Каким был последний ледниковый период на земле. Ледниковый период на земле

Территория современной России в четвертичное время неоднократно подвергалась крупным покровным оледенениям, разделявшимся межледниковыми эпохами, климат которых был близок к современному или даже теплее. Внутри ледниковых эпох выделялись стадии, чередовавшиеся с потеплениями более низкого ранга - интерстадиалами. Возраст древнейшей ледниковой эпохи составляет около 800 тыс. лет. Самый крупный ледниковый этап был связан с развитием донского оледенения, начавшегося более 500 тыс. лет назад. Льды тогда продвинулись в бассейны Оки, Дона и Нижней Волги до 51° с. ш. Более позднее оледенение - окское (более 350 тыс. лет назад) имело меньшие размеры и, по-видимому, не выходило за пределы бассейна Оки.

В Сибири максимальное оледенение раннего плейстоцена характеризовалось двумя крупными наступаниями. Льды продвинулись на юг до 62–64° с. ш., в бассейны современных низовьев Иртыша, среднего течения Оби и Енисея до устья Подкаменной Тунгуски; на северо-востоке они доходили до восточного побережья полуострова Таймыр.

В среднем плейстоцене, начавшемся около 350 тыс. лет назад, выделяются два ледниковых этапа. Ранний характеризовался развитием ледникового покрова в основном на северо-востоке Европейской части России. Его границы точно не установлены. Более молодой днепровский ледниковый покров развивался уже во вторую половину среднего плейстоцена, около 250 тыс. лет назад. Льды продвинулись тогда до среднего течения Днепра и верховий Оки в основном из западного, Скандинавского, центра. Роль днепровского ледникового покрова особенно возросла во вторую, московскую стадию этого же оледенения. Его рельефообразующая деятельность отчетливо проявилась в облике Смоленско-Рославльской, Тверской, Клинско-Дмитровской, Галичско-Чухломской возвышенностей.

На территории Сибири в это время известны два крупных покровных оледенения, достигавших в Западной Сибири 59–60° с. ш. Первое обширное двухфазное самаровское оледенение развивалось примерно в то же время, что и днепровское. Льды надвигались на материк со стороны шельфа и проникали на юг в бассейны современных рек Оби и Енисея до устья Подкаменной Тунгуски. Второе, тазовское оледенение сопоставляется по возрасту с московской стадией днепровского.

В позднем плейстоцене детальнее всего изучены наступания льда, последовавшие за последним, микулинским (казанцевским) межледниковьем, закончившимся 110–115 тыс. лет назад. Считается, что первое, ранневалдайское наступание льдов имело в европейской части России скромные размеры, а льды не выходили тогда за пределы Балтийской котловины. Напротив, в силу климатических причин оледенение этого возраста могло быть более обширным в Сибирском регионе России. Максимум последнего покровного оледенения позднего плейстоцена - валдайского (сартанского) относится ко времени 20–18 тыс. лет назад. Тогда на территорию Европейской России до современных верховьев Днепра и Волги продвинулся скандинавский ледник. На заключительных стадиях своего существования он, как и все предшествующие ледниковые покровы, оставлял обширные пространства холмисто-грядового рельефа, образованного валунными суглинками и песками (мореной). В пределах горных территорий в позднем плейстоцене формировались отдельные ледниковые купола и шапки, а в некоторых районах, например в Верхоянье, полупокровное и сетчатое оледенение.

В Азиатской части России на обширных низменностях и равнинах Западной, Средней и Восточной Сибири и в Восточной Европе к югу от границ скандинавского ледника распространялась область многолетней мерзлоты. Первые достоверные следы сплошной многолетней мерзлоты с признаками полигонально-жильных льдов на Северо-Востоке Азии известны с позднего плиоцена, на остальной территории Сибири - с эоплейстоцена и раннего плейстоцена, на Восточно-Европейской равнине - со среднего плейстоцена (печорский холодный этап).

В последние 250 тыс. лет фиксируется отчетливая тенденция сокращения в холодные этапы четвертичного периода площади покровных оледенений и возрастание площади сплошной многолетней мерзлоты (криолитозоны - подземного оледенения). Максимальных размеров криолитозона достигла в конце позднего плейстоцена (поздневалдайский - сартанский холодный этап). В это время южная граница многолетней мерзлоты на территории России продвинулась южнее 50° с. ш. Здесь повсеместно формировались полигонально-жильные льды. Их вытаивание в обусловило широкое развитие реликтового криогенного микрорельефа.

