое число водородных связей.

Примеры. Вода H2 O.

В конденсированном состоянии каждая молекула воды может иметь четыре водородные связи: две между атомом кислорода (функции донора) и атомами водорода двух соседних молекул воды; еще две – за счет двух атомов водорода (функция акцептора). В кристаллическом состоянии образуется правильная алмазоподобная структура. В узлах располагаются большие атомы кислорода, которые связаны между собою через атом водорода. В жидком состоянии часть водородных связей разорвана (рис.3.1).

Оδ −

Рис. 3.1. Схема образования тетраэдрической пространственной структуры воды вкристаллическом и жидком состояниях: - ковалентная связь,- водородная связь

Фтористый водород HF.

В газообразном состоянии при невысоких температурах, за счет образования водородных связей, образуются ассоциаты (HF)2 , (HF)6. . В конденсированном состоянии, в частности в твердом, HF образует зигзагообразные цепи (рис. 3.2).

Чтобы понять механизм поведения диэлектриков в поле на микроскопическом уровне, нам надо сначала объяснить, как может электрически нейтральная система реагировать на внешнее электрическое поле. Простейший случай - полное отсутствие зарядов - нас не интересует. Мы знаем наверняка, что в диэлектрике имеются электрические заряды - в составе атомов, молекул, ионов кристаллической решетки и т. д. Поэтому мы рассмотрим следующую по простоте конструкции электронейтральную систему - два равных по величине и противоположных по знаку точечных заряда +q и –q , находящихся на расстоянии l друг от друга. Такая система называется электрическим диполем .

Рис. 3.6. Электрический диполь

Линии напряженности электрического поля и эквипотенциальные поверхности электрического диполя выглядят следующим образом (рис. 3.7, 3.8, 3.9)

Рис. 3.7. Линии напряженности электрического поля электрического диполя

Рис. 3.8. Эквипотенциальные поверхности электрического диполя

Рис. 3.9. Линии напряженности электрического поля и эквипотенциальные поверхности

Основной характеристикой диполя является . Введем вектор l , направленный от отрицательного заряда (–q ) к положительному (+q ), тогда вектор р , называемый электрическим моментом диполя или просто дипольным моментом , определяется как

Рассмотрим поведение «жесткого» диполя - то есть расстояние которого не меняется - во внешнем поле Е (рис. 3.10).

Рис. 3.10. Силы, действующие на электрический диполь, помещенный во внешнее поле

Пусть направление дипольного момента составляет с вектором Е угол . На положительный заряд диполя действует сила, совпадающая по направлению с Е и равная F 1 = +qE , а на отрицательный - противоположно направленная и равная F 2 = –qE . Вращающий момент этой пары сил равен

Так как ql = р , то М = рЕ sin или в векторных обозначениях

(Напомним, что символ

означает векторное произведение векторов а и b .) Таким образом, при неизменном дипольном моменте молекулы () механический момент, действующий на нее, пропорционален напряженности Е внешнего электрического поля и зависит от угла между векторами р и E .

Под действием момента сил М диполь поворачивается, при этом совершается работа

которая идет на увеличение его потенциальной энергии. Отсюда получаем потенциальную энергию диполя в электрическом поле

если положить const = 0.

Из рисунка видно, что внешнее электрическое поле стремится повернуть диполь таким образом, чтобы вектор его электрического момента р совпал по направлению с вектором Е . В этом случае , а, следовательно, и М = 0. С другой стороны, при потенциальная энергия диполя во внешнем поле принимает минимальное значение , что соответствует положению устойчивого равновесия. При отклонении диполя от этого положения снова возникает механический момент, который возвращает диполь в первоначальное положение. Другое положение равновесия, когда дипольный момент направлен против поля является неустойчивым . Потенциальная энергия в этом случае принимает максимальное значение и при небольших отклонениях от такого положения возникающие силы не возвращают диполь назад, а еще больше отклоняют его.

На рис. 3.11 показан опыт, иллюстрирующий возникновение момента электрических сил, действующих на диэлектрик в электрическом поле. На удлиненный диэлектрический образец, расположенный под некоторым углом к силовым линиям электростатического поля, действует момент сил, стремящийся развернуть этот образец вдоль поля. Диэлектрическая палочка, подвешенная за середину внутри плоского конденсатора, разворачивается перпендикулярно его пластинам после подачи на них высокого напряжения от электростатической машины. Появление вращающего момента обусловлено взаимодействием поляризовавшейся палочки с электрическим полем конденсатора.

