Графеновый аэрогель - самый легкий материал в мире. Общая информация об аэрогеле

Все началось в далеком 1931-м году, более 80 лет назад, когда Семуэл Стивенс Кестлер изобрел аэрогели — самые легкие на тот момент материалы, которые в то же время были очень прочными.

Спокойствие сохранялось 80 лет, до 2011 года, когда самым легким материалом стал микрорешетчатый материал графен. Его плотность составляла всего 0,9 мг на 1 куб.см и это было в 4 раза меньше чем аэрогели. С этого момента и начался настоящий прорыв в исследовании и изобретении сверхлегких материалов.

Менее чем за один год ученым удалось придумать аэрографит и сделать его в 4 раза легче, чем графен. Плотность аэрографита составляла 0,18 мг/см3.

Вызов был принят и уже есть результат: Китайские ученые попробовали сделать универсальный легкий материал и получился аэрогель на основне графена с показателем удельного веса 0,16 мг/см3 . Чтобы было понятно, с каким легким материалом мы имеем дело, сравним его с воздухом — он в 6,5 раз легче воздуха .

Из чего же состоит этот аэрогель на основе графена? Это пористый материал на основе углерода (карбон), который подвергают сублимационной сушке. Официальное название открытого материала «графен-аэрогель».

Уникальность свойств материала:

  • высокий коэффициент эластичности;
  • электропроводность;
  • коеффициент адсорбции — 900.

Это означает, что будучи легче воздуха (да, он может улететь и его нужно привязывать, как воздушный шарик) и имея пористую структуру он может впитывать в себя вещество весом в 900 раз больше собственного . Уже появляются идеи использования «графена-аэрогеля» в качестве утилизатора разлитой в морях, океанах нефти. Примечательно, что графен и собранную нефть можно будет использовать повторно после сборки.

Электропроводность материала скорее всего заинтересует производителей электроники и мобильной техники, где вес устройства иногда играет очень важную роль.

Сочетание графена и углеродных нанотрубок позволило получить углеродный аэрогель, лишенный недостатков аэрогелей только из графена или только из нанотрубок. Новый композитный материал из углерода помимо обычных для всех аэрогелей свойств — чрезвычайно низкой плотности, твердости и низкой теплопроводности — обладает также высокой эластичностью (способностью восстанавливать форму после многократных сжатий и растяжений) и прекрасной способностью абсорбировать органические жидкости. Это последнее свойство может найти применение для ликвидации разливов нефти.

Представим себе, что мы нагреваем замкнутый сосуд с жидкостью и парами этой жидкости. Чем выше температура, тем больше жидкости будет испаряться, переходя в газовую фазу, и тем выше будет давление, а вместе с ним и плотность газовой фазы (фактически — количество испарившихся молекул). При определённых давлении и температуре, величина которых будет зависеть от того, что за вещество в сосуде, плотность молекул в жидкости окажется такой же, как в газовой фазе. Такое состояние жидкости и называют сверхкритическим . В этом состоянии нет различия между жидкой и газовой фазой, а поэтому нет и поверхностного натяжения.

Еще более легкие (менее плотные) аэрогели получаются методом химического осаждения вещества, которое будет выполнять роль твердой фазы аэрогеля, на ранее приготовленную пористую подложку, которую затем растворяют. Этот метод позволяет регулировать плотность твердой фазы (путем регулирования количества осаждаемого вещества) и ее структуру (путем использования подложки с необходимой структурой).

Благодаря своей структуре аэрогели обладают набором уникальных свойств. Хотя их прочность приближается к прочности твердых тел (рис. 1A), по плотности они близки к газам. Так, лучшие образцы кварцевого аэрогеля имеют плотность около 2 мг/см 3 (плотность входящего в их состав воздуха — 1,2 мг/см 3), что в тысячу раз меньше, чем у непористых твердых материалов.

Аэрогели обладают и крайне малой теплопроводностью (рис. 1B), поскольку теплу нужно пройти сложный путь по разветвленной сети из очень тонких цепочек наночастиц. При этом перенос тепла по воздушной фазе также затруднен из-за того, что эти же цепочки делают невозможной конвекцию, без которой теплопроводность воздуха очень низка.

Ещё одно свойство аэрогеля — его необычайная пористость — позволило доставить на Землю образцы межпланетной пыли (см. Сборщик звездной пыли возвращается домой , «Элементы», 14.01.2006) с помощью космического аппарата Stardust. Его устройство сбора представляло собой блок аэрогеля, попадая в который, частицы пыли останавливались с ускорением несколько миллиардов g , не разрушаясь (рис. 1C).