На протяжении второй половины четвертичного периода (последнего миллиона лет) происходила радикальная перестройка природных зон внутри природных циклов. В период оптимума последнего (микулинского) межледниковья (около 125 тыс. лет назад) лесной пояс значительно расширился на севере и на юге за счет сокращения соответственно зоны тундры, сохранившейся лишь на арктических островах, севере и на изолированных в результате ингрессии казанцевского моря северных участках Гыданского полуострова и Таймыра, а также зоны степи.

Чрезвычайно расширилась зона широколиственных лесов, заместившая всю подзону хвойно-широколиственных лесов и значительную часть подзоны южной тайги. Граница зоны широколиственных лесов в Европейской части России проходила более чем на 500 км севернее и на 200–300 км южнее ее современного положения. Соответственно значительно сместились на юг лесостепи, степи и полупустыни.

В высоких широтах, в пределах , тундра сменилась лесотундрой, ландшафты которой стали подходить к побережью океана. С юга к подзоне лесотундры примыкала таежная область, представленная лиственничными лесами.

Южнее подзоны северной тайги в Средней Сибири располагалась область кедрово-сосновых лесов, которые к востоку, в Центральной Якутии, сменялись сосново-березовыми и березово-лиственничными (на правобережье Лены) лесами.

Коренной перестройке ландшафтная зональность подверглась в ледниковую эпоху и особенно в фазу наибольшего похолодания, отвечающего максимуму в развитии ледниковых систем валдайского-сартанского возраста, то есть около 20–18 тыс. лет назад. Растительные сообщества перигляциальной области не имели современных аналогов.

Лесной пояс деградировал полностью. Таежные и широколиственные леса перестали существовать как компоненты зональной структуры. Представители древесной растительности сохраняли лишь подчиненное значение в ландшафтных системах. В пределах всего внетропического пространства господствующее положение заняли специфические ландшафты открытого типа, ядро которых составляли степные и тундровые сообщества, приспособленные к холодным перигляциальным условиям.


Буду благодарен, если Вы поделитесь этой статьей в социальных сетях:

Одна из кривых, показывающая колебание уровня моря за последние 18 000 лет (так называемая эвстатическая кривая). В 12 тысячелетии до н.э. уровень моря был примерно на 65 м ниже нынешнего, а в 8 тысячелетии до н.э. – уже на неполных 40 м. Подъем уровня происходил быстро, но неравномерно. (По Н. Мёрнеру, 1969)

Резкое падение уровня океана было связано с широким развитием материкового оледенения, когда огромные массы воды оказались изъятыми из океана и сконцентрировались в виде льда в высоких широтах планеты. Отсюда ледники медленно расползались в направлении средних широт в северном полушарии по суше, в южном - по морю в форме ледовых полей, перекрывавших шельф Антарктиды.

Известно, что в плейстоцене, продолжительность которого исчисляется в 1 млн лет, выделяются три фазы оледенения, называемые в Европе миндельской, рисской и вюрмской. Каждая из них длилась от 40-50 тыс. до 100-200 тыс. лет. Они были разделены межледниковыми эпохами, когда климат на Земле заметно теплел, приближаясь к современному. В отдельные эпизоды он становился даже на 2-3° теплее, что приводило к быстрому таянию льдов и освобождению от них огромных пространств на суше и в океане. Подобные резкие изменения климата сопровождались не менее резкими колебаниями уровня океана. В эпохи максимального оледенения он понижался, как уже говорилось, на 90-110 м, а в межледниковья повышался до отметки +10… 4- 20 м к нынешнему.

Плейстоцен - не единственный период, на протяжении которого происходили значительные колебания уровня океана. По существу, ими отмечены почти все геологические эпохи в истории Земли. Уровень океана был одним из самых нестабильных геологических факторов. Причем об этом было известно довольно давно. Ведь представления о трансгрессиях и регрессиях моря разработаны еще в XIX в. Да и как могло быть иначе, если во многих разрезах осадочных пород на платформах и в горно-складчатых областях явно континентальные осадки сменяются морскими и наоборот. О трансгрессии моря судили по появлению остатков морских организмов в породах, а о регрессии - по их исчезновению или появлению углей, солей или красноцветов. Изучая состав фаунистических и флористических комплексов, определяли (и определяют до сих пор), откуда приходило море. Обилие теплолюбивых форм указывало на вторжение вод из низких широт, преобладание бореальных организмов говорило о трансгрессии из высоких широт.