Рис. 3.11. Момент электрических сил, действующих на диэлектрик в электрическом поле

В случае неоднородного поля на рассматриваемый диполь будет действовать еще и равнодействующая сила F paвн, стремящаяся его сдвинуть. Мы рассмотрим здесь частный случай. Направим ось х вдоль поля Е . Пусть диполь под действием поля уже повернулся вдоль силовой линии, так что отрицательный заряд находится в точке с координатой x , а положительный заряд расположен в точке с координатой х + l . Представим себе, что величина напряженности поля зависит от координаты х . Тогда равнодействующая сила F paвн равна

Такой же результат может быть получен из общего соотношения

где энергия П определена в (3.8). Если Е увеличивается с ростом x , то

и проекция равнодействующей силы положительна. Это значит, что она стремиться втянуть диполь в область, где напряженность поля больше. Этим объясняется известный эффект, когда нейтральные кусочки бумаги притягиваются к наэлектризованной расческе. В плоском конденсаторе с однородным полем они остались бы неподвижными.

Рассмотрим несколько опытов, иллюстрирующих возникновение силы, действующей на диэлектрик, помещенный в неоднородное электрическое поле.

На рис. 3.12 показано втягивание диэлектрика в пространство между обкладками плоского конденсатора. В неоднородном электростатическом поле на диэлектрик действуют силы, втягивающие его в область более сильного поля.

Рис. 3.12. Втягивание жидкого диэлектрика в плоский конденсатор

Это демонстрируется при помощи прозрачного сосуда, в который помещен плоский конденсатор, и налито некоторое количество жидкого диэлектрика - керосина (рис.3.13). Конденсатор присоединен к высоковольтному источнику питания - электростатической машине. При ее работе на нижнем краю конденсатора, в области неоднородного поля, на керосин действует сила, втягивающая его в пространство между пластинами. Поэтому уровень керосина внутри конденсатора устанавливается выше, чем снаружи. После выключения поля уровень керосина между пластинами падает до его уровня в сосуде.

Рис. 3.13. Втягивание керосина в пространство между обкладками плоского конденсатора

В реальных веществах нечасто встречаются диполи, образованные только двумя зарядами. Обычно мы имеем дело с более сложными системами. Но понятие электрического дипольного момента применимо и к системам со многими зарядами. В этом случае дипольный момент определяется как

где , - величина заряда с номером i и радиус-вектор, определяющий его местоположение, соответственно. В случае двух зарядов мы приходим к прежнему выражению

Пусть наша система зарядов электрически нейтральна. В ней есть положительные заряды, величины которых и местоположения мы обозначим индексом «+». Индексом «–» мы снабдим абсолютные величины отрицательных зарядов и их радиус-векторы. Тогда выражение (3.10) может быть записано в виде

В (3.11) в первом слагаемом суммирование ведется по всем положительным зарядам, а во втором - по всем отрицательным зарядам системы.

Выражения (3.13) аналогичны формулам для центра масс в механике, и потому мы назвали их центрами положительных и отрицательных зарядов, соответственно. С этими обозначениями и с учетом соотношения (3.12) мы записываем электрический дипольный момент (3.11) системы зарядов в виде

где l -вектор, проведенный из центра отрицательных зарядов в центр положительных зарядов. Смысл нашего упражнения заключается в демонстрации, что любую электрически нейтральную систему зарядов можно представить как некий эквивалентный диполь.

Диполь есть система, состоящая из двух равных по модулю и противоположных по знаку зарядов. Вектор I, проведенный от отрицательного к положительному заряду, называется плечом диполя.

Электрический момент диполя

где – заряд диполя.

Электрический дипольный момент молекулы принято выражать в единицах атомного масштаба – дебай (D) = 3,33∙10 -30 Кл∙м.

Диполь называется точечным, если расстояние rот центра диполя до точки, в которой рассматривается действие диполя, много больше плеча диполя.

Напряженность поля точечного диполя:

а) на оси диполя

, или
;

б) на перпендикуляре к оси диполя

, или
;

в) в общем случае

, или
,

где
─ угол между радиусом-векторомrи электрическим дипольным моментомр (рис. 2.1).

Потенциал поля диполя

.

Потенциальная энергия диполя в электростатическом поле

Механический момент, действующий на диполь с электрическим дипольным моментом , помещенный в однородное электрическое поле с напряженностью,

или
,

где
– угол между направлением векторови.

Сила F, действующая на диполь в неоднородном электростатическом поле, обладающем осевой (вдоль осих) симметрией,

,

где ─ величина, характеризующая степень неоднородности электростатического поля вдоль оси х;– угол между векторамии.

Примеры решения задач

Пример 1. Диполь с электрическим моментом

. Вектор электрического моментасоставляет угол
с направлением силовых линий поля. Определить работуA внешних сил, совершенную при повороте диполя на угол
.

Решение . Из исходного положения (рис. 2.2, а ) диполь можно повернуть на угол
, вращая его по часовой стрелкедо угла (рис. 2.2, б ), или против часовой стрелки до угла (рис. 2.2,в ).