Главным недостатком аэрогеля до недавнего времени была его хрупкость: он растрескивался при повторных нагрузках. Все полученные на тот момент аэрогели — из кварца, некоторых оксидов металлов и углерода — обладали этим недостатком. Но с появлением новых углеродных материалов — графена и углеродных нанотрубок — проблема получения эластичных и устойчивых к разрушению аэрогелей была решена.

Графен — это лист толщиной в один атом, в котором атомы углерода образуют гексагональную решетку (каждая клетка решётки — шестиугольник), а углеродная нанотрубка — это такой же лист, свернутый в цилиндр толщиной от одного до десятков нанометров. Эти формы углерода обладают большой механической прочностью, эластичностью, очень высокой площадью внутренней поверхности, а так же высокой тепло- и электропроводностью.

Однако материалы, приготовленные отдельно из графена или отдельно из углеродных нанотрубок, тоже имеют свои недостатки. Так, аэрогель из графена плотностью 5,1 мг/см 3 не разрушался под нагрузкой, превосходящей его собственный вес в 50 000 раз, и восстанавливал форму после сжатия на 80% от исходного размера. Однако из-за того, что графеновые листы обладают недостаточной жесткостью при изгибе, уменьшение их плотности ухудшает упругие свойства аэрогеля из графена.

Аэрогель из углеродных нанотрубок обладает другим недостатком: он более жесткий, но вообще не восстанавливает форму после снятия нагрузки, поскольку нанотрубки под нагрузкой необратимо изгибаются и перепутываются, а нагрузка плохо передается между ними.

Напомним, что деформация это изменение положения частиц физического тела друг относительно друга, а упругая деформация — это такая деформация, которая исчезает вместе с исчезновением силы, ее вызвавшей. «Степень» упругости тела (так называемый модуль упругости) определяется зависимостью механического напряжения , возникшего внутри образца при приложении деформирующей силы, от упругой деформации образца. Напряжение в данном случае — это сила, приложенная к образцу на единицу его площади. (Не путать с электрическим напряжением !)

Как продемонстрировала группа китайских ученых, эти недостатки полностью компенсируются, если использовать при приготовлении аэрогеля одновременно графен и нанотрубки. Авторы обсуждаемой статьи в Advanced Materials использовали водный раствор нанотрубок и оксида графена, вода из которого была удалена путем замораживания и сублимации льда — лиофилизации (см. также Freeze-drying), при которой также устраняются эффекты поверхностного натяжения, после чего оксид графена был химически восстановлен до графена. В получившейся структуре графеновые листы служили каркасом, а нанотрубки — ребрами жесткости на этих листах (рис. 2A, 2B). Как показали исследования под электронным микроскопом, графеновые листы перекрываются друг с другом и образуют трехмерный каркас с порами размером от десятков нанометров до десятков микрометров, а углеродные нанотрубки образуют перепутанную сеть и плотно прилегают к графеновым листам. По-видимому, это вызвано выталкиванием нанотрубок растущими ледяными кристалами при замораживании исходного раствора.

Плотность образца составила 1 мг/см 3 без учета воздуха (рис. 2C, 2D). А согласно расчетам в представленной авторами структурной модели, минимальная плотность, при которой аэрогель из использованных исходных веществ еще сохранит целостность структуры, составляет 0,13 мг/см 3 , что почти в 10 раз меньше плотности воздуха! Авторы смогли приготовить композитный аэрогель с плотностью 0,45 мг/см 3 и аэрогель только из графена плотностью 0,16 мг/см 3 , что меньше предыдущего рекорда, принадлежащего аэрогелю из ZnO, осажденному на субстрат из газовой фазы. Уменьшения плотности можно достичь, используя более широкие листы графена, но при этом снижается жесткость и прочность полученного материала.

При испытаниях образцы такого композитного аэрогеля сохраняли форму и микроструктуру после 1000 повторных сжатий на 50% от исходного размера. Сопротивляемость сжатию приблизительно пропорциональна плотности аэрогеля и во всех образцах постепенно возрастает с увеличением деформации (рис. 3A). В диапазоне от –190°С до 300°С упругие свойства полученных аэрогелей почти не зависят от температуры.

Испытания на разрыв (рис. 3B) были проведены для образца с плотностью 1 мг/см 3 , и образец выдержал растяжение на 16,5%, что совершенно немыслимо для оксидных аэрогелей, которые при растяжении трескаются сразу. Кроме того, жёсткость при растяжении выше, чем при сжатии, то есть образец сминается легко, а растягивается с трудом.