В истории каждого конкретного региона выделялся свой ряд трансгрессий и регрессий моря, так как считалось, что они обусловлены местными тектоническими событиями: вторжение морских вод связывали с опусканиями земной коры, их уход - с ее воздыманием. В применении к платформенным областям континентов на этом основании была даже создана теория колебательных движений: кратоны то опускались, то воздымались в соответствии с каким-то таинственным внутренним механизмом. Причем каждый кратон подчинялся собственному ритму колебательных движений.

Постепенно выяснилось, что трансгрессии и регрессии во многих случаях проявлялись практически одновременно в разных геологических регионах Земли. Однако неточности в палеонтологических датировках тех или иных групп слоев не позволяли ученым прийти к выводу о глобальном характере большинства этих явлений. Это неожиданное для многих геологов заключение было сделано американскими геофизиками П. Вейлом, Р. Митчемом и С. Томпсоном , изучавшими сейсмические разрезы осадочного чехла в пределах континентальных окраин. Сопоставление разрезов из разных регионов, зачастую весьма удаленных один от другого, помогло выявить приуроченность многих несогласий, перерывов, аккумулятивных или эрозионных форм к нескольким временным диапазонам в мезозое и кайнозое. По мысли этих исследователей, они отражали глобальный характер колебаний уровня океана. Кривая таких изменений, построенная П. Вейлом и др., позволяет не только выделить эпохи высокого или низкого его стояния, но и оценить, конечно в первом приближении, их масштабы. Собственно говоря, в этой кривой обобщен опыт работы геологов многих поколений. Действительно, о позднеюрской и позднемеловой трансгрессиях моря или о его отступании на рубеже юры и мела, в олигоцене, позднем миоцене можно узнать из любого учебника по исторической геологии. Новым явилось, пожалуй, то, что теперь эти явления связывались с изменениями уровня океанских вод.

Удивительными оказались масштабы этих изменений. Так, самая значительная морская трансгрессия, затопившая в сеноманское и туронское время большую часть континентов, была, как полагают, обусловлена подъемом уровня океанских вод более чем на 200-300 м выше современного. С самой же значительной регрессией, происшедшей в среднем олигоцене, связано падение этого уровня на 150-180 м ниже современного. Таким образом, суммарная амплитуда таких колебаний составляла в мезозое и кайнозое почти 400-500 м! Чем же были вызваны столь грандиозные колебания? На оледенения их не спишешь, так как на протяжении позднего мезозоя и первой половины кайнозоя климат на нашей планете был исключительно теплым. Впрочем, среднеолигоценовый минимум многие исследователи все же связывают с начавшимся резким похолоданием в высоких широтах и с развитием ледникового панциря Антарктиды. Однако одного этого, пожалуй, было недостаточно для снижения уровня океана сразу на 150 м.

Причиной подобных изменений явились тектонические перестройки, повлекшие за собой глобальное перераспределение водных масс в океане. Сейчас можно предложить лишь более или менее правдоподобные версии для объяснения колебаний его уровня в мезозое и раннем кайнозое. Так, анализируя важнейшие тектонические события, происшедшие на рубеже средней и поздней юры; а также раннего и позднего мела (с которыми связан длительный подъем уровня вод), мы обнаруживаем, что именно эти интервалы были отмечены раскрытием крупных океанических впадин. В поздней юре зародился и быстро расширялся западный рукав океана, Тетис (район Мексиканского залива и Центральной Атлантики), а конец раннемеловой и большая часть позднемеловой эпох ознаменовались раскрытием южной части Атлантики и многих впадин Индийского океана.

Как же заложение и спрединг дна в молодых океанических впадинах могли повлиять на положение уровня вод в океане? Дело в том, что глубина дна в них на первых этапах развития весьма незначительна, не более 1,5-2 тыс. м. Расширение же их площади происходит за счет соответствующего сокращения площади древних океанических водоемов, для которых характерна глубина 5-6 тыс. м, причем в зоне Беньофа поглощаются участки ложа глубоководных абиссальных котловин. Вытесняемая из исчезающих древних котловин вода поднимает общий уровень океана, что фиксируется в наземных разрезах континентов как трансгрессия моря.