В первом случае диполь будет поворачиваться под действием сил поля. Следовательно, работа внешних сил при этом отрицательна. Во втором случае поворот может быть произведен только под действием внешних сил и работа внешних сил при этом положительна.

Работу, совершаемую при повороте диполя, можно вычислить двумя способами: 1) непосредственно интегрированием выражения элементарной работы; 2) с помощью соотношения между работой и изменением потенциальной энергии диполя в электрическом поле.

а б в

1-й способ . Элементарная работа при повороте диполя на угол
:

а полная работа при повороте на угол от до
:

.

Произведя интегрирование, получим

Работа внешних сил при повороте диполя по часовой стрелке

против часовой стрелки

2-й способ . Работа А внешних сил связана с изменением потенциальной энергии
соотношением

,

где
─ потенциальные энергии системы соответственно в начальном и конечном состояниях. Так как потенциальная энергия диполя в электрическом поле выражается формулой
,то

что совпадает с формулой (2.1), полученной первым способом.

Пример 2. Три точечных заряда ,
,
, образуют электрически нейтральную систему, причем
. Заряды расположены в вершинах равностороннего треугольника. Определить максимальные значения напряженности
и потенциала
поля, создаваемого этой системой зарядов, на расстоянии
от центра треугольника, длина стороны которого
.

Решение. Нейтральную систему, состоящую из трех точечных зарядов, можно представить в виде диполя. Действительно, «центр тяжести» зарядов и
лежит на середине отрезка прямой, соединяющей эти заряды (рис. 2.3). В этой точке можно считать сосредоточенным заряд
. А так как система зарядов нейтральная (
), то

Так как расстояние между зарядами Q 3 и Q много меньше расстояния r (рис. 2.4), то систему этих двух зарядов можно считать диполем с электрическим моментом
,где
─ плечо диполя. Электрическиймомент диполя

.

Тот же результат можно получить другим способом. Систему из трех зарядов представим как два диполя с электрическими моментами (рис. 2.5), равными по модулю:
;
. Электрический момент системы зарядов найдем как векторную суммуи, и
.Как это следует из рис. 2.5, имеем
.Так как

,то

,

что совпадает с найденным ранее значением.

Напряженность и потенциалполя диполя выражаются формулами

;
,

где
─ угол между радиусом-вектороми электрическим дипольным моментом (рис. 2.1).

Напряженность и потенциал будут иметь максимальные значения при
= 0, следовательно,

;
.

Так как
,то

;
.

Вычисления дают следующие значения:

;
.

Задачи

201. Вычислить электрический момент р диполя, если его заряд
,
. (Ответ:50 нКл∙м).

202. Расстояние между зарядами
и
диполя равно 12 см. Найти напряженность Е и потенциалполя, созданного диполем в точке, удаленной на
как от первого, так и от второго заряда.(Ответ:
;
).

203. Диполь с электрическим моментом
образован двумя точечными зарядами
и
. Найти напряженностьE и потенциал электрического поля в точкеA (рис. 2.6), находящейся на расстоянии
от центра диполя. (Ответ:
;
).

204. Электрический момент диполя
поля, созданного в точкеA (рис. 2.6), находящейся на расстоянии
от центра диполя. (Ответ:
;
).

205. Определить напряженность E и потенциал
на расстоянии

с вектором электрического момента.(Ответ:
;
).

206. Диполь с электрическим моментом
равномерно вращается с частотой
относительно оси, проходящей через центр диполя и перпендикулярной его плечу. Точка С находится на расстоянии
от центра диполя и лежит в плоскости вращения диполя. Вывести закон изменения потенциала как функцию времени в точке С. Принять, что в начальный момент времени потенциал в точке С
. Построить график зависимости
. (Ответ:
;
;
).

207. Диполь с электрическим моментом

относительно оси, проходящей через центр диполя и перпендикулярной его плечу. Определить среднюю потенциальную энергию
заряда
, находящегося на расстоянии
и лежащего в плоскости вращения, завремя, равное полупериоду (от
до
). В начальный момент времени считать
. (Ответ:).

208. Два диполя с электрическими моментами
и
находятся на расстоянии
друг от друга. Найти силу их взаимодействия, если оси диполей лежат на одной прямой. (Ответ:
).

209. Два диполя с электрическими моментами
и
находятся на расстоянии
друг от друга, так что оси диполей лежат на одной прямой. Вычислить взаимную потенциальную энергию диполей, соответствующую их устойчивому равновесию. (Ответ:
).

210. Диполь с электрическим моментом
прикреплен к упругой нити (рис. 2.7). Когда в пространстве, где находится диполь, было создано электрическое поле напряженностью
, перпендикулярно плечу диполя и нити, диполь повернулся на угол
. Определить момент силы М, который вызывает закручивание нити на 1 рад. (Ответ:
).

