Для чего применяется спектральный анализ веществ. Спектры

СПЕКТРАЛЬНЫЙ АНАЛИЗ , метод качеств. и количеств. определения состава в-в, основанный на исследовании их спектров испускания, поглощения, отражения и . Различают атомный и молекулярный спектральный анализ, задачи к-рых состоят в определении соотв. элементного и молекулярного состава в-ва. проводят по спектрам испускания , или , возбужденных разл. способами, абсорбционный спектральный анализ-по спектрам поглощения электромагн. излучения анализируемыми объектами (см. ). В зависимости от цели исследования, св-в анализируемого в-ва, специфики используемых спектров, области длин волн и др. факторов ход анализа, аппаратура, способы измерения спектров и метро-логич. характеристики результатов сильно различаются. В соответствии с этим спектральный анализ подразделяют на ряд самостоят. методов (см., в частности, , ).

Часто под спектральным анализом понимают только атомно-эмис-сионный спектральный анализ (АЭСА)-метод , основанный на изучении спектров испускания своб. и в газовой фазе в области длин волн 150-800 нм (см. ).

При анализе твердых в-в наиб. часто применяют дуговые (постоянного и переменного тока) и искровые разряды, питаемые от специально сконструир. стабилизир. генераторов (часто с электронным управлением). Созданы также универсальные генераторы, с помощью к-рых получают разряды разных типов с переменными параметрами, влияющими на эффективность процессов возбуждения исследуемых образцов. Твердая электропроводящая непосредственно может служить дуги или искры; не проводящие ток твердые и помещают в углубления угольных той или иной конфигурации. В этом случае осуществляют как полное (распыление) анализируемого в-ва, так и фракционное последнего и возбуждение компонентов в соответствии с их физ. и хим. св-вами, что позволяет повысить чувствительность и точность анализа. Для усиления эффекта фракционирования широко применяют к анализируемому в-ву , способствующих образованию в условиях высокотемпературной [(5-7)·10 3 К] угольной дуги легколетучих соед. ( , и др.) определяемых элементов. Для анализа геол. в виде широко применяют способ просыпки или вдувания в зону разряда угольной дуги.

При анализе , наряду с искровыми разрядами разных типов используют также источники света тлеющего разряда (лампы Грима, разряд в полом ). Разработаны комбинир. автоматизир. источники, в к-рых для или распыления используют лампы тлеющего разряда или электротермич. анализаторы, а для получения спектров, напр.,-высокочастотные плазматроны. При этом удается оптимизировать условия и возбуждения определяемых элементов.

При анализе жидких (р-ров) наилучшие результаты получаются при использовании высокочастотных (ВЧ) и сверхвысокочастотных (СВЧ) плазматронов, работающих в инертной , а также при пламенно-фотометрич. анализе (см. ). Для стабилизации т-ры разряда на оптимальном уровне вводят легкоионизируемых в-в, напр. . Особенно успешно применяют ВЧ разряд с индуктивной связью тороидальной конфигурации (рис. 1). В нем разделены зоны поглощения ВЧ энергии и возбуждения спектров, что позволяет резко повысить эффективность возбуждения и отношение полезного аналит. сигнала к шуму и, т. обр., достичь очень низких пределов обнаружения широкого круга элементов. В зону возбуждения вводят с помощью пневматических или (реже) ультразвуковых распылителей. При анализе с применением ВЧ и СВЧ плазматронов и фотометрии пламени относит. стандартное отклонение составляет 0,01-0,03, что в ряде случаев позволяет применять АЭСА вместо точных, но более трудоемких и длительных хим. методов анализа.

Для смесей необходимы спец. вакуумные установки; спект-ры возбуждают с помощью ВЧ и СВЧ разрядов. В связи с развитием эти методы применяют редко.

Рис. 1. ВЧ плазматрон: 1-факел отходящих ; 2-зона возбуждения спектров; 3-зона поглощения ВЧ энергии; 4-нагреват. индуктор; 5-вход охлаж-дающега ( , ); 6-вход плазмообра-зующего (); 7-вход распыленной (несущий газ-аргон).

При анализе в-в высокой чистоты, когда требуется определять элементы, содержание к-рых меньше 10 -5 -10 %, а также при анализе токсичных и радиоактивных в-в предварительно обрабатывают; напр., частично или полностью отделяют определяемые элементы от основы и переводят их в меньший объем р-ра или вносят в меньшую массу более удобного для анализа в-ва. Для разделения компонентов применяют фракционную отгонку основы (реже-примесей), . АЭСА с использованием перечисленных хим. способов , как правило, наз. химико-спектральным анализом. Дополнит. операции разделения и определяемых элементов заметно повышают трудоемкость и длительность анализа и ухудшают его точность (относит. стандартное отклонение достигает значений 0,2-0,3), но снижает пределы обнаружения в 10-100 раз.