Таким образом, распад континентальных мегаблоков должен сопровождаться постепенным повышением уровня океана. Именно это и происходило в мезозое, на протяжении которого уровень поднялся на 200-300 м, а может быть, и более, хотя этот подъем и прерывался эпохами краткосрочных регрессий.

С течением времени дно молодых океанов в процессе остывания новой коры и увеличения ее площади (закон Слейтера-Сорохтина) становилось все более глубоким. Поэтому последующее их раскрытие влияло уже гораздо меньше на положение уровня океанских вод. Однако оно неминуемо должно было привести к сокращению площади древних океанов и даже к полному исчезновению некоторых из них с лица Земли. В геологии это явление получило название «захлопывание» океанов. Оно реализуется в процессе сближения материков и их последующего столкновения. Казалось бы, захлопывание океанических впадин должно вызвать новый подъём уровня вод. На самом же деле происходит обратное. Дело здесь в мощной тектонической активизации, которая охватывает сходящиеся континенты. Горообразовательные процессы в полосе их столкновения сопровождаются общим воздыманием поверхности. В краевых же частях континентов тектоническая активизация проявляется в обрушении блоков шельфа и склона и в их опускании до уровня континентального подножия. По-видимому, эти опускания охватывают и прилегающие участки ложа океанов, в результате чего оно становится значительно более глубоким. Общий уровень океанских вод опускается.

Так как тектоническая активизация - событие одноактное и охватывает небольшой отрезок времени, то и падение уровня происходит значительно быстрее, чем его повышение при спрединге молодой океанической коры. Именно этим можно объяснить тот факт, что трансгрессии моря на континенте развиваются относительно медленно, тогда как регрессии наступают обычно резко.

Карта возможного затопления территории Евразии при различных величинах вероятного подъема уровня океана. Масштабы бедствия (при ожидаемом в течении XXI века повышении уровня моря на 1 м) будут гораздо меньше заметны на карте и почти не скажутся на жизни большинства государств. В увеличении даны районы побережий Северного и Балтийского морей и южного Китая. (Карту можно увеличить!)

А теперь давайте рассмотрим вопрос СРЕДНЕГО УРОВНЯ МОРЯ.

Геодезисты, производящие нивелировку на суше, определяют высоту над «средним уровнем моря». Океанографы, изучающие колебания уровня моря, сравнивают их с отметками на берегу. Но, увы, уровень моря даже «средний многолетний» — величина далеко не постоянная и к тому же не везде одинаковая, а морские берега в одних местах поднимаются, в других опускаются.

Примером современного опускания суши могут служить берега Дании и Голландии. В 1696 г. в датском г. Аггере в 650 м от берега стояла церковь. В 1858 г. остатки этой церкви окончательно поглотило море. Море за это время наступало на сушу с горизонтальной скоростью 4,5 м в год. Сейчас на западном побережье Дании завершается возведение плотины, которая должна преградить дальнейшее наступление моря.

Такой же опасности подвергаются низменные берега Голландии. Героические страницы истории нидерландского народа — это не только борьба за освобождение от испанского владычества, но и не менее героическая борьба с наступающим морем. Строго говоря, здесь не столько наступает море, сколько отступает перед ним опускающаяся суша. Это видно хотя бы из того, что средний уровень полных вод на о. Нордштранд в Северном море с 1362 по 1962 г. поднялся на 1,8 м. Первый репер (отметка высоты над уровнем моря) был сделан в Голландии на большом, специально установленном камне в 1682 г. Начиная с XVII и до середины XX в., опускание почвы на побережье Голландии происходило в среднем со скоростью 0,47 см в год. Сейчас голландцы не только обороняют страну от наступления моря, но и отвоевывают землю от моря, строя грандиозные плотины.

Есть, однако, такие места, где суша поднимается над морем. Так называемый Фенно-скандинавский щит после освобождения от тяжелых льдов ледникового периода продолжает подниматься и в наше время. Берег Скандинавского полуострова в Ботническом заливе поднимается со скоростью 1,2 см в год.

Известны также попеременные опускания и подъемы прибрежной суши. Например, берега Средиземного моря опускались и поднимались местами на несколько метров даже в историческое время. Об этом говорят колонны храма Сераписа близ Неаполя; морские пластинчатожаберные моллюски (Pholas) проточили в них ходы до высоты человеческого роста. Это значит, что со времени постройки храма в I в. н. э. суша опускалась настолько, что часть колонн была погружена в море и, вероятно, долгое время, так как иначе моллюски не успели бы проделать такую большую работу. Позднее храм со своими колоннами снова вышел из волн моря. По данным 120 наблюдательных станций, за 60 лет уровень всего Средиземного моря поднялся на 9 см.

