Где используют германий. Генеральный директор ООО «Гермацентр»

Роликовый проектор массажной кровати, пятишариковый проектор, а так же керамика дополнительного мата выполнены из турмания.

Теперь поговорим подробнее о природных материалах, на основе которых образован Турманий.

Это минерал, вещество, образованное в недрах земли силами неживой природы. Известно несколько тысяч минералов.
но лишь около 60 из них обладают качествами драгоценных камней. Именно таким является турмалин.
Турмалины - камни несравнимого цветового многообразия. Их название происходит от сингалезского слова «tura mali», что в переводе означает «камень со смешанными цветами».

Из всех существующих на земле минералов только турмалин несет в себе постоянный электрический заряд, за что его и называют кристаллическим магнитом. В бесконечном разнообразии камней турмалин считается абсолютным чемпионом по количеству цветов и оттенков. Природный блеск, прозрачность и твердость этого драгоценного многоцветного минерала снискали ему заслуженную славу ювелирного камня.
В состав турмалина входят: калий, кальций, магний, марганец, железо, кремний, йод, фтор и другие составляющие. Всего 26 микроэлементов из таблицы Менделеева.

При нагревании турмалин создает низкочастотное магнитное поле, излучает и анионы, которые действуют следующим образом:
усиливают клеточный метаболизм, улучшают обмен веществ;
улучшают местный кровоток;
восстанавливают работу лимфатической системы;
восстанавливают эндокринную и гормональную системы;
улучшают питание в органах и тканях;
укрепляют иммунитет;
содействуют уравновешенности вегетативной нервной системы (это система возбуждения и торможения психики);
обеспечивают организм живительной энергией;
улучшают качество крови, стимулируют кровообращение и разжижение крови, так что кровь поступает в тончайшие капилляры, придавая организму жизненных сил.

Стоит, как золото - хрупкий, как стекло.
Германий - это микроэлемент, который принимает участие во многих процессах человеческого организма. Недостаток этого элемента сказывается на работе желудочно-кишечного тракта, обмене жиров и на других процессах, в частности, на развитии атеросклероза.
Впервые о пользе германия для здоровья человека заговорили в Японии. В 1967 году доктор Кацухихо Асаи обнаружил, что германий обладает широким спектром биологического действия.

Полезные свойства германия

Транспортировка кислорода к тканям организма .
Германий, попадая в кровь, ведет себя аналогично гемоглобину. Кислород, который он доставляет в ткани организма, гарантирует нормальное функционирование всех жизненных систем и предупреждает развитие кислородной недостаточности в органах, наиболее чувствительных к гипоксии.

Стимуляция иммунитета .
Германий в виде органических соединений
способствует продуцированию гамма-интер-феронов, которые подавляют процессы размножения быстроделящихся микробных клеток, активируют макрофаги и специфические клетки иммунитета.

Противоопухолевое воздействие .
Германий задерживает развитие злокачественных новообразований и препятствует появлению метастаз, обладает защитными свойствами от радиоактивного облучения. Механизм действия связывают с взаимодействием атома германия с отрицательно заряженными частицами опухолевых образований. Германий освобождает опухолевую клетку от «лишних» электронов и повышает ее электрический заряд, что приводит к гибели опухоли.

Биоцидное действие (противогрибковое, противовирусное, антибактериальное).
Органические соединения германия стимулируют продуцирование интерферона - защитного белка, вырабатываемого в ответ на внедрение чужеродных микроорганизмов.

Обезболивающий эффект .
Этот микроэлемент присутствует в таких природных продуктах питания как чеснок, женьшень, хлорелла и разнообразные грибы. Он вызвал горячий интерес у медицинского сообщества в 1960-е годы, когда доктор Кацухихо Асаи обнаружил германий в живых организмах и показал, что он увеличивает снабжение тканей кислородом, а также помогает лечить:

Рак;
артрит, остеопороз;
кандидоз (разрастание дрожжевого микроорганизма Candida albicans);
СПИД и другие вирусные инфекции.