Этот набор свойств авторы объяснили синергетическим взаимодействием графена и нанотрубок, при котором свойства компонентов взаимно дополняют друг друга. Углеродные нанотрубки, покрывающие графеновые листы, служат связью между соседними листами, которая улучшает передачу нагрузки между ними, а так же ребрами жесткости для самих листов. Благодаря этому нагрузка приводит не к движению листов друг относительно друга (как в аэрогеле из чистого графена), а к упругой деформации самих листов. А поскольку нанотрубки плотно прилегают к листам и их положение задается положением листов, они не испытывают необратимых деформаций и перепутывания и не движутся друг относительно друга под нагрузкой, как в неэластичном аэрогеле только из нанотрубок. Оптимальными свойствами обладает аэрогель, состоящий поровну из графена и нанотрубок, а с увеличением содержания нанотрубок они начинают образовывать «колтуны», как в аэрогеле только из нанотрубок, что приводит к потере эластичности.

Кроме описанных упругих свойств композитный углеродный аэрогель обладает и другими необычными свойствами. Он электропроводен, причем электропроводность обратимо меняется при упругой деформации. Кроме того, аэрогель из графена и углеродных нанотрубок отталкивает воду, но при этом прекрасно абсорбирует органические жидкости — 1,1 г толуола на воде было полностью абсорбировано куском аэрогеля весом 3,2 мг за 5 секунд (рис. 4). Это открывает прекрасные возможности для ликвидации разливов нефти и очищении воды от органических жидкостей: всего 3,5 кг такого аэрогеля могут абсорбировать тонну нефти, что в 10 раз больше, чем емкость коммерчески используемого абсорбента. При этом абсорбент из композитного аэрогеля регенерируем: благодаря его эластичности и термической стойкости абсорбированная жидкость может быть выдавлена, как из губки, а остаток просто выжжен или удален испарением. Испытания показали, что свойства сохраняются после 10 таких циклов.

Разнообразие форм углерода и уникальные свойства этих форм и материалов, полученных на их основе, продолжают удивлять исследователей, так что в будущем можно ожидать все новых и новых открытий в этой области. Сколько всего можно сделать только из одного химического элемента!


Начиная с 2011-го года, учёными было разработано несколько инновационных материалов, которым по очереди принадлежало звание «самый лёгкий материал на планете». Сначала аэрогель на основе углеродных нанотрубок (4 мг/см3), затем материал с микро-решётчатой структурой (0,9 мг/см3), потом аэрографит (0,18 мг/см3). Но сегодня пальма первенства самого лёгкого материала принадлежит графеновому аэрогелю, плотность которого составляет 0,16 мг/см3.

Это открытие, принадлежащее группе учёных из Чжэцзянского университета (Китай) под руководством профессора Гао Чао, вызвало настоящий фурор в современной науке. Графен сам по себе является необычайно лёгким материалом, который широко применяется в современных нанотехнологиях. Сначала учёные при помощи него создали графеновые волокна одномерного типа, потом двухмерные графеновые ленты, и вот сейчас к графену было добавлено третье измерения, в результате чего и был получен пористый материал, ставший самым лёгким материалом в мире.


Метод получения пористого материала из графена называется сублимационной сушкой. Таким же образом получают и другие аэрогели. Пористая углеродисто-графеновая губка способна почти полностью повторять любые заданные ей формы. Другими словами, количество изготавливаемого графенового аэрогеля зависит исключительно от объёма контейнера.


Учёные смело заявляют и о таких его качествах, как высокая прочность, упругость. При этом гарфеновый аэрогель способен впитывать и удерживать в себе объёмы органических веществ до 900 раз больше собственной массы! Так, за секунду 1 грамм аэрогеля способен впитать 68.8 грамм любого не растворяющегося в воде вещества.


Это свойство инновационного материала сразу заинтересовало экологов. Ведь таким образом можно быстро ликвидировать последствия техногенных аварий, например, использовать аэрогель в местах разлива нефти.


Кроме пользы для экологии, графеновый аэрогель несёт огромный потенциал и для энергетики, в частности, его планируют использовать в системах аккумулирования. В этом случае аэрогель может быть катализатором для определённых химических реакций. Также графеновый аэрогель уже сейчас начинает применяться в сложных композитных материалах.

Если вы следите за новинками в мире современных технологий, то данный материал не будет для вас большой новостью. Тем не менее, рассмотреть более детально самый легкий материал в мире и узнать еще немного подробностей полезно.