Специфич. областью АЭСА является микроспектральный (локальный) анализ. При этом микрообъем в-ва (глубина кратера от десятков мкм до неск. мкм) испаряют обычно лазерным импульсом, действующим на участок пов-сти образца диаметром неск. десятков мкм. Для возбуждения спектров используют чаще всего импульсный искровой разряд, синхронизованный с лазерным импульсом. Метод применяют при исследовании , в металловедении.

Спектры регистрируют с помощью и спектрометров (квантометров). Имеется много типов этих приборов, различающихся светосилой, дисперсией, разрешающей способностью, рабочей областью спектра. Большая светосила необходима для регистрации слабых излучений, большая дисперсия-для разделения спектральных линий с близкими длинами волн при анализе в-в с многолинейчатыми спектрами, а также для повышения чувствительности анализа. В качестве устройств, диспергирующих свет, используют дифракц. решетки (плоские, вогнутые, нарезные, голографич., профилированные), имеющие от неск. сотен до неск. тысяч штрихов на миллиметр, значительно реже-кварцевые или стеклянные призмы.

(рис. 2), регистрирующие спектры на спец. или (реже) на , предпочтительнее при качественном АЭСА, т. к. позволяют изучать сразу весь спектр образца (в рабочей области прибора); однако используются и для количеств. анализа вследствие сравнит. дешевизны, доступности и простоты обслуживания. Почернения спектральных линий на измеряют с помощью микрофотометров (микроденситометров). Использование при этом ЭВМ или микропроцессоров обеспечивает автоматич. режим измерений, обработку их результатов и выдачу конечных результатов анализа.



Рис.2. Оптическая схема : 1-входная щель; 2-поворотное зеркало; 3-сферич. зеркало; 4-дифракц. решетка; 5-лампочка освещения шкалы; 6-шкала; 7-фотопластинка.



Рис. 3. Схема квантометра (из 40 каналов регистрации показано только три): 1-полихроматор; 2-дифракц. решетки; 3-выходные щели; 4-ФЭУ; 5-входные щели; 6 - с источниками света; 7 - генераторы искрового и дугового разрядов; 8- электронно-регистрирующее устройство; 9 - управляющий вычислит. комплекс.

В спектрометрах осуществляется фотоэлектрич. регистрация аналит. сигналов с помощью фотоэлектронных умножителей (ФЭУ) с автоматич. обработкой данных на ЭВМ. Фотоэлектрич. многоканальные (до 40 каналов и более) полихроматоры в квантометрах (рис. 3) позволяют одновременно регистрировать аналит. линии всех предусмотренных программой определяемых элементов. При использовании сканирующих монохроматоров многоэлементный анализ обеспечивается высокой скоростью сканирования по спектру в соответствии с заданной программой.

Для определения элементов (С, S, P, As и др.), наиб, интенсивные аналит. линии к-рых расположены в УФ области спектра при длинах волн меньше 180-200 нм, применяют вакуумные спектрометры.

При использовании квантометров длительность анализа определяется в значит. мере процедурами подготовки исходного в-ва к анализу. Существенное сокращение времени пробоподготовки достигается автоматизацией наиб. длительных этапов - , приведения р-ров к стандартному составу, растирания и , отбора заданной массы. Во мн. случаях многоэлементный АЭСА выполняется в течение неск. минут, напр.: при анализе р-ров с использованием автомати-зир. фотоэлектрич. спектрометров с ВЧ плазматронами или при анализе в процессе плавки с автоматич. подачей в источник излучения.

В черной и цветной распространены экспрессные полуколичественные (относит. стандартное отклонение 0,3-0,5 и более) методики определения содержания основных или наиб. характерных компонентов , напр. при их маркировке, при сортировке металлолома для его утилизации и т.д. Для этого применяют простые, компактные и дешевые визуальные и фотоэлектрич. приборы (стило-скопы и стилометры) в сочетании с искровыми генераторами. Диапазон определяемых содержаний элементов-от неск. десятых долей процента до десятков процентов.

АЭСА применяют в научных исследованиях; с его помощью открывали хим. элементы, исследуют археологич. объекты, устанавливают состав небесных тел и т.д. АЭСА широко применяется также для контроля технол. процессов (в частности, для установления состава исходного сырья, технол. и готовых продуктов), исследования объектов и др. С помощью АЭСА можно определять практически все элементы периодич. системы в весьма широком диапазоне содержаний - от 10 -7 % (пкг/мл) до десятков процентов (мг/мл). Достоинства АЭСА: возмож ность одновременного определения в малой навеске в-ва большого числа элементов (до 40 и более) с достаточно высокой точностью (см. табл.), универсальность методич. приемов при анализе разл. в-в, экспрессность, сравнительная простота, доступность и дешевизна аппаратуры.
, под ред. Х.И. Зильберштейна, Л., 1987; Кузяков Ю.Я., Семененко К.А., Зо-ров Н.Б., Методы спектрального анализа, М., 1990. Ю.И. Коровин,

Применение спектрального анализа

Методом, дающим ценные и наиболее разнообразные сведения о небесных светилах, является спектральный анализ. Он позволяет установить из анализа света качественный и количественный химический состав светила, его температуру, наличие и напряженность магнитного поля, скорость движения по лучу зрения и многое другое.