Альпинисты говорят: «Мы штурмовали пик высотой над уровнем моря столько-то метров». Не только геодезисты, альпинисты, но и люди, совсем не связанные с подобными измерениями, привыкли к понятию высоты над уровнем моря. Она им представляется незыблемой. Но, увы, это далеко не так. Уровень океана непрерывно меняется. Его колеблют приливы, вызванные астрономическими причинами, ветровые волны, возбуждаемые ветром, и изменчивые, как сам ветер, ветровые наганы и сгоны воды у берегов, изменения атмосферного давления, отклоняющая сила вращения Земли, наконец, прогрев и охлаждение океанской воды. Кроме того, по исследованиям советских ученых И. В. Максимова, Н. Р. Смирнова и Г. Г. Хизанашвили, уровень океана изменяется вследствие эпизодических изменений скорости вращения Земли и перемещения оси ее вращения.

Если нагреть на 10° только верхние 100 м океанской воды, уровень океана поднимется на 1 см. Нагрев на 1° всей толщи океанской воды поднимает его уровень на 60 см. Таким образом, вследствие летнего прогрева и зимнего охлаждения уровень океана в средних и высоких широтах подвержен заметным сезонным колебаниям. По наблюдениям японского ученого Миязаки, средний уровень моря у западного берега Японии поднимается летом и понижается зимой и весной. Амплитуда его годовых колебаний — от 20 до 40 см. Уровень Атлантического океана в северном полушарии начинает повышаться летом и достигает максимума к зиме, в южном полушарии наблюдается обратный его ход.

Советский океанограф А. И. Дуванин различал два типа колебаний уровня Мирового океана: зональный, как следствие переноса теплых вод от экватора к полюсам, и муссонный, как результат продолжительных сгонов и нагонов, возбуждаемых муссонными ветрами, которые дуют с моря на сушу летом и в обратном направлении зимой.

Заметный наклон уровня океана наблюдается в зонах, охваченных океанскими течениями. Он образуется как в направлении течения, так и поперек его. Поперечный наклон на дистанции 100-200 миль достигает 10-15 см и меняется вместе с изменениями скорости течения. Причина поперечного наклона поверхности течения — отклоняющая сила вращения Земли.

Море заметно реагирует и на изменение атмосферного давления. В таких случаях оно действует как «перевернутый барометр»: больше давление — ниже уровень моря, меньше давление — уровень моря выше. Один миллиметр барометрического давления (точнее — один миллибар) соответствует одному сантиметру высоты уровня моря.

Изменения атмосферного давления могут быть кратковременными и сезонными. По исследованиям финского океанолога Е. Лисицыной и американского — Дж. Патулло, колебания уровня, вызванные переменами атмосферного давления, носят изостатический характер. Это значит, что суммарное давление воздуха и воды на дно в данном участке моря стремится оставаться постоянным. Нагретый и разреженный воздух вызывает подъем уровня, холодный и плотный — понижение.

Случается, что геодезисты ведут нивелировку вдоль берега моря или по суше от одного моря к другому. Придя в конечный пункт, они обнаруживают неувязку и начинают искать ошибку. Но напрасно они ломают голову — ошибки может и не быть. Причина неувязки в том, что уровенная поверхность моря далека от эквипотенциальной. Например, под действием преобладающих ветров между центральной частью Балтийского моря и Ботническим заливом средняя разница в уровне, по данным Е. Лисицыной,- около 30 см. Между северной и южной частью Ботнического залива на дистанции 65 км уровень изменяется на 9,5 см. Между сторонами Ламанша разница в уровне — 8 см (Криз и Картрайт). Уклон поверхности моря от Ламанша до Балтики, по подсчетам Боудена,- 35 см. Уровень Тихого океана и Карибского моря по концам Панамского канала, длина которого всего 80 км, разнится на 18 см. Вообще уровень Тихого океана всегда несколько выше уровня Атлантического. Даже, если продвигаться вдоль атлантического побережья Северной Америки с юга на север, обнаруживается постепенный подъем уровня на 35 см.