Кроме того, германий способен ускорять заживление ран и уменьшать боль.

В переводе с кельтского «белый камень» («эль» - порода, «ван» - камень).
- это гранит-порфир, с вкрапленниками кварца и ортоклаза в кварц-полевошпатовой основной массе с турмалином, слюдой, пинитом.
Корейцы считают, что этот минерал обладает целебными свойствами. Эльван полезен для здоровья кожи: его добавляют в состав очищающих кремов. Помогает при аллергии.

Этот минерал смягчает воду и очищает ее от примесей, поглощая вредные вещества и тяжелые элементы.
Эльван используется в интерьере. Из него изготавливают полы, стены, кровати, маты, скамьи для саун, печи, газовые горелки.
Широко применяется в изготовлении посуды. В некоторых ресторанах эльван используется в грилях, чтобы он пропитал своими целебными испарениями барбекю. Также весьма популярны в Корее яйца, сваренные с добавлением эльвана. Яйца приобретают вкус и запах копчености, а по цвету напоминают наши пасхальные яйца.

Камень эльван содержит много микроэлементов, является источником длинноволновых инфракрасных лучей.

Это горные породы, образовавшиеся в результате извержения вулкана. Благодаря им турманиевая керамика приобретает свою твердость.

Вулканические породы обладают массой ценных и полезных для человека свойств.

1. Сохраняют в себе первозданное магнитное поле Земли, сильно уменьшающееся на поверхности.
2. Обогащены микроэлементами. Но основным свойством вулканических пород является то, что они на протяжении долгого времени сохраняют органическое тепло. Это дает возможность получить максимальный эффект от прогревания.

Вулканические породы также имеют свойство выводить шлаки из организма и оказывают на него очищающее воздействие.
Это чистая и не загрязненная цивилизацией порода, которая активно используется в лечебных целях.

Германий |32 | Ge| — Цена

Германий (Ge) — рассеянный редкий металл , атомный номер — 32, атомная масса-72,6, плотность:
твёрдый при 25ОС — 5.323 г/см3;
жидкий при 100ОС — 5.557г/см3;
Температура плавления — 958,5ОС, коэффициент линейного расширения α.106,при температуре, КО:
273-573— 6.1
573-923— 6.6
Твёрдость по минералогической шкале-6-6,5.
Удельное электросопротивление монокристаллического высокочистого германия (при 298ОК), Ом.м-0,55-0,6..
Германий был открыт в 1885 году и в начале получен в виде сульфида. Этот металл был предсказан Д.И.Менделеевым в 1871 году, с точным указанием его свойств и назван им экосилицием. Германий, назван учёными исследователями, в честь страны в которой он был открыт.
Германий –серебристо-белый металл , по внешнему виду похож на олово, хрупкий при нормальных условиях. Поддаётся пластической деформации при температуре свыше 550ОС. Германий обладает полупроводниковыми свойствами . Удельное электросопротивление германия зависит от чистоты— примеси его резко снижают. Германий оптически прозрачен в инфракрасной области спектра, обладает высоким коэффициентом преломления, что позволяет применять его для изготовления различных оптических систем.
Германий стоек на воздухе при температурах до 700ОС, при более высоких температурах-окисляется, а выше температуры плавления-сгорает, образуя диоксид германия. Водород с германием не взаимодействует, а при температуре плавления, расплав германия поглощает кислород. Германий не реагирует с азотом. С хлором, образует при комнатной температуре, хлорид германия.
Германий не взаимодействует с углеродом, устойчив в воде, медленно взаимодействует с кислотами, легко растворяется в царской водке. Растворы щелочей слабо действуют на германий. Германий сплавляется со всеми металлами.
Несмотря на то, что германия в природе больше чем свинца, производство его ограничено из-за его сильной распылённости в земной коре, а стоимость германия достаточно высока. Германий образует минералы аргиродит и германит, однако они мало используются для его получения. Германий извлекается попутно при переработке сульфидных полиметаллических руд, некоторых железных руд, в которых содержится до 0,001% германия, из подсмольных вод при коксовании угля.