Спектральный анализ основан на разложении белого света на составные части. Если пучок света пустить на боковую грань трехгранной призмы, то, преломляясь в стекле по-разному, составляющие белый свет лучи дадут на экране радужную полоску, называемую спектром. В спектре все цвета расположены всегда в определенном порядке.

Как известно, свет распространяется в виде электромагнитных волн. Каждому цвету соответствует определенная длина электромагнитной волны. Длина волны в спектре уменьшается от красных лучей к фиолетовым примерно от 0,7 до 0,4 мкм. За фиолетовыми лучами спектра лежат ультрафиолетовые лучи, невидимые глазом, но действующие на фотопластинку. Еще более короткую длину волны имеют рентгеновские лучи. Рентгеновское излучение небесных светил, важное для понимания их природы, атмосфера Земли задерживает.

За красными лучами спектра находится область инфракрасных лучей. Они невидимы, но и они действуют на специальные фотопластинки. Под спектральными наблюдениями понимают обычно наблюдения в интервале от инфракрасных до ультрафиолетовых лучей.

Для изучения спектров применяют приборы, называемые спектроскопом и спектрографом. В спектроскоп спектр рассматривают, а спектрографом его фотографируют. Фотография спектра называется спектрограммой.

Существуют следующие виды спектров:

Сплошной или непрерывный, спектр в виде радужной полоски дают твердые и жидкие раскаленные тела (уголь, нить электролампы) и достаточно плотные массы газа.

Линейчатый спектр излучения дают разреженные газы и пары при сильном нагревании или под действием электромагнитного разряда. Каждый газ излучает строго определенный набор длин волн и дает характерный для данного химического элемента линейчатый спектр. Сильные изменения состояния газа или условий его свечения, например нагрев или ионизация, вызывают определенные изменения в спектре данного газа.

Составлены таблицы с перечнем линий каждого газа и с указанием яркости каждой линии. Например, в спектре натрия особенно ярки две желтые линии.

Установлено, что спектр атома или молекулы связан с их строением и отражает определенные изменения, происходящие в них в процессе свечения.

Линейчатый спектр поглощения дают газы и пары, когда за ними находится ярки и более горячий источник дающий непрерывный спектр. Спектр поглощения представляет собой непрерывный спектр, перерезанный темными линиями, которые находятся в тех самых местах, где должны быть расположены яркие линии, присущие данному газу.

Излучение спектров позволяет производить анализ химического состава газов, излучающих свет или поглощающих его, независимо от того, находятся ли они в лаборатории или на небесном светиле. Количество атомов или молекул, лежащих на нашем луче зрения, излучающих или поглощающих, определяется по интенсивности линий. Чем больше атомов, тем ярче линия или тем она темнее в спектре поглощения. Солнце и звезды окружены газовыми атмосферными линиями поглощения, возникающими при прохождении света через атмосферу звезд. Поэтому спектры Солнца и звезд - это спектры поглощения.

Нужно помнить, что спектральный анализ позволяет определять химический состав только самосветящихся или поглощающих излучение газов. Химический состав твердого тела при помощи спектрального анализа определить нельзя.

Впервые спектральный анализ попытались сделать Кирхгоф и Бунзен еще в 1859 году. Два создали спектроскоп, похожий на трубу неправильной формы. С одной стороны имелось отверстие (коллиматор), в которое попадали исследуемые лучи света. Внутри трубы располагалась призма, она отклоняла лучи и направляла их в сторону другого отверстия трубы. На выходе физики могли видеть свет, разложенный на спектр.

Ученые решили провести эксперимент. Затемнив комнату и завесив окно плотными шторами, они зажгли свечу возле щели коллиматора, а потом брали кусочки разных веществ и вводили их в пламя свечи, наблюдая, изменится ли спектр. И оказалось, что горячие пары каждого вещества давали различные спектры! Так как призма строго разделяла лучи и не давала им наслаиваться друг на друга, то по получившемуся спектру можно было точно идентифицировать вещество.

В дальнейшем Кирхгоф проанализировал спектр Солнца, обнаружив, что в его хромосфере присутствуют определенные химические элементы. Это дало начало астрофизике.

Особенности спектрального анализа

Для проведения спектрального анализа необходимо совсем малое количество вещества. Этот метод крайне чувствителен и очень быстр, что позволяет не только пользоваться им для самых разных нужд, но и делает его порой просто незаменимым. Точно известно, что каждый таблицы Менделеева излучает особенный спектр, только ему одному, поэтому при правильно проведенном спектральном анализе ошибиться практически невозможно.