Не останавливаясь на значительных колебаниях уровня Мирового океана, происходивших в минувшие геологические периоды, мы лишь отметим, что постепенное повышение уровня океана, которое наблюдалось на протяжении XX в., равняется в среднем 1,2 мм в год. Вызвано оно, видимо, общим потеплением климата нашей планеты и постепенным освобождением значительных масс воды, скованных до этого времени ледниками.

Итак, ни океанологи не могут полагаться на отметки геодезистов на суше, ни геодезисты — на показания мареографов, установленных у берегов в море. Уровенная поверхность океана далека от идеальной эквипотенциальной поверхности. К точному ее определению можно прийти путем совместных усилий геодезистов и океанологов, да и то не ранее того, как будет накоплен по крайней мере столетний материал одновременных наблюдений за вертикальными движениями земной коры и колебаниями уровня моря в сотнях, даже тысячах пунктов. А пока «среднего уровня» океана нет! Или, что одно и то же, их много — в каждом пункте берега свой!

Философов и географов седой древности, которым приходилось пользоваться лишь умозрительными методами решения геофизических проблем, тоже весьма интересовала проблема уровня океана, хотя и в другом аспекте. Наиболее конкретные высказывания на этот счет мы находим у Плиния Старшего, который, между прочим, незадолго до своей гибели при наблюдении извержения Везувия, довольно самонадеянно писал: «В океане в настоящее время нет ничего такого, чего мы не могли бы объяснить». Так вот, если отбросить споры латинистов о правильности перевода некоторых рассуждений Плиния об океане, можно сказать, что он рассматривал его с двух точек зрения — океан на плоской Земле и океан на сферической Земле. Если Земля круглая, рассуждал Плиний, то почему воды океана на обратной ее стороне не стекают в пустоту; а если она плоская, то по какой причине океанские воды не заливают сушу, если каждому стоящему на берегу совершенно ясно видна горообразная выпуклость океана, за которой на горизонте скрываются корабли. В обоих случаях он объяснял это так; вода всегда стремится к центру суши, который расположен где-то ниже ее поверхности.

Проблема уровня океана казалась неразрешимой два тысячелетия назад и, как мы видим, остается неразрешенной до наших дней. Впрочем, не исключена возможность, что особенности уровенной поверхности океана будут определены в недалеком будущем путем геофизических измерений, произведенных с помощью искусственных спутников Земли.


Гравитационная карту Земли, составленная спутником GOCE.
Сегодняшние дни …

Океанологи повторно изучили уже известные данные по росту уровня моря за последние 125 лет и пришли к неожиданному выводу - если на протяжении практически всего 20 века он поднимался заметно медленнее, чем мы считали ранее, то в последние 25 лет он рос очень быстрыми темпами, говорится в статье, опубликованной в журнале Nature.

Группа исследователей пришла к таким выводам после анализа данных по колебаниям уровней морей и океанов Земли во время приливов и отливов, которые собираются в разных уголках планеты при помощи специальных приборов-мареографов на протяжении века. Данные с этих приборов, как отмечают ученые, традиционно используются для оценки роста уровня моря, однако эти сведения не всегда являются абсолютно точными и часто содержат в себе большие временные пробелы.

«Эти усредненные значения не соответствуют тому, как на самом деле растет море. Мареографы обычно расположены вдоль берегов. Из-за чего большие области океана невключаются в эти оценки, и если они туда входят, то они обычно содержат в себе большие «дырки», - приводятся в статье слова Карлинга Хэя (Carling Hay) из Гарвардского университета (США).

Как добавляет другой автор статьи, гарвардский океанолог Эрик Морроу (Eric Morrow), до начала 1950-х годов человечество не вело систематических наблюдений за уровнем моря на глобальном уровне, из-за чего у нас почти нет достоверных сведений о том, как быстро рос мировой океан в первой половине 20 века.

Днепровское оледенение
было максимальным в среднем плейстоцене (250-170 или 110 тыс. лет назад). Оно состояло из двух или трех стадий.

Иногда последнюю стадию Днепровского оледенения выделяют в самостоятельное московское оледенение (170-125 или 110 тыс. лет назад), а разделеющий их период относительно теплого времени рассматривают как одинцовское межледниковье.