ПОЛУЧЕНИЕ.

Получение германия из различного сырья осуществляется сложными способами, при которых конечным продуктом является четырёххлористый германий или диоксид германия, из которого получают металлический германий. Его очищают и,далее, методом зонной плавки выращивают германиевые монокристаллы с заданными электрофизическими свойствами. В промышленности получают монокристаллический и поликристаллический германий.
Полупродукты полученные переработкой минералов содержат незначительное количество германия и для их обогащения применяются различные методы пиро- и гидрометаллургической обработки. Пирометаллургические способы основаны на возгонке летучих соединений содержащих германий, гидрометаллургические способы-на избирательном растворении соединений германия.
Для получения концентратов германия, продукты пирометаллургического обогащения(возгоны, огарки) обрабатывают кислотами и переводят германий в раствор, из которого получают концентрат различными методами (осаждением, соосаждением и сорбцией, электрохимическими методами). В концентрате содержится от 2 до 20% германия, из которого выделяют чистый диоксид германия. Диоксид германия восстанавливают водородом, однако, полученный металл недостаточно чист для полупроводниковых приборов и поэтому он подвергается очистке кристаллографическими методами (направленная кристаллизация-зонная очистка-получение монокристалла). Направленная кристаллизация совмещается с восстановлением диоксида германия водородом. Расплавленный металл постепенно выдвигают из горячей зоны в холодильник. Металл кристаллизуется постепенно по длине слитка. В конечной части слитка собираются примеси и её удаляют. Оставшийся слиток разрезают на куски, которые загружают в зонную очистку.
В результате зонной очистки получают слиток, в котором чистота металла различна по его длине. Слиток также разрезают и отдельные его части выводятся из процесса. Таким образом, при получении монокристаллического германия из зоноочищенного, прямой выход составляет не более 25%.
Для получения полупроводниковых приборов монокристалл германия разрезают на пластины, из которых выкраивают миниатюрные детали, которые затем шлифуют и полируют. Эти детали и являются конечным продуктом для создания полупроводниковых приборов.

ПРИМЕНЕНИЕ.

  • Благодаря своим полупроводниковым свойствам германий широко используется в радиоэлектронике для изготовления кристаллических выпрямителей (диодов) и кристаллических усилителей (триодов), для вычислительной техники, телемеханики, радаров и т.п.

  • Триоды из германия используются для усиления, генерирования и преобразования электрических колебаний.

  • В радиотехнике используются германиевые плёночные сопротивления.

  • Германий применяется в фотодиодах и фотосопротивлениях, для изготовления термисторов.

  • В ядерной технике используются германиевые детекторы гамма-излучений, а в приборах инфракрасной техники — германиевые линзы, легированные золотом.

  • Германий добавляют к сплавам для высокочувствительных термопар.

  • Германий используется в качестве катализатора при производстве искусственных волокон.

  • В медицине изучают некоторые органические соединения германия, предполагая, что они могут быть биологически активными и способствовать задержанию развития злокачественных опухолей, понижению артериального давления, обезболиванию.

Германий был открыт учеными в конце 19-ого века, отделившими его в процессе очистки меди и цинка. В чистом виде германий содержит минерал германит, встречающийся при добывании ископаемого угля, по цвету он может быть темно-серым или светлым с серебряным блеском. Германий имеет хрупкую структуру и сильным ударом его можно разбить как стекло, но при этом он не меняет своих свойств под влиянием воды, воздуха и большинства щелочей и кислот. До середины 20-ого века германий использовали в промышленных целях — на заводах, изготавливая оптические линзы, полупроводники и ионные детекторы.

Обнаружение органического германия в организме животных и людей дало повод для более детального изучения этого микроэлемента учеными – медиками. В ходе многочисленных проверок было доказано, что микроэлемент германий оказывает благотворное влияние на организм человека, действуя как переносчик кислорода на ровне с гемоглобином и не накапливается в костях тканях так как свинец.