Типы спектрального анализа

Спектральный анализ бывает атомный и молекулярный. Посредством атомного анализа можно выявить, соответственно, атомный состав вещества, а посредством молекулярного – молекулярный.

Способов измерить спектр существует два: эмиссионный и абсорбционный. Эмиссионный спектральный анализ проводится посредством изучения того, какой спектр излучают выбранные атомы или молекулы. Для этого им нужно придать энергию, то есть, возбудить их. Абсорбционный анализ, напротив, проводится по спектру поглощения электромагнитного изучения, направленного на объекты.

Посредством спектрального анализа можно измерить множество различных характеристик веществ, частиц или даже больших физических тел (например, космических объектов). Именно поэтому спектральный анализ дополнительно делится на различные методы. Чтобы получить требуемый для конкретной задачи результат, нужно правильно выбрать оборудование, длину волн для исследования спектра, а также саму область спектра.

Не так давно товарищ Makeman описывал , как с помощью спектрального анализа можно разложить некоторый звуковой сигнал на слагающие его ноты. Давайте немного абстрагируемся от звука и положим, что у нас есть некоторый оцифрованный сигнал, спектральный состав которого мы хотим определить, и достаточно точно.

Под катом краткий обзор метода выделения гармоник из произвольного сигнала с помощью цифрового гетеродинирования, и немного особой, Фурье-магии.

Итак, что имеем.
Файл с отсчетами оцифрованного сигнала. Известно, что сигнал представляет собой сумму синусоид со своими частотами, амплитудами и начальными фазами, и, возможно, белый шум.

Что будем делать.
Использовать спектральный анализ для того, чтобы определить:

  • количество гармоник в составе сигнала, а для каждой: амплитуду, частоту (далее в контексте числа длин волн на длину сигнала), начальную фазу;
  • наличие/отсутствие белого шума, а при наличии, его СКО (среднеквадратическое отклонение);
  • наличие/отсутствие постоянной составляющей сигнала;
  • всё это оформить в красивенький PDF отчёт с блэкджеком и иллюстрациями.

Будем решать данную задачу на Java.

Матчасть

Как я уже говорил, структура сигнала заведомо известна: это сумма синусоид и какая-то шумовая составляющая. Так сложилось, что для анализа периодических сигналов в инженерной практике широко используют мощный математический аппарат, именуемый в общем «Фурье-анализ» . Давайте кратенько разберём, что же это за зверь такой.
Немного особой, Фурье-магии
Не так давно, в 19 веке, французский математик Жан Батист Жозеф Фурье показал, что любую функцию, удовлетворяющую некоторым условиям (непрерывность во времени, периодичность, удовлетворение условиям Дирихле) можно разложить в ряд, который в дальнейшем получил его имя - ряд Фурье .

В инженерной практике разложение периодических функций в ряд Фурье широко используется, например, в задачах теории цепей: несинусоидальное входное воздействие раскладывают на сумму синусоидальных и рассчитывают необходимые параметры цепей, например, по методу наложения.

Существует несколько возможных вариантов записи коэффициентов ряда Фурье, нам же лишь необходимо знать суть.
Разложение в ряд Фурье позволяет разложить непрерывную функцию в сумму других непрерывных функций. И в общем случае, ряд будет иметь бесконечное количество членов.

Дальнейшим усовершенствованием подхода Фурье является интегральное преобразование его же имени. Преобразование Фурье .
В отличие от ряда Фурье, преобразование Фурье раскладывает функцию не по дискретным частотам (набор частот ряда Фурье, по которым происходит разложение, вообще говоря, дискретный), а по непрерывным.
Давайте взглянем на то, как соотносятся коэффициенты ряда Фурье и результат преобразования Фурье, именуемый, собственно, спектром .
Небольшое отступление: спектр преобразования Фурье - в общем случае, функция комплексная, описывающая комплексные амплитуды соответствующих гармоник. Т.е., значения спектра - это комплексные числа, чьи модули являются амплитудами соответствующих частот, а аргументы - соответствующими начальными фазами. На практике, рассматривают отдельно амплитудный спектр и фазовый спектр .


Рис. 1. Соответствие ряда Фурье и преобразования Фурье на примере амплитудного спектра.

Легко видно, что коэффициенты ряда Фурье являются ни чем иным, как значениями преобразования Фурье в дискретные моменты времени.

Однако, преобразование Фурье сопоставляет непрерывной во времени, бесконечной функции другую, непрерывную по частоте, бесконечную функцию - спектр. Как быть, если у нас нет бесконечной во времени функции, а есть лишь какая-то записанная её дискретная во времени часть? Ответ на этот вопрос даёт дальнейшей развитие преобразования Фурье - дискретное преобразование Фурье (ДПФ) .

Дискретное преобразование Фурье призвано решить проблему необходимости непрерывности и бесконечности во времени сигнала. По сути, мы полагаем, что вырезали какую-то часть бесконечного сигнала, а всю остальную временную область считаем этот сигнал нулевым.