В максимальную стадию этого оледенения значительная часть Русской равнины была занята ледниковым покровом, который узким языком по долине Днепра проникал на юг до устья р. Орели. На большей части данной территории существовала многолетняя мерзлота, а среднегодовая температура воздуха была тогда не выше -5-6°С.
На юго-востоке Русской равнины в среднем плейстоцене произошло так называемое «раннехазарское» повышение уровня Каспийского моря на 40-50 м, которое состояло из нескольких фаз. Их точная датировка неизвестна.

Микулинское межледниковье
Вслед за днепровским оледенением последовало (125 или 110-70 тыс. лет назад). В это время в центральных районах Русской равнины зима была значительно мягче, чем сейчас. Если в настоящее время средние температуры января близки к -10°С, то в микулинское межледниковье они не опускались ниже -3°С.
Микулинскому времени соответствовало так называемое «позднехазарское» повышение уровня Каспийского моря. На севере Русской равнины отмечалось синхронное повышение уровня Балтийского моря, которое соединялось тогда с Ладожским и Онежским озерами и, возможно, Белым морем, а также Северного Ледовитого океана. Общее колебание уровня мирового океана между эпохами оледенения и таяния льдов составляло 130-150 м.

Валдайское оледенение
После микулинского межледниковья наступило , состоящее из ранневалдайского или тверского (70-55 тыс. лет назад) и поздневалдайского или осташковского (24-12:-10 тыс. лет назад) оледенений, разделенных средневалдайским периодом неоднократных (до 5) колебаний температуры, во время которых климат был гораздо холоднее современного (55-24 тыс. лет назад).
На юге Русской платформы раннему валдаю отвечает значительное «аттельское» понижение – на 100-120 метров – уровня Каспийского моря. Вслед за ним последовало «раннехвалынское» повышение уровня моря примерно на 200 м (на 80 м выше первоначальной отметки). Согласно расчетам А.П. Чепалыги (Chepalyga,т1984), поступление влаги в Каспийский бассейн верхнехвалынского времени превышало ее потери приблизительно на 12 куб. км в год.
После «раннехвалынского» повышения уровня моря последовало «енотаевское» понижение уровня моря, а затем вновь «позднехвалынское» повышение уровня моря примерно на 30 м относительно его первоначального положения. Максимум позднехвалынской трансгрессии пришелся, по данным Г.И. Рычагова, на конец позднего плейстоцена (16 тыс. лет назад). Позднехвалынский бассейн характеризовался температурами водной толщи, несколько ниже современных.
Новое понижение уровня моря происходило довольно быстро. Оно достигло максимума (50 м) в самом начале голоцена (0,01-0 млн. лет назад), около 10 тысяч лет назад, и сменилось последним – «новокаспийским» повышением уровня моря примерно на 70 м около 8 тысяч лет назад.
Примерно такие же колебания поверхности воды происходили в Балтийском море и на Северном Ледовитом океане. Общее колебание уровня мирового океана между эпохами оледенения и таяния льдов составляло тогда 80-100 м.

Согласно результатам радиоизотопного анализа более чем 500 различных геологических и биологических образцов, взятых на юге Чили, средние широты на западе Южного полушария испытывали потепления и похолодания в то же самое время, что и средние широты на западе Северного полушария.

Раздел " Мир в плейстоцене. Великие оледенения и исход с Гипербореи " / Одиннадцать оледенений четвертичного периода и ядерные войны


© А.В. Колтыпин, 2010

Климат Земли периодически претерпевает серьезные изменения, связанные с чередующимися масштабными похолоданиями, сопровождавшимися формированием на континентах устойчивых ледниковых покровов, и потеплениями. Последняя ледниковая эпоха, завершившаяся приблизительно 11-10 тысяч лет назад, для территории Восточно-Европейской равнины носит название Валдайского оледенения.

Систематика и терминология периодических похолоданий

Наиболее продолжительные этапы общих похолоданий в истории климата нашей планеты называют криоэрами, или ледниковыми эрами длительностью до сотен миллионов лет. В настоящее время на Земле уже около 65 миллионов лет продолжается и, по-видимому, будет тянуться еще очень долго (судя по предыдущим подобным этапам) кайнозойская криоэра.

На протяжении эр ученые выделяют ледниковые периоды, перемежающиеся фазами относительного потепления. Периоды могут длиться миллионы и десятки миллионов лет. Современный ледниковый период - четвертичный (наименование дано в соответствии с геологическим периодом) или, как иногда говорят, плейстоценовый (по более