Роль германия в организме человека

Микроэлемент человека выполняет несколько ролей: защитника иммунитета (участвует в борьбе с микробами), помощника гемоглобина (улучшает передвижение кислорода в кровеносной системе) и оказывает угнетающее действие на рост раковых клеток (развитие метастазов). Германий в организме стимулирует выработку интерферонов для борьбы с вредными микробами, бактериями и вирусными инфекциями, проникающими в организм.

Большой процент германия задерживается желудком и селезенкой, частично всасывается стенками тонкого кишечника, после чего попадает в кровь и доставляется до костного мозга. Германий в организме активно участвует в процессах продвижения жидкостей – в желудке и кишечнике, а также улучшает передвижение крови по венозной системе. Германий, перемещаясь в межклеточном пространстве, практически полностью поглощается клетками организма, но, через некоторое время, около 90% этого микроэлемента выводится из организма почками вместе с мочой. Это объясняет, почему организму человека постоянно требуется поступление органического германия вместе с продуктами.

Гипоксия – это такое болезненное состояние, когда в крови резко уменьшается количество гемоглобина (потеря крови, радиоактивное облучение) и кислород не распространяется по всему организму, от чего возникает кислородное голодание. В первую очередь нехватка кислорода травмирует мозг и нервную систему, а также главные внутренние органы — сердечную мышцу, печень и почки. Германий (органического происхождения) в организме человека способен вступать во взаимосвязь с кислородом и распространять его по всему телу, временно беря на себя функции гемоглобина.

Ещё одним достоинством, которым обладает германий, является его способность влиять на погашение болевых ощущений (не имеющих связи с травмами), из-за электронных импульсов, возникающих в волокнах нервной системы в момент сильного стресса. Их хаотичное движение вызывает это болезненное напряжение.

Продукты, содержащие германий

Органический германий содержится в известных всем продуктах, таких как: чеснок, съедобные грибы, семена подсолнуха и тыквы, овощи — морковь, картофель и свекла, отруби пшеничные, бобы (соя, фасоль), томаты, рыба.

Дефицит германия в организме

Ежесуточно человеку требуется от 0,5 мг до 1,5 мг германия. Микроэлемент германий признан во всем мире безопасным и не токсичным для человека. Сведений о передозировке германием на данный день нет, но дефицит германия увеличивает риск возникновения и развития раковых клеток в злокачественных опухолей. С дефицитом германия в организме также связывают возникновение остеопороза.

Супоненко А. Н. к.х.н.,

Генеральный директор ООО «Гермацентр»

Органический германий. История открытия.

Химик Винклер, открыв в 1886 году в серебряной руде новый элемент таблицы Менделеева германий, и не подозревал, какое внимание ученых-медиков привлечет этот элемент в ХХ веке.

Для медицинских нужд наиболее широко германий первыми начали применять в Японии. Испытания различных германийорганических соединений в опытах на животных и в клинических испытаниях на людях показали, что они в разной степени положительно влияют на организм человека. Прорыв наступил в 1967 г., когда доктор К. Асаи обнаружил, что органический германий, способ синтеза которого был ранее разработан в нашей стране, обладает широким спектром биологического действия.

Среди биологических свойств органического германия можно отметить его способности:

· обеспечивать перенос кислорода в тканях организма;

· повышать иммунный статус организма;

· проявлять противоопухолевую активность

Так японскими учеными был создан первый препарат с содержанием органического германия «Германий – 132», использующийся для коррекции иммунного статуса при различных заболеваниях человека.

В России биологическое действие германия изучалось давно, но создание первого российского препарата «Гермавит» стало возможным только в 2000 г., когда финансы в развитие науки и, в частности, медицины стали вкладывать российские бизнесмены, понимающие, что здоровье нации требует самого пристального внимания, а его укрепление является важнейшей социальной задачей нашего времени.