Математически это означает, что, имея исследуемую бесконечную во времени функцию f(t), мы умножаем ее на некоторую оконную функцию w(t), которая обращается в ноль везде, кроме интересующего нас интервала времени.

Если «выходом» классического преобразования Фурье является спектр – функция, то «выходом» дискретного преобразования Фурье является дискретный спектр. И на вход тоже подаются отсчёты дискретного сигнала.

Остальные свойства преобразования Фурье не изменяются: о них можно прочитать в соответствующей литературе.

Нам же нужно лишь знать о Фурье-образе синусоидального сигнала, который мы и будем стараться отыскать в нашем спектре. В общем случае, это пара дельта-функций, симметричная относительно нулевой частоты в частотной области.


Рис. 2. Амплитудный спектр синусоидального сигнала.

Я уже упомянул, что, вообще говоря, мы рассматриваем не исходную функцию, а некоторое её произведение с оконной функцией. Тогда, если спектр исходной функции - F(w), а оконной W(w), то спектром произведения будет такая неприятная операция, как свёртка этих двух спектров (F*W)(w) (Теорема о свёртке).

На практике это означает, что вместо дельта-функции, в спектре мы увидим что-то вроде этого:


Рис. 3. Эффект растекания спектра.

Этот эффект именуют также растеканием спектра (англ. spectral leekage). А шумы, появляющиеся вследствие растекания спектра, соответственно, боковыми лепестками (англ. sidelobes).
Для борьбы с боковыми лепестками применяют другие, непрямоугольные оконные функции. Основной характеристикой «эффективности» оконной функции является уровень боковых лепестков (дБ). Сводная таблица уровней боковых лепестков для некоторых часто используемых оконных функций приведена ниже.

Основной проблемой в нашей задаче является то, что боковые лепестки могут маскировать другие гармоники, лежащие рядом.


Рис. 4. Отдельные спектры гармоник.

Видно, что при сложении приведённых спектров, более слабые гармоники как бы растворятся в более сильной.


Рис. 5. Чётко видна лишь одна гармоника. Нехорошо.

Другой подход к борьбе с растеканием спектра состоит в вычитании из сигнала гармоник, создающих это самое растекание.
То есть, установив амплитуду, частоту и начальную фазу гармоники, можно вычесть её из сигнала, при этом мы уберём и «дельта-функцию», соответствующую ей, а вместе с ней и боковые лепестки, порождаемые ей. Другой вопрос состоит в том, как же точно узнать параметры нужной гармоники. Недостаточно просто взять нужные данные из комплексной амплитуды. Комплексные амплитуды спектра сформированы по целым частотам, однако, ничто не мешает гармонике иметь и дробную частоту. В этом случае, комплексная амплитуда как бы расплывается между двумя соседними частотами, и точную её частоту, как и другие параметры, установить нельзя.

Для установления точной частоты и комплексной амплитуды нужной гармоники, мы воспользуемся приёмом, широко применяемым во многих отраслях инженерной практики – гетеродинирование .

Посмотрим, что получится, если умножить входной сигнал на комплексную гармонику Exp(I*w*t). Спектр сигнала сдвинется на величину w вправо.
Этим свойством мы и воспользуемся, сдвигая спектр нашего сигнала вправо, до тех пор, пока гармоника не станет ещё больше напоминать дельта-функцию (то есть, пока некоторое локальное отношение сигнал/шум не достигнет максимума). Тогда мы и сможем вычислить точную частоту нужной гармоники, как w 0 – w гет, и вычесть её из исходного сигнала для подавления эффекта растекания спектра.
Иллюстрация изменения спектра в зависимости от частоты гетеродина показана ниже.


Рис. 6. Вид амплитудного спектра в зависимости от частоты гетеродина.

Будем повторять описанные процедуры до тех пор, пока не вырежем все присутствующие гармоники, и спектр не будет напоминать нам спектр белого шума.

Затем, надо оценить СКО белого шума. Хитростей здесь нет: можно просто воспользоваться формулой для вычисления СКО:

Автоматизируй это

Пришло время для автоматизации выделения гармоник. Повторим ещё разочек алгоритм:

1. Ищем глобальный пик амплитудного спектра, выше некоторого порога k.
1.1 Если не нашли, заканчиваем
2. Варируя частоту гетеродина, ищем такое значение частоты, при которой будет достигаться максимум некоторого локального отношения сигнал/шум в некоторой окрестности пика
3. При необходимости, округляем значения амплитуды и фазы.
4. Вычитаем из сигнала гармонику с найденной частотой, амплитудой и фазой за вычетом частоты гетеродина.
5. Переходим к пункту 1.

Алгоритм не сложный, и единственный возникающий вопрос - откуда же брать значения порога, выше которого будем искать гармоники?
Для ответа на этот вопрос, следует оценить уровень шума еще до вырезания гармоник.