Менее года назад звание самого легкого в мире материала получил материал под названием аэрографит. Но этому материалу не получилось долго удерживать пальму первенства, ее не так давно перехватил другой углеродный материал под названием графеновый аэрогель. Созданный исследовательской группой лаборатории Отдела науки о полимерах и технологиях университета Чжэцзяна (Zhejiang University), которую возглавляет профессор Гэо Чэо (Gao Chao), сверхлегкий графеновый аэрогель имеет плотность немного ниже плотности газообразного гелия и чуть выше плотности газообразного водорода.

Аэрогели, как класс материалов, были разработаны и получены в 1931 году инженером и ученым-химиком Сэмюэлем Стивенсом Кистлером (Samuel Stephens Kistler). С того момент ученые из различных организаций вели исследования и разработку подобных материалов, невзирая на их сомнительную ценность для практического использования. Аэрогель, состоящий из многослойных углеродных нанотрубок, получивший название «замороженный дым» и имевший плотность 4 мГ/см3, потерял звание самого легкого материала в 2011 году, которое перешло к материалу из металлической микрорешетки, имеющему плотность 0.9 мГ/см3. А еще год спустя звание самого легкого материала перешло к углеродному материалу под названием аэрографит, плотность которого составляет 0.18 мг/см3.

Новый обладатель звания самого легкого материала, графеновый аэрогель, созданный командой профессора Чэо, имеет плотность 0.16 мГ/см3. Для того, чтобы создать столь легкий материал, ученые использовали один из самых удивительных и тонких материалов на сегодняшний день - графен. Используя свой опыт в создании микроскопических материалов, таких, как «одномерные» графеновые волокна и двухмерные графеновые ленты, команда решила добавить к двум измерениями графена еще одно измерение и создать объемный пористый графеновый материал.

Вместо метода изготовления по шаблону, в котором используется материал-растворитель и с помощью которого обычно получают различные аэрогели, китайские использовали метод сублимационной сушки. Сублимационная сушка коолоидного раствора, состоящего из жидкого наполнителя и частиц графена, позволила создать углеродистую пористую губку, форма которой почти полностью повторяла заданную форму.

«Отсутствие потребности использования шаблонов размеры и форма создаваемого нами углеродного сверхлегкого материала зависит только от формы и размеров контейнера» - рассказывает профессор Чэо, - «Количество изготавливаемого аэрогеля зависит только от величины контейнера, который может иметь объем, измеряемый тысячами кубических сантиметров».

Получившийся графеновый аэрогель является чрезвычайно прочным и упругим материалом. Он может поглотить органические материалы, в том числе и нефть, по весу превышающие в 900 раз его собственный вес с высокой скоростью поглощения. Один грамм аэрогеля поглощает 68.8 грамма нефти всего за одну секунду, что делает его привлекательным материалом для использования в качестве поглотителя разлитой в океане нефти и нефтепродуктов.

Помимо работы в качестве поглотителя нефти графеновый аэрогель имеет потенциал для использования в системах аккумулирования энергии, в качестве катализатора для некоторых химических реакциях и в качестве наполнителя для сложных композитных материалов.

Его изобрела группа ученых под руководством китайского профессора Гао Чао из Чжэцзянского университета и это произвело фурор в научном мире. Графен – невероятно легкий материал сам по себе – широко используется современными нанотехнологиями. И ученым из него удалось получить пористый материал – самый легкий в мире.

Изготовлен графеновый аэрогель тем же способом, что и другие аэрогели – сублимационной сушкой. Пористая губка из углеродисто-графенового материала почти полностью копирует любые формы, а значит, количество аэрогеля зависит лишь от объема емкости.


По химическим свойствам аэрогель обладает плотностью ниже водорода и гелия. Учеными подтверждаются и его высокая прочность, высокая упругость. И это несмотря на то, что графеновый аэрогель впитывает и удерживает объемы органических веществ почти в 900 раз больше своей массы! 1 грамм аэрогеля может впитать буквально за секунду 68,8 граммов любого вещества, нерастворимого в воде. Это поражает воображение и возможно совсем скоро все бары на poeli.ru и все отели будут использовать этот материал в каких-то своих целях для привлечения посетителей.

Еще одно свойство нового материала весьма заинтересовало экологическое сообщество – это способность графеновой губки впитывать в себя органические вещества, что поможет в ликвидации последствий техногенных аварий.


Потенциальное свойство графена, как катализатора химических реакций, задумано использовать в системах аккумулирования и при изготовлении сложных композитных материалов.