Где содержится германий.

Следует отметить, что процессе геохимической эволюции земной коры произошло вымывание значительного количества германия с большей части поверхности суши в океаны, поэтому в настоящее время количество этого микроэлемента, содержащегося в почве – крайне незначительно.

Среди немногих растений, способных абсорбировать германий и его соединения из почвы, лидером является женьшень (до 0.2 %), широко применяемый в тибетской медицине. Германий также содержат в себе чеснок, камфара и алоэ, традиционно используемые для профилактики и лечения различных заболеваний человека. В растительном сырье органический германий находится в форме полуоксид карбоксиэтила. В настоящее время синтезированы органические соединения германия – сесквиоксаны с пиримидиновым фрагментом. Это соединение близко по структуре к природному соединению германия, содержащемуся в биомассе корня женьшеня.

Германий относится к редким микроэлементам, присутствует во многих пищевых продуктах, но в микроскопических дозах. Рекомендуемая суточная доза германия в органической форме – 8 - 10 мг.

Оценка количества германия, поступающего с пищей, проведенная путем анализа 125 видов пищевых продуктов, показала, что ежедневно с пищей поступает 1.5 мг германия. В 1 г сырых продуктов его обычно содержится 0.1 – 1.0 мкг. Этот микроэлемент содержится в томатном соке, бобах, молоке, лососине. Однако для обеспечения суточной потребности организма в германии необходимо выпивать, например, до 10 л томатного сока в день или съедать до 5 кг лососины, что нереально по физическим возможностям организма человека. Кроме того цены на данные продукты делают невозможным регулярное употребление для большей части населения нашей страны.

Территории нашей страны слишком обширна и на 95 % ее территории недостаток германия составляет от 80 до 90 % от необходимой нормы, поэтому возник вопрос о создании германийсодержащего препарата.

Распределение органического германия в организме и механизмы его воздействия на организм человека.

В экспериментах, определяющих распределение органического германия в организме через 1.5 часа после его перорального введения, были получены следующие результаты: большое количество органического германия содержится в желудке, тонком кишечнике, костном мозге, селезенке и крови. Причем высокое его содержание в желудке и кишечнике показывает, что процесс его всасывания в кровь имеет пролонгированное действие.

Высокое содержание органического германия в крови позволило выдвинуть доктору Асаи следующую теорию механизма его действия в организме человека. Предполагаются, что в крови органический германий ведет себя аналогично гемоглобину, также несущему в себе отрицательный заряд и подобно гемоглобину участвует в процессе переноса кислорода в тканях организма. Тем самым предупреждается развитие кислородной недостаточности (гипоксии) на тканевом уровне. Органический германий предотвращает развитие так называемой кровяной гипоксии, возникающей при уменьшении количества гемоглобина, способного присоединить кислород (уменьшении кислородной ёмкости крови), и развивающейся при кровопотерях, отравлении окисью углерода, при радиационных воздействиях. Наиболее чувствительны к кислородной недостаточности центральная нервная система, мышца сердца, ткани почек, печени.

В результате опытов было также установлено, что органический германий способствует индукции гамма интерферонов, которые подавляют процессы размножения быстро делящихся клеток, активируют специфические клетки (Т-киллеры). Основными направлениями действия интерферонов на уровне организма является антивирусная и противоопухолевая защита, иммуномодулирующие и радиозащитные функции лимфатической системы.

В процессе изучения патологических тканей и тканей с первичными признаками заболеваний было установлено, что они всегда характеризуются недостатком кислорода и присутствием положительно заряженных радикалов водорода Н+. Ионы Н+ оказывают крайне негативное воздействие на клетки организма человека, вплоть до их гибели. Ионы кислорода, обладая способностью объединяться с ионами водорода, позволяют выборочно и локально компенсировать повреждения клеток и тканей, которые наносят им ионы водорода. Действие германия на ионы водорода обусловлено его органической формой – формой сесквиоксида.