Построим функцию распределения (привет, мат. cтатистика), где по оси абсцисс будет амплитуда гармоник, а по оси ординат - количество гармоник, не превышающих по амплитуде это самое значение аргумента. Пример такой построенной функции:


Рис. 7. Функция распределения гармоник.

Теперь построим еще и функцию - плотность распределения. Т.е., значения конечных разностей от функции распределения.


Рис. 8. Плотность функции распределения гармоник.

Абсцисса максимума плотности распределения и является амплитудой гармоники, встречающейся в спектре наибольшее число раз. Отойдем от пика вправо на некоторое расстояние, и будем считать абсциссу этой точки оценкой уровня шума в нашем спектре. Вот теперь можно и автоматизировать.

Посмотреть на кусок кода, детектирующий гармоники в составе сигнала

public ArrayList detectHarmonics() { SignalCutter cutter = new SignalCutter(source, new Signal(source)); SynthesizableComplexExponent heterodinParameter = new SynthesizableComplexExponent(); heterodinParameter.setProperty("frequency", 0.0); Signal heterodin = new Signal(source.getLength()); Signal heterodinedSignal = new Signal(cutter.getCurrentSignal()); Spectrum spectrum = new Spectrum(heterodinedSignal); int harmonic; while ((harmonic = spectrum.detectStrongPeak(min)) != -1) { if (cutter.getCuttersCount() > 10) throw new RuntimeException("Unable to analyze signal! Try another parameters."); double heterodinSelected = 0.0; double signalToNoise = spectrum.getRealAmplitude(harmonic) / spectrum.getAverageAmplitudeIn(harmonic, windowSize); for (double heterodinFrequency = -0.5; heterodinFrequency < (0.5 + heterodinAccuracy); heterodinFrequency += heterodinAccuracy) { heterodinParameter.setProperty("frequency", heterodinFrequency); heterodinParameter.synthesizeIn(heterodin); heterodinedSignal.set(cutter.getCurrentSignal()).multiply(heterodin); spectrum.recalc(); double newSignalToNoise = spectrum.getRealAmplitude(harmonic) / spectrum.getAverageAmplitudeIn(harmonic, windowSize); if (newSignalToNoise > signalToNoise) { signalToNoise = newSignalToNoise; heterodinSelected = heterodinFrequency; } } SynthesizableCosine parameter = new SynthesizableCosine(); heterodinParameter.setProperty("frequency", heterodinSelected); heterodinParameter.synthesizeIn(heterodin); heterodinedSignal.set(cutter.getCurrentSignal()).multiply(heterodin); spectrum.recalc(); parameter.setProperty("amplitude", MathHelper.adaptiveRound(spectrum.getRealAmplitude(harmonic))); parameter.setProperty("frequency", harmonic - heterodinSelected); parameter.setProperty("phase", MathHelper.round(spectrum.getPhase(harmonic), 1)); cutter.addSignal(parameter); cutter.cutNext(); heterodinedSignal.set(cutter.getCurrentSignal()); spectrum.recalc(); } return cutter.getSignalsParameters(); }

Практическая часть

Я не претендую на звание эксперта Java, и представленное решение может быть сомнительным как по части производительности и потреблению памяти, так и в целом философии Java и философии ООП, как бы я ни старался сделать его лучше. Написано было за пару вечеров, как proof of concept. Желающие могут ознакомиться с исходным кодом на

Спектральный анализ , метод качественного и количественного определения состава веществ, основанный на исследовании их спектров испускания, поглощения, отражения и люминесценции. Различают атомный и молекулярный спектральный анализ , задачи которых состоят в определении соответственно элементного и молекулярного состава вещества. Эмиссионный спектральный анализ проводят по спектрам испускания атомов, ионов или молекул, возбужденных различными способами, абсорбционный спектральный анализ - по спектрам поглощения электромагнитного излучения анализируемыми объектами (см. Абсорбционная спектроскопия ). В зависимости от цели исследования, свойств анализируемого вещества, специфики используемых спектров, области длин волн и других факторов ход анализа, аппаратура, способы измерения спектров и метрологические характеристики результатов сильно различаются. В соответствии с этим спектральный анализ подразделяют на ряд самостоятельных методов (см., в частности, спектроскопия отражения , ультрафиолетовая спектроскопия, ).

Часто под спектральным анализом понимают только атомно-эмиссионный спектральный анализ (АЭСА) - метод элементного анализа, основанный на изучении спектров испускания свободных атомов и ионов в газовой фазе в области длин волн 150-800 нм (см. ).

Пробу исследуемого вещества вводят в источник излучения, где происходят ее испарение, диссоциация молекул и возбуждение образовавшихся атомов (ионов). Последние испускают характеристическое излучение, которое поступает в регистрирующее устройство спектрального прибора.

