Интегрирование методом симпсона. Метод трапеций

Для нахождения определенного интеграла методом трапеций площадь криволинейной трапеции также разбивается на n прямоугольных трапеций с высотами h и основаниями у 1 , у 2 , у 3 ,..у n , где n - номер прямоугольной трапеции. Интеграл будет численно равен сумме площадей прямоугольных трапеций (рисунок 4).

Рис. 4

n - количество разбиений

Погрешность формулы трапеций оценивается числом

Погрешность формулы трапеций с ростом уменьшается быстрее, чем погрешность формулы прямоугольников. Следовательно, формула трапеций позволяет получить большую точность, чем метод прямоугольников.

Формула Симпсона

Если для каждой пары отрезков построить многочлен второй степени, затем проинтегрировать его на отрезке и воспользоваться свойством аддитивности интеграла, то получим формулу Симпсона.

В методе Симпсона для вычисления определенного интеграла весь интервал интегрирования разбивается на подинтервалы равной длины h=(b-a)/n. Число отрезков разбиения является четным числом. Затем на каждой паре соседних подинтервалов подинтегральная функция f(x) заменяется многочленом Лагранжа второй степени (рисунок 5).

Рис. 5 Функция y=f(x) на отрезке заменяется многочленом 2-го порядка

Рассмотрим подынтегральную функцию на отрезке. Заменим эту подынтегральную функцию интерполяционным многочленом Лагранжа второй степени, совпадающим с y= в точках:

Проинтегрируем на отрезке.:

Введем замену переменных:

Учитывая формулы замены,


Выполнив интегрирование, получим формулу Симпсона:

Полученное для интеграла значение совпадает с площадью криволинейной трапеции, ограниченной осью, прямыми, и параболой, проходящей через точки На отрезке формула Симпсона будет иметь вид:

В формуле параболы значение функции f(x) в нечетных точках разбиения х 1 , х 3 , ..., х 2n-1 имеет коэффициент 4, в четных точках х 2 , х 4 , ..., х 2n-2 - коэффициент 2 и в двух граничных точках х 0 =а, х n =b - коэффициент 1.

Геометрический смысл формулы Симпсона: площадь криволинейной трапеции под графиком функции f(x) на отрезке приближенно заменяется суммой площадей фигур, лежащих под параболами.

Если функция f(x) имеет на непрерывную производную четвертого порядка, то абсолютная величина погрешности формулы Симпсона не больше чем

где М - наибольшее значение на отрезке . Так как n 4 растет быстрее, чем n 2 , то погрешность формулы Симпсона с ростом n уменьшается значительно быстрее, чем погрешность формулы трапеций.

Вычислим интеграл

Этот интеграл легко вычисляется:

Возьмем n равным 10, h=0.1, рассчитаем значения подынтегральной функции в точках разбиения, а также полуцелых точках.

По формуле средних прямоугольников получим I прям =0.785606 (погрешность равна 0.027%), по формуле трапеций I трап =0.784981 (погрешность около 0,054. При использовании метода правых и левых прямоугольников погрешность составляет более 3%.

Для сравнения точности приближенных формул вычислим еще раз интеграл

но теперь по формуле Симпсона при n=4. Разобьем отрезок на четыре равные части точками х 0 =0, х 1 =1/4, х 2 =1/2, х 3 =3/4, х 4 =1 и вычислим приближенно значения функции f(x)=1/(1+x) в этих точках: у 0 =1,0000, у 1 =0,8000, у 2 =0,6667, у 3 =0,5714, у 4 =0,5000.

По формуле Симпсона получаем

Оценим погрешность полученного результата. Для подынтегральной функции f(x)=1/(1+x) имеем: f (4) (x)=24/(1+x) 5 , откуда следует, что на отрезке . Следовательно, можно взять М=24, и погрешность результата не превосходит величины 24/(2880 4 4)=0.0004. Сравнивая приближенное значение с точным, заключаем, что абсолютная ошибка результата, полученного по формуле Симпсона, меньше 0,00011. Это находится в соответствии с данной выше оценкой погрешности и, кроме того, свидетельствует, что формула Симпсона значительно точнее формулы трапеций. Поэтому формулу Симпсона для приближенного вычисления определенных интегралов используют чаще, чем формулу трапеций.