Несвязанный водород очень активен, поэтому легко взаимодействует с атомами кислорода, находящимися в германиевых сесквиоксидах. Гарантией нормального функционирования всех систем организма должна быть беспрепятственная транспортировка кислорода в тканях. Органический германий обладает ярко выраженной способностью доставлять кислород в любую точку организма и обеспечивать его взаимодействие с ионами водорода. Таким образом, в основе действия органического германия при взаимодействии его с ионами Н+ лежит реакция дегидрации (отщепление водорода от органических соединений), а кислород, принимающий участие в этой реакции, можно сравнить с «пылесосом», вычищающим организм от положительно заряженных ионов водорода, органический германий – со своего рода «внутренней люстрой Чижевского».

Германий

ГЕРМА́НИЙ -я; м. Химический элемент (Ge), твёрдое вещество серовато-белого цвета с металлическим блеском (является основным полупроводниковым материалом). Пластинка германия.

Герма́ниевый, -ая, -ое. Г-ое сырьё. Г. слиток.

герма́ний

(лат. Germanium), химический элемент IV группы периодической системы. Название от латинского Germania - Германия, в честь родины К. А. Винклера. Серебристо-серые кристаллы; плотность 5,33 г/см 3 , t пл 938,3ºC. В природе рассеян (собственные минералы редки); добывают из руд цветных металлов. Полупроводниковый материал для электронных приборов (диоды, транзисторы и др.), компонент сплавов, материал для линз в ИК-приборах, детекторов ионизирующего излучения.