При качественном спектральном анализе спектры проб сравнивают со спектрами известных элементов, приведенных в соответствующих атласах и таблицах спектральных линий, и таким образом устанавливают элементный состав анализируемого вещества. При количественном анализе определяют количество (концентрацию) искомого элемента в анализируемом веществе по зависимости величины аналитического сигнала (плотность почернения или оптическая плотность аналитической линии на фотопластинке; световой поток на фотоэлектрический приемник) искомого элемента от его содержания в пробе. Эта зависимость сложным образом определяется многими трудно контролируемыми факторами (валовый состав проб, их структура, дисперсность, параметры источника возбуждения спектров, нестабильность регистрирующих устройств, свойства фотопластинок и т.д.). Поэтому, как правило, для ее установления используют набор образцов для градуировки, которые по валовому составу и структуре возможно более близки к анализируемому веществу и содержат известные количества определяемых элементов. Такими образцами могут служить специально приготовленные металлич. сплавы, смеси веществ, растворы, в т.ч. и , выпускаемые промышленностью. Для устранения влияния на результаты анализа неизбежного различия свойств анализируемого и стандартных образцов используют разные приемы; например, сравнивают спектральные линии определяемого элемента и так называемого элемента сравнения, близкого по химическим и физическим свойствам к определяемому. При анализе однотипных материалов можно применять одни и те же градуировочные зависимости, которые периодически корректируют по поверочным образцам.

Чувствительность и точность спектрального анализа зависят главным образом от физических характеристик источников излучения (возбуждения спектров) - температуры, концентрации электронов, времени пребывания атомов в зоне возбуждения спектров, стабильности режима источника и т.д. Для решения конкретной аналитической задачи необходимо выбрать подходящий источник излучения, добиться оптимизации его характеристик с помощью различных приемов - использование инертной атмосферы, наложение магнитного поля, введение специальных веществ, стабилизирующих температуру разряда, степень ионизации атомов, диффузионные процессы на оптимальном уровне и т.д. Ввиду многообразия взаимовлияющих факторов при этом часто используют методы математического планирования экспериментов.

При анализе твердых веществ наиболее часто применяют дуговые (постоянного и переменного тока) и искровые разряды, питаемые от специально сконструированных стабилизирующих генераторов (часто с электронным управлением). Созданы также универсальные генераторы, с помощью которых получают разряды разных типов с переменными параметрами, влияющими на эффективность процессов возбуждения исследуемых образцов. Твердая электропроводящая проба непосредственно может служить электродом дуги или искры; не проводящие ток твердые пробы и порошки помещают в углубления угольных электродов той или иной конфигурации. В этом случае осуществляют как полное испарение (распыление) анализируемого вещества, так и фракционное испарение последнего и возбуждение компонентов пробы в соответствии с их физическими и химическими свойствами, что позволяет повысить чувствительность и точность анализа. Для усиления эффекта фракционирования испарения широко применяют добавки к анализируемому веществу реагентов, способствующих образованию в условиях высокотемпературной [(5-7)·10 3 К] угольной дуги легколетучих соединений (фторидов, хлоридов, сульфидов и др.) определяемых элементов. Для анализа геологических проб в виде порошков широко применяют способ просыпки или вдувания проб в зону разряда угольной дуги.

При анализе металлургических проб наряду с искровыми разрядами разных типов используют также источники света тлеющего разряда (лампы Грима, разряд в полом катоде). Разработаны комбинированные автоматизированные источники, в которых для испарения или распыления используют лампы тлеющего разряда или электротермические анализаторы, а для получения спектров, например, - высокочастотные плазматроны. При этом удается оптимизировать условия испарения и возбуждения определяемых элементов.

При анализе жидких проб (растворов) наилучшие результаты получаются при использовании высокочастотных (ВЧ) и сверхвысокочастотных (СВЧ) плазматронов, работающих в инертной атмосфере, а также при пламенно-фотометрическом анализе (см. ). Для стабилизации температуры плазмы разряда на оптимальном уровне вводят добавки легкоионизируемых веществ, например щелочных металлов. Особенно успешно применяют ВЧ разряд с индуктивной связью тороидальной конфигурации (рис. 1). В нем разделены зоны поглощения ВЧ энергии и возбуждения спектров, что позволяет резко повысить эффективность возбуждения и отношение полезного аналитического сигнала к шуму и, таким образом, достичь очень низких пределов обнаружения широкого круга элементов. В зону возбуждения пробы вводят с помощью пневматических или (реже) ультразвуковых распылителей. При анализе с применением ВЧ и СВЧ плазматронов и фотометрии пламени относительное стандартное отклонение составляет 0,01-0,03, что в ряде случаев позволяет применять спектральный анализ вместо точных, но более трудоемких и длительных химических методов анализа.

Для анализа газовых смесей необходимы специальные вакуумные установки; спектры возбуждают с помощью ВЧ и СВЧ разрядов. В связи с развитием газовой хроматографии эти методы применяют редко.