При вычислении определенного интеграла не всегда получаем точное решение. Не всегда удается представление в виде элементарной функции. Формула Ньютона-Лейбница не подходит для вычисления, поэтому необходимо использовать методы численного интегрирования. Такой метод позволяет получать данные с высокой точностью. Метод Симпсона является таковым.

Для этого необходимо дать графическое представление выведению формулы. Далее идет запись оценки абсолютной погрешности при помощи метода Симпсона. В заключении произведем сравнение трех методов: Симпсона, прямоугольников, трапеций.

Yandex.RTB R-A-339285-1

Метод парабол – суть, формула, оценка, погрешности, иллюстрации

Задана функция вида y = f (x) , имеющая непрерывность на интервале [ a ; b ] , необходимо произвести вычисление определенного интеграла ∫ a b f (x) d x

Необходимо разбить отрезок [ a ; b ] на n отрезков вида x 2 i - 2 ; x 2 i , i = 1 , 2 , . . . , n с длиной 2 h = b - a n и точками a = x 0 < x 2 < x 4 < . . . < x 2 π - 2 < x 2 π = b . Тогда точки x 2 i - 1 , i = 1 , 2 , . . . , n считаются серединами отрезков x 2 i - 2 ; x 2 i , i = 1 , 2 , . . . , n . Данный случай показывает, что определение узлов производится через x i = a + i · h , i = 0 , 1 , . . . , 2 n .

Каждый интервал x 2 i - 2 ; x 2 i , i = 1 , 2 , . . . , n подынтегральной функции приближен при помощи параболы, заданной y = a i x 2 + b i x + c i , проходящей через точки с координатами x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) . Поэтому метод и имеет такое название.

Данные действия выполняются для того, чтобы интеграл ∫ x 2 i - 2 x 2 i a i x 2 + b i x + c i d x взять в качестве приближенного значения ∫ x 2 i - 2 x 2 i f (x) d x . Можем вычислить при помощи формулы Ньютона-Лейбница. Это и есть суть метода парабол.Рассмотрим рисунок, приведенный ниже.

Графическая иллюстрация метода парабол (Симпсона)

При помощи красной линии изображается график функции y = f (x) , синей – приближение графика y = f (x) при помощи квадратичных парабол.

Исходя из пятого свойства определенного интеграла получаем ∫ a b f (x) d x = ∑ i = 1 n ∫ x 2 i - 2 x 2 i f (x) d x ≈ ∑ i = 1 n ∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x

Для того чтобы получить формулу методом парабол, необходимо произвести вычисление:

∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x

Пусть x 2 i - 2 = 0 . Рассмотрим рисунок, приведенный ниже.

Изобразим, что через точки с координатами x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) может проходить одна квадратичная парабола вида y = a i x 2 + b i x + c i . Иначе говоря, необходимо доказать, что коэффициенты могут определяться только единственным способом.

Имеем, что x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) являются точками параболы, тогда каждое из представленных уравнений является справедливым. Получаем, что

a i (x 2 i - 2) 2 + b i · x 2 i - 2 + c i = f (x 2 i - 2) a i (x 2 i - 1) 2 + b i · x 2 i - 1 + c i = f (x 2 i - 1) a i (x 2 i) 2 + b i · x 2 i + c i = f (x 2 i)

Полученная система разрешается относительно a i , b i , c i , где необходимо искать определитель матрицы по Вандермонду. Получаем, что

(x 2 i - 2) 2 x 2 i - 2 1 x 2 i - 1) 2 x 2 i - 1 1 (x 2 i) 2 x 2 i 1 , причем он считается отличным от нуля и не совпадает с точками x 2 i - 2 , x 2 i - 1 , x 2 i . Это признак того, что уравнение имеет только одно решение, тогда и выбранные коэффициенты a i ; b i ; c i могут определяться только единственным образом, тогда через точки x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) может проходить только одна парабола.

Можно переходить к нахождению интеграла ∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x .

Видно, что

f (x 2 i - 2) = f (0) = a i · 0 2 + b i · 0 + c i = c i f (x 2 i - 1) = f (h) = a i · h 2 + b i · h + c i f (x 2 i) = f (0) = 4 a i · h 2 + 2 b i · h + c i

Для осуществления последнего перехода необходимо использовать неравенство вида

∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x = ∫ 0 2 h (a i x 2 + b i x + c i) d x = = a i x 3 3 + b i x 2 2 + c i x 0 2 h = 8 a i h 3 3 + 2 b i h 2 + 2 c i h = = h 3 8 a i h 2 + 6 b i h + 6 c i = h 3 f x 2 i - 2 + 4 f 2 2 i - 1 + f x 2 i

Значит, получаем формулу, используя метод парабол:

∫ a b f (x) d x ≈ ∑ i = 1 n ∫ x 2 i - 2 x 2 i a i x 2 + b i x + c i d x = = ∑ i = 1 n h 3 (f (x 2 i - 2) + 4 f (x 2 i - 1) + f (x 2 i)) = = h 3 f (x 0) + 4 f (x 1) + f (x 2) + f (x 2) + 4 f (x 3) + f (x 4) + . . . + + f (x 2 n - 2) + 4 f (x 2 n - 1) + f (x 2 n) = = h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n)

Определение 1

Формула метода Симпсона имеет вид ∫ a b f (x) d x ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n) .

Формула оценки абсолютной погрешности имеет вид δ n ≤ m a x [ a ; b ] f (4) (x) · (b - a) 5 2880 n 4 .

Примеры приближенного вычисления определенных интегралов методом парабол

Метод Симпсона предполагает приближенное вычисление определенных интегралов. Чаще всего имеются два типа задач, для которых применим данный метод:

  • при приближенном вычислении определенного интеграла;
  • при нахождении приближенного значения с точностью δ n .

На точность вычисления влияет значение n , чем выше n , тем точнее промежуточные значения.

Пример 1

Вычислить определенный интеграл ∫ 0 5 x d x x 4 + 4 при помощи метода Симпсона, разбивая отрезок интегрирования на 5 частей.

Решение

По условию известно, что a = 0 ; b = 5 ; n = 5 , f (x) = x x 4 + 4 .

Тогда запишем формулу Симпсона в виде

∫ a b f (x) d x ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n)

Чтобы применить ее в полной мере, необходимо рассчитать шаг по формуле h = b - a 2 n , определить точки x i = a + i · h , i = 0 , 1 , . . . , 2 n и найти значения подынтегральной функции f (x i) , i = 0 , 1 , . . . , 2 n .

Промежуточные вычисления необходимо округлять до 5 знаков. Подставим значения и получим

h = b - a 2 n = 5 - 0 2 · 5 = 0 . 5

Найдем значение функции в точках

i = 0: x i = x 0 = a + i · h = 0 + 0 · 0 . 5 = 0 ⇒ f (x 0) = f (0) = 0 0 4 + 4 = 0 i = 1: x i = x 1 = a + i · h = 0 + 1 · 0 . 5 = 0 . 5 ⇒ f (x 1) = f (0 . 5) = 0 . 5 0 . 5 4 + 4 ≈ 0 . 12308 . . . i = 10: x i = x 10 = a + i · h = 0 + 10 · 0 . 5 = 5 ⇒ f (x 10) = f (5) = 5 5 4 + 4 ≈ 0 . 00795

Наглядность и удобство оформляется в таблице, приведенной ниже

i 0 1 2 3 4 5
x i 0 0 . 5 1 1 . 5 2 2 . 5
f x i 0 0 . 12308 0 . 2 0 . 16552 0 . 1 0 . 05806
i 6 7 8 9 10
x i 3 3 . 5 4 4 . 5 5
f x i 0 . 03529 0 . 02272 0 . 01538 0 . 01087 0 . 00795

Необходимо подставить результаты в формулу метода парабол:

∫ 0 5 x d x x 4 + 4 ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n) = = 0 . 5 3 0 + 4 · 0 . 12308 + 0 . 16552 + 0 . 05806 + + 0 . 02272 + 0 . 01087 + 2 · 0 . 2 + 0 . 1 + + 0 . 03529 + 0 . 01538 + 0 . 00795 ≈ ≈ 0 . 37171

Для вычисления мы выбрали определенный интеграл, который можно вычислить по Ньютону-Лейбницу. Получим:

∫ 0 5 x d x x 4 + 4 = 1 2 ∫ 0 5 d (x 2) x 2 2 + 4 = 1 4 a r c t g x 2 2 0 5 = 1 4 a r c t g 25 2 ≈ 0 . 37274

Ответ: Результаты совпадают до сотых.

Пример 2

Вычислить неопределенный интеграл ∫ 0 π sin 3 x 2 + 1 2 d x при помощи метода Симпсона с точностью до 0 , 001 .

Решение

По условию имеем, что а = 0 , b = π , f (x) = sin 3 x 2 + 1 2 , δ n ≤ 0 . 001 . Необходимо определить значение n . Для этого используется формула оценки абсолютной погрешности метода Симпсона вида δ n ≤ m a x [ a ; b ] f (4) (x) · (b - a) 5 2880 n 4 ≤ 0 . 001

Когда найдем значение n , то неравенство m a x [ a ; b ] f (4) (x) · (b - a) 5 2880 n 4 ≤ 0 . 001 будет выполняться. Тогда, применив метод парабол, погрешность при вычислении не превысит 0 . 001 . Последнее неравенство примет вид

n 4 ≥ m a x [ a ; b ] f (4) (x) · (b - a) 5 2 . 88

Теперь необходимо выяснить, какое наибольшее значение может принимать модуль четвертой производной.

f " (x) = sin 3 x 2 + 1 2 " = 3 2 cos 3 x 2 ⇒ f "" (x) = 3 2 cos 3 x 2 " = - 9 4 sin 3 x 2 ⇒ f " " " (x) = - 9 4 sin 3 x 2 " = - 27 8 cos 3 x 2 ⇒ f (4) (x) = - 27 8 cos 3 x 2 " = 81 16 sin 3 x 2

Область определения f (4) (x) = 81 16 sin 3 x 2 принадлежит интервалу - 81 16 ; 81 16 , а сам отрезок интегрирования [ 0 ; π) имеет точку экстремума, из этого следует, что m a x [ 0 ; π ] f (4) (x) = 81 16 .

Производим подстановку:

n 4 ≥ m a x [ a ; b ] f (4) (x) · (b - a) 5 2 . 88 ⇔ n 4 ≥ 81 16 · π - 0 5 2 . 88 ⇔ ⇔ n 4 > 537 . 9252 ⇔ n > 4 . 8159

Получили, что n – натуральное число, тогда его значение может быть равным n = 5 , 6 , 7 … для начала необходимо взять значение n = 5 .

Действия производить аналогично предыдущему примеру. Необходимо вычислить шаг. Для этого

h = b - a 2 n = π - 0 2 · 5 = π 10

Найдем узлы x i = a + i · h , i = 0 , 1 , . . . , 2 n , тогда значение подынтегральной функции будет иметь вид

i = 0: x i = x 0 = a + i · h = 0 + 0 · π 10 = 0 ⇒ f (x 0) = f (0) = sin 3 · 0 2 + 1 2 = 0 . 5 i = 1: x i = x 1 = a + i · h = 0 + 1 · π 10 = π 10 ⇒ f (x 1) = f (π 10) = sin 3 · π 10 2 + 1 2 ≈ 0 . 953990 . . . i = 10: x i = x 10 = a + i · h = 0 + 10 · π 10 = π ⇒ f (x 10) = f (π) = sin 3 · π 2 + 1 2 ≈ - 0 . 5 7 π 10

4 π 5 9 π 10 π f (x i) 1 . 207107 0 . 809017 0 . 343566 - 0 . 087785 - 0 . 391007 - 0 . 5

Осталось подставить значения в формулу решения методом парабол и получим

∫ 0 π sin 3 x 2 + 1 2 ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n) = = π 30 · 0 , 5 + 4 · 0 . 953990 + 1 . 487688 + 1 . 207107 + + 0 . 343566 - 0 . 391007 + 2 · 1 . 309017 + 1 . 451056 + + 0 . 809017 - 0 . 87785 - 0 . 5 = = 2 . 237650

Метод Симпсона позволяет нам получать приближенное значение определенного интеграла ∫ 0 π sin 3 x 2 + 1 2 d x ≈ 2 . 237 с точностью до 0 , 001 .

При вычислении формулой Ньютона-Лейбница получим в результате

∫ 0 π sin 3 x 2 + 1 2 d x = - 2 3 cos 3 x 2 + 1 2 x 0 π = = - 3 2 cos 3 π 2 + π 2 - - 2 3 cos 0 + 1 2 · 0 = π 2 + 2 3 ≈ 2 . 237463

Ответ: ∫ 0 π sin 3 x 2 + 1 2 d x ≈ 2 . 237

Замечание

В большинстве случаях нахождение m a x [ a ; b ] f (4) (x) проблематично. Поэтому применяется альтернатива – метод парабол. Его принцип подробно разъясняется в разделе метода трапеций. Метод парабол считается предпочтительным способом для разрешения интеграла. Вычислительная погрешность влияет на результат n . Чем меньше его значение, тем точнее приближенное искомое число.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Вычисление интегралов по формулам прямоугольников, трапеций и формуле Симпсона. Оценка погрешностей.

Методические указания по теме 4.1:

Вычисление интегралов по формулам прямоугольников. Оценка погрешности:

Решение многих технических задач сводится к вычислению определенных интегралов, точное выражение которых сложно, требует длительных вычислений и не всегда оправдано практически. Здесь бывает вполне достаточно их приближенного значения. Например, необходимо вычислить площадь, ограниченную линией, уравнение которой неизвестно, осью х и двумя ординатами. В этом случае можно заменить данную линию более простой, для которой известно уравнение. Площадь полученной таким образом криволинейной трапеции принимается за приближенное значение искомого интеграла. Геометрически идея способа вычислений определенного интеграла по формуле прямоугольников состоит в том, что площадь криволинейной трапеции А 1 АВВ 1 заменяется площадью равновеликого прямоугольника А 1 А 2 В 1 В 2 , которая по теореме о среднем равна

Где f(c) --- высота прямоугольника А 1 А 2 В 1 В 2 , представляющая собой значение подынтегральной функции в некоторой промежуточной точке c(a< c

Практически трудно найти такое значение с , при котором (b-a) f (c) в точности равнялось бы . Для получения более точного значения площадь криволинейной трапеции разбивают на n прямоугольников, высоты которых равны y 0 , y 1 , y 2 , …,y n -1 и основания .

Если суммировать площади прямоугольников, которые покрывают площадь криволинейной трапеции с недостатком, функция --- неубывающая, то вместо формулы используют формулу

Если с избытком, то

Значения находят из равенств . Эти формулы называются формулами прямоугольников и дают приближенный результат. С увеличением n результат становится более точным.

Пример 1. Вычислить по формуле прямоугольников

Разделим промежуток интегрирования на 5 частей. Тогда . При помощи калькулятора или таблицы найдем значения подынтегральной функции (с точностью до 4-х знаков после запятой):

По формуле прямоугольников (с недостатком)

С другой стороны по формуле Ньютона-Лейбница

Найдем относительную погрешность вычисления по формуле прямоугольников:

Вычисление интегралов по формулам трапеций. Оценка погрешности:

Геометрический смысл следующего способа приближенного вычисления интегралов состоит в том, что нахождение площади приблизительно равновеликой «прямолинейной» трапеции.

Пусть необходимо вычислить площадь А 1 АmBB 1 криволинейной трапеции, выражаемую формулой .

Заменим дугу AmB хордой AB и вместо площади криволинейной трапеции А 1 АmBB 1 вычислим площадь трапеции А 1 АBB 1 : , где AA 1 и ВВ 1 -- основания трапеции, а A 1 В 1 –ее высота.


Обозначим f(a)=A 1 A,f(b)=B 1 B. высота трапеции A 1 B 1 =b-a, площадь . Следовательно, или

Это так называемая малая формула трапеций .

Разобьем отрезок интегрирования [а , b ] на четное число n равных частей с шагом h . На каждом отрезке [х 0, х 2], [х 2, х 4],..., [x i-1, x i+1],..., [x n-2, x n] подынтегральную функцию f (х ) заменим интерполяционным многочленом второй степени:

Коэффициенты этих квадратных трехчленов можно найти из условий равенства многочлена в точках соответствующим табличным данным . В качестве можно принять интерполяционный многочлен Лагранжа второй степени, проходящий через точки :

Сумму элементарных площадей и (рис. 3.3) можно вычислить с помощью определенного интеграла. Учитывая равенства получаем

-

Рис. 3.3. Иллюстрация к методу Симпсона

Проведя такие вычисления для каждого элементарного отрезка , просуммируем полученные выражения:

Данное выражение для S принимается в качестве значения определенного интеграла:

(3.35)

Полученное соотношение называется формулой Симпсона или формулой парабол .

Эту формулу можно получить и другими способами, например двукратным применением метода трапеций при разбиениях отрезка [а , b ] на части с шагами h и 2h или комбинированием формул прямоугольников и трапеций (см. разд. 3.2.6).

Иногда формулу Симпсона записывают с применением полуцелых индексов. В этом случае число отрезков разбиения п произвольно (не обязательно четно), и формула Симпсона имеет вид

(3.36)

Легко видеть, что формула (3.36) совпадет с (3.35), если формулу (3.35) применить для числа отрезков разбиения 2n и шага h /2.

Пример . Вычислить по методу Симпсона интеграл

Значения функции при n = 10, h = 0.1 приведены в табл. 3.3. Применяя формулу (3.35), находим

Результат численного интегрирования с использованием метода Симпсона оказался совпадающим с точным значением (шесть значащих цифр).

Один из возможных алгоритмов вычисления определенного интеграла по методу Симпсона показан на рис. 3.4. В качестве исходных данных задаются границы отрезка интегрирования [а , b ],погрешность ε, а также формула для вычисления значений подынтегральной функции у = f (x ) .

Рис. 3.4. Алгоритм метода Симпсона

Первоначально отрезок разбивается на две части с шагом h =(b - a)/2. Вычисляется значение интеграла I 1. Потом число шагов удваивается, вычисляется значение I 2 с шагом h /2. Условие окончание счета принимается в виде . Если это условие не выполнено, происходит новое деление шага пополам и т.д.

Отметим, что представленный на рис. 3.4 алгоритм не является оптимальным: при вычислении каждого приближения I 2 не используются значения функции f (x ), уже найденные на предыдущем этапе. Более экономичные алгоритмы будут рассмотрены в разд. 3.2.7.

Суть метода Симпсона заключается в приближении подынтегральной функции на отрезке интерполяционным многочленом второй степени p2(x), т.е. приближение графика функции на отрезке параболой. Для интерполирования подынтегральной функции используются три точки.

Рассмотрим произвольный интеграл. Воспользуемся заменой переменной таким образом, чтобы границы отрезка интегрирования вместо стали [-1,1]. Для этого введем переменную z:

Рассмотрим задачу интерполирования подынтегральной функции, используя в качестве узлов три равноудаленные узловые точки z = -1, z = 0, z = +1 (шаг равен 1, длина отрезка интегрирования равна 2). Обозначим соответствующие значения подынтегральной функции в узлах интерполяции:

Система уравнений для нахождения коэффициентов полинома, проходящего через три точки (-1, f-1), (0, f0) и(1, f-+1) примет вид:

Коэффициенты легко могут быть получены:

Вычислим теперь значение интеграла от интерполяционного многочлена:

Путем обратной замены переменной вернемся к исходному интегралу. Учтем, что:

соответствует

соответствует

соответствует

Получим формулу Симпсона для произвольного интервала интегрирования:

Полученное значение совпадает с площадью криволинейной трапеции, ограниченной осью x, прямыми x = x0, x = x2 и параболой, проходящей через точки

При необходимости, исходный отрезок интегрирования может быть разбит на N сдвоенных отрезков, к каждому из которых применяется формула Симпсона. Шаг интерполирования при этом составит:

Для первого отрезка интегрирования узлами интерполирования будут являться точки a, a+h, a+2h, для второго a+2h, a+3h, a+4h, третьего a+4h, a+5h, a+6h и т.д. Приближенное значение интеграла получается суммированием N площадей:

интегрирование численный метод симпсон

В данную сумму входят одинаковые слагаемые (для внутренних узлов с четным значением индекса - 2i). Поэтому можно перегруппировать слагаемые в этой сумме таким образом:

Приняв во внимание то, что получаем:

Оценим теперь погрешность интегрирования по формуле Симпсона. Будем считать, что у функции на отрезкесуществуют непрерывные производные. Составим разность:

Применяя к этой разнице последовательно теорему о среднем и дифференцируя R(h) получаем погрешность метода Симпсона:

Погрешность метода уменьшается пропорционально длине шага интегрирования в четвертой степени, т.е. при увеличении числа интервалов вдвое ошибка уменьшается в 16 раз.

Преимущества и недостатки

Формулы Симпсона и Ньютона-Котеса являются хорошим аппаратом для вычисления определенного интеграла достаточное число раз непрерывно дифференцируемой функции. Так, при условии, что четвертая производная не слишком велика, метод Симпсона позволяет получить достаточно высокую точность. В то же время, ее алгебраический порядок точности 3, и формула Симпсона является точной для многочленов степени не выше третьей.

Также методы Ньютона-Котеса и в частности метод Симпсона будут наиболее эффективными в случаях, когда априорная информация о гладкости подынтегральной функции отсутствует, т.е. когда подынтегральная функция задана таблично.