ГЕРМАНИЙ

ГЕРМА́НИЙ (лат. Germanium), Gе (читается «гертемпманий»), химический элемент с атомным номером 32, атомная масса 72,61. Природный германий состоит из пяти изотопов с массовыми числами 70 (содержание в природной смеси 20,51% по массе), 72 (27,43%), 73 (7,76%), 74 (36,54%), и 76 (7,76%). Конфигурация внешнего электронного слоя 4s 2 p 2 . Степени окисления +4, +2 (валентности IV, II). Расположен в группе IVA, в 4 периоде в периодической системе элементов.
История открытия
Был открыт К. А. Винклером (см. ВИНКЛЕР Клеменс Александр) (и назван в честь его родины - Германии) в 1886 при анализе минерала аргиродита Ag 8 GeS 6 после того, как существование этого элемента и некоторые его свойства были предсказаны Д. И. Менделеевым (см. МЕНДЕЛЕЕВ Дмитрий Иванович) .
Нахождение в природе
Содержание в земной коре 1,5·10 -4 % по массе. Относится к рассеянным элементам. В природе в свободном виде не встречается. Содержится в виде примеси в силикатах, осадочных железных, полиметаллических, никелевых и вольфрамовых рудах, углях, торфе, нефтях, термальных водах и водорослях. Важнейшие минералы: германит Cu 3 (Ge,Fe,Ga)(S,As) 4 , стоттит FeGe(OH) 6 , плюмбогерманит (Pb,Ge,Ga) 2 SO 4 (OH) 2 ·2H 2 O, аргиродит Ag 8 GeS 6 , рениерит Cu 3 (Fe,Ge,Zn)(S,As) 4 .
Получение германия
Для получения германия используют побочные продукты переработки руд цветных металлов, золу от сжигания углей, некоторые продукты коксохимии. Сырье, содержащее Ge, обогащают флотацией. Затем концентрат переводят в оксид GeO 2 , который восстанавливают водородом (см. ВОДОРОД) :
GeO 2 + 4H 2 = Ge + 2H 2 O
Германий полупроводниковой чистоты с содержанием примесей 10 -3 -10 -4 % получают зонной плавкой (см. ЗОННАЯ ПЛАВКА) , кристаллизацией (см. КРИСТАЛЛИЗАЦИЯ) или термолизом летучего моногермана GeH 4:
GeH 4 = Ge + 2H 2 ,
который образуется при разложении кислотами соединений активных металлов с Ge - германидов:
Mg 2 Ge + 4HCl = GeH 4 – + 2MgCl 2
Физические и химические свойства
Германий - вещество серебристого цвета с металлическим блеском. Кристаллическая решетка устойчивой модификации (Ge I), кубическая, гранецентрированная типа алмаза, а = 0,533 нм (при высоких давлениях получены три другие модификации). Температура плавления 938,25 °C, кипения 2850 °C, плотность 5,33 кг/дм 3 . Обладает полупроводниковыми свойствами, ширина запрещенной зоны 0,66 эВ (при 300 К). Германий прозрачен для инфракрасного излучения с длиной волны больше 2 мкм.
По химическим свойствам Ge напоминает кремний (см. КРЕМНИЙ) . При обычных условиях устойчив к кислороду (см. КИСЛОРОД) , парам воды, разбавленным кислотам. В присутствии сильных комплексообразователей или окислителей, при нагревании Ge реагирует с кислотами:
Ge + H 2 SO 4 конц = Ge(SO 4) 2 + 2SO 2 + 4H 2 O,
Ge + 6HF = H 2 + 2H 2 ,
Ge + 4HNO 3 конц. = H 2 GeO 3 + 4NO 2 + 2H 2 O
Ge реагирует с царской водкой (см. ЦАРСКАЯ ВОДКА) :
Ge + 4HNO 3 + 12HCl = GeCl 4 + 4NO + 8H 2 O.
С растворами щелочей Ge взаимодействует в присутствии окислителей:
Ge + 2NaOH + 2H 2 O 2 = Na 2 .
При нагревании на воздухе до 700 °C Ge загорается. Ge легко взаимодействует с галогенами (см. ГАЛОГЕНЫ) и серой (см. СЕРА) :
Ge + 2I 2 = GeI 4
С водородом (см. ВОДОРОД) , азотом (см. АЗОТ) , углеродом (см. УГЛЕРОД) германий непосредственно в реакции не вступает, соединения с этими элементами получают косвенным путем. Например, нитрид Ge 3 N 4 образуется при растворении дииодида германия GeI 2 в жидком аммиаке:
GeI 2 + NH 3 жидк -> n -> Ge 3 N 4
Оксид германия (IV), GeO 2 , - белое кристаллическое вещество, существующее в двух модификациях. Одна из модификаций частично растворима в воде с образование сложных германиевых кислот. Проявляет амфотерные свойства.
С щелочами GeO 2 взаимодействует как кислотный оксид:
GeO 2 + 2NaOH = Na 2 GeO 3 + H 2 O
GeO 2 взаимодействует с кислотами:
GeO 2 + 4HCl = GeCl 4 + 2H 2 O
Тетрагалогениды Ge - неполярные соединения, легко гидролизующиеся водой.
3GeF 4 + 2H 2 O = GeO 2 + 2H 2 GeF 6
Тетрагалогениды получают прямым взаимодействием:
Ge + 2Cl 2 = GeCl 4
или термическим разложением:
BaGeF 6 = GeF 4 ­ + BaF 2
Гидриды германия по химическим свойствам подобны гидридам кремния, но моногерман GeH 4 более устойчив, чем моносилан SiH 4 . Германы образуют гомологические ряды Ge n H 2n+2 , Ge n H 2n и другие, но эти ряды короче, чем у силанов.
Моногерман GeH 4 - газ, устойчивый на воздухе, не реагирующий с водой. При длительном хранении разлагается на H 2 и Ge. Получают моногерман восстановлением диоксида германия GeO 2 борогидридом натрия NaBH 4:
GeO 2 + NaBH 4 = GeH 4 ­ + NaBO 2 .
Очень неустойчивый монооксид GeO образуется при умеренном нагревании смеси германия и диоксида GeO 2:
Ge + GeO 2 = 2GeO.
Соединения Ge (II) легко диспропорционируют с выделением Ge:
2GeCl 2 -> Ge + GeCl 4
Дисульфида германия GeS 2 - белое аморфное или кристаллическое вещество, получается осаждением H 2 S из кислых растворов GeCl 4:
GeCl 4 + 2H 2 S = GeS 2 Ї + 4HCl
GeS 2 растворяется в щелочах и сульфидах аммония или щелочных металлов:
GeS 2 + 6NaOH = Na 2 + 2Na 2 S,
GeS 2 + (NH 4) 2 S = (NH 4) 2 GeS 3
Ge может входить в состав органических соединений. Известны (CH 3) 4 Ge, (C 6 H 5) 4 Ge, (CH 3) 3 GeBr, (C 2 H 5) 3 GeOH и другие.
Применение
Германий - полупроводниковый материал, применяется в технике и радиоэлектронике при производстве транзисторов и микросхем. Тонкие пленки Ge, нанесенные на стекло, применяют в качестве сопротивлений в радарных установках. Сплавы Ge с металлами используются в датчиках и детекторах. Диоксид германия применяют в производстве стекол, пропускающих инфракрасное излучение.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "германий" в других словарях:

    Химический элемент, открытый в 1886 г. в редком минерале аргиродите, найденном в Саксонии. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. германий (назв. в честь родины ученого, открывшего элемент) хим. элемент,… … Словарь иностранных слов русского языка

    - (Germanium), Ge, химический элемент IV группы периодической системы, атомный номер 32, атомная масса 72,59; неметалл; полупроводниковый материал. Германий открыт немецким химиком К. Винклером в 1886 … Современная энциклопедия

    германий - Ge Элемент IV группы Периодич. системы; ат. н. 32, ат. м. 72,59; тв. вещ во с металлич. блеском. Природный Ge — смесь пяти стабильных изотопов с массовыми числами 70, 72, 73, 74 и 76. Существование и свойства Ge предсказал в 1871 г. Д. И.… … Справочник технического переводчика

    Германий - (Germanium), Ge, химический элемент IV группы периодической системы, атомный номер 32, атомная масса 72,59; неметалл; полупроводниковый материал. Германий открыт немецким химиком К. Винклером в 1886. … Иллюстрированный энциклопедический словарь

    - (лат. Germanium) Ge, химический элемент IV группы периодической системы, атомный номер 32, атомная масса 72,59. Назван от латинского Germania Германия, в честь родины К. А. Винклера. Серебристо серые кристаллы; плотность 5,33 г/см³, tпл 938,3 … Большой Энциклопедический словарь

    - (символ Ge), бело серый металлический элемент IV группы периодической таблицы МЕНДЕЛЕЕВА, в которой были предсказаны свойства еще не открытых элементов, в частности, германия (1871 г.). Открыт элемент в 1886 г. Побочный продукт выплавки цинковых… … Научно-технический энциклопедический словарь

    Ge (от лат. Germania Германия * a. germanium; н. Germanium; ф. germanium; и. germanio), хим. элемент IV группы периодич. системы Менделеева, ат.н. 32, ат. м. 72,59. Природный Г. состоит из 4 стабильных изотопов 70Ge (20,55%), 72Ge… … Геологическая энциклопедия

    - (Ge), синтетич. монокристалл, ПП, точечная группа симметрии m3m, плотность 5,327 г/см3, Tпл=936 °С, тв. по шкале Мооса 6, ат. м. 72,60. Прозрачен в ИК области l от 1,5 до 20 мкм; оптически анизотропен, для l=1,80 мкм коэфф. преломления n=4,143.… … Физическая энциклопедия

    Сущ., кол во синонимов: 3 полупроводник (7) экасилиций (1) элемент (159) … Словарь синонимов

    ГЕРМАНИЙ - хим. элемент, символ Ge (лат. Germanium), ат. н. 32, ат. м. 72,59; хрупкое серебристо серое кристаллическое вещество, плотность 5327 кг/м3, bил = 937,5°С. В природе рассеян; добывают его главным образом при переработке цинковой обманки и… … Большая политехническая энциклопедия