Рис. 1. ВЧ-плазматрон: 1-факел отходящих газов; 2-зона возбуждения спектров; 3-зона поглощения ВЧ энергии; 4-нагревательный индуктор; 5-вход охлаждающего газа (азот, аргон); 6-вход плазмообразующего газа (аргон); 7-вход распыленной пробы (несущий газ - аргон).

При анализе веществ высокой чистоты, когда требуется определять элементы, содержание которых меньше 10 -5 %, а также при анализе токсичных и радиоактивных веществ пробы предварительно обрабатывают; например, частично или полностью отделяют определяемые элементы от основы и переводят их в меньший объем раствора или вносят в меньшую массу более удобного для анализа вещества. Для разделения компонентов пробы применяют фракционную отгонку основы (реже-примесей), адсорбцию, осаждение, экстракцию, хроматографию, ионный обмен. Спектральный анализ с использованием перечисленных химических способов концентрирования пробы, как правило, называют химико-спектральным анализом. Дополнительные операции разделения и концентрирования определяемых элементов заметно повышают трудоемкость и длительность анализа и ухудшают его точность (относительное стандартное отклонение достигает значений 0,2-0,3), но снижает пределы обнаружения в 10-100 раз.

Специфической областью спектрального анализа является микроспектральный (локальный) анализ. При этом микрообъем вещества (глубина кратера от десятков мкм до нескольких мкм) испаряют обычно лазерным импульсом, действующим на участок поверхности образца диаметром несколько десятков мкм. Для возбуждения спектров используют чаще всего импульсный искровой разряд, синхронизованный с лазерным импульсом. Метод применяют при исследовании минералов, в металловедении.

Спектры регистрируют с помощью спектрографов и спектрометров (квантометров). Имеется много типов этих приборов, различающихся светосилой, дисперсией, разрешающей способностью, рабочей областью спектра. Большая светосила необходима для регистрации слабых излучений, большая дисперсия - для разделения спектральных линий с близкими длинами волн при анализе веществ с многолинейчатыми спектрами, а также для повышения чувствительности анализа. В качестве устройств, диспергирующих свет, используют дифракционные решетки (плоские, вогнутые, нарезные, голографические, профилированные), имеющие от нескольких сотен до нескольких тысяч штрихов на миллиметр, значительно реже - кварцевые или стеклянные призмы.

Спектрографы (рис. 2), регистрирующие спектры на специальных фотопластинках или (реже) на фотопленках, предпочтительнее при качественном спектральном анализе, т.к. позволяют изучать сразу весь спектр образца (в рабочей области прибора); однако используются и для количественного анализа вследствие сравнительной дешевизны, доступности и простоты обслуживания. Почернения спектральных линий на фотопластинках измеряют с помощью микрофотометров (микроденситометров). Использование при этом ЭВМ или микропроцессоров обеспечивает автоматический режим измерений, обработку их результатов и выдачу конечных результатов анализа.


Рис.2. Оптическая схема спектрографа: 1-входная щель; 2-поворотное зеркало; 3-сферическое зеркало; 4-дифракционная решетка; 5-лампочка освещения шкалы; 6-шкала; 7-фотопластинка.


Рис. 3. Схема квантометра (из 40 каналов регистрации показано только три): 1-полихроматор; 2-дифракционные решетки; 3-выходные щели; 4-фото-электронный умножитель; 5-входные щели; 6-штативы с источниками света; 7-генераторы искрового и дугового разрядов; 8-электронно-регистрирующее устройство; 9-управляющий вычислительный комплекс.

В спектрометрах осуществляется фотоэлектрическая регистрация аналитических сигналов с помощью фотоэлектронных умножителей (ФЭУ) с автоматической обработкой данных на ЭВМ. Фотоэлектрические многоканальные (до 40 каналов и более) полихроматоры в квантометрах (рис. 3) позволяют одновременно регистрировать аналитические линии всех предусмотренных программой определяемых элементов. При использовании сканирующих монохроматоров многоэлементный анализ обеспечивается высокой скоростью сканирования по спектру в соответствии с заданной программой.

Для определения элементов (С, S, P, As и др.), наиболее интенсивные аналитические линии которых расположены в УФ области спектра при длинах волн меньше 180-200 нм, применяют вакуумные спектрометры.

При использовании квантометров длительность анализа определяется в значительной мере процедурами подготовки исходного вещества к анализу. Существенное сокращение времени пробоподготовки достигается автоматизацией наиболее длительных этапов - растворения, приведения растворов к стандартному составу, окисления металлов, растирания и смешения порошков, отбора проб заданной массы. Во многих случаях многоэлементный спектральный анализ выполняется в течение нескольких минут, например: при анализе растворов с использованием автоматизированных фотоэлектрических спектрометров с ВЧ плазматронами или при анализе металлов в процессе плавки с автоматической подачей проб в источник излучения.