211. Диполь с электрическим моментом
прикреплен к упругой нити (рис. 2.7). Когда в пространстве, где находится диполь, было создано электрическое поленапряженностью
, перпендикулярно плечу диполя и нити, диполь повернулся на малый угол
. Определить момент силы М, который вызывает закручивание нити на 1 рад. (Ответ: ).

212. Диполь с электрическим моментом
находится в однородном электрическом поле напряженностью
. Вектор электрического момента составляет угол
с линиями поля. Какова потенциальная энергия П поля? Считать
, когда вектор электрического момента диполя перпендикулярен линиям поля. (Ответ: ).

213. Диполь с электрическим моментом
свободно устанавливается в однородном электрическом поле напряженностью

. (Ответ: ).

214. Диполь с электрическим моментом



. (Ответ: ).

215. Перпендикулярно плечу диполя с электрическим моментом
возбуждено однородное электрическое поле напряженностью
. Под действием сил поля диполь начинает поворачиваться относительно оси, проходящей через его центр. Найти угловую скорость
диполя в момент прохождения им положения равновесия. Момент инерции диполя относительно оси, перпендикулярной плечу ипроходящей через его центр. (Ответ:
;
).

216. Диполь с электрическим моментом
свободно установился в однородном электрическом поле напряженностью
. Диполь повернули на малый угол и предоставили самому себе. Определить частоту собственных колебаний диполя в электрическом поле. Момент инерции диполя относительно оси, проходящей через его центр
. (Ответ:
).

217. Диполь с электрическим моментом
находится в неоднородном электрическом поле. Степень неоднородности поля характеризуется величиной
, взятой в направлении оси диполя. Вычислить силуF, действующую на диполь в этом направлении. (Ответ: ).

218. Диполь с электрическим моментом
установился вдоль силовой линии в поле точечного заряда
на расстоянии
от него. Определить для этой точки величину
, характеризующую степень неоднородности поля в направлении силовой линии и силуF, действующую на диполь. (Ответ:
;
).

219. Диполь с электрическим моментом
установился вдоль силовой линии в поле, созданном бесконечной прямой нитью, заряженной бесконечной прямой нитью, заряженной с линейной плотностью
на расстоянии
от нее. Определить в этой точке величину
, характеризующую степень неоднородности поля в направлении силовой линии и силуF, действующую на диполь.(Ответ:
;
).

220. Диполь с электрическим моментом
образован двумя точечными зарядами
и
. Найти напряженность Е и потенциалэлектрического поля в точке В (рис. 2.6), находящихся на расстоянии
от центра диполя. (Ответ:
;
).

221. Электрический момент диполя
. Определить напряженность Е и потенциалполя, созданного в точке В (рис. 3.6), находящейся на расстоянии
от центра диполя. (Ответ:
;
).

222. Определить напряженность Е и потенциал поля, создаваемого диполем с электрическим моментом
на расстоянии
от центра диполя, в направлении, составляющем угол
с вектором электрического момента. (Ответ:
;
).

223. Диполь с электрическим моментом
равномерно вращается с угловой скоростью
относительно оси, проходящей через центр диполя и перпендикулярной его плечу. Определить среднюю потенциальную энергию
заряда
, находящегося на расстоянии
и лежащего в плоскости вращения, в течение времени
.В начальный момент времени считать
. (Ответ:
).

224. Диполь с электрическим моментом
свободно устанавливается в однородном электрическом поле напряженностью
. Вычислить работу А, необходимую для того, чтобы повернуть диполь на угол
. (Ответ:
).

225. Диполь с электрическим моментом
свободно установился в однородном электрическом поле напряженностью
. Определить изменение потенциальной энергии
диполя при повороте его на угол
. (Ответ: ).

226. Молекула HF обладает электрическим моментом
. Межъядерное расстояние
. Найти заряд такого диполя и объяснить, почему найденное значениесущественно отличается от значения элементарного заряда
. (Ответ:
).

227. Точечный заряд
находится на расстоянии

. Определить потенциальную энергию П и силуF их взаимодействия в случае, когда точечный заряд находится на оси диполя. (Ответ:
;
).

228. Точечный заряд
находится на расстоянии
от точечного диполя с электрическим моментом
. Определить потенциальную энергию П и силуF их взаимодействия в случае, когда точечный заряд находится на перпендикуляре к оси диполя. (Ответ:
;
).

229. Два диполя (рис. 2.8) с электрическими моментами
находятся на расстоянии
друг от друга (
─ плечо диполя). Определить потенциальную энергию П взаимодействия диполей. (Ответ:
).

230. Два одинаково ориентированных диполя (рис. 2.9) с электрическими моментами
находятся на расстоянии
друг от друга (
─ плечо диполя). Определить потенциальную энергию П и силуF взаимодействия диполей. (Ответ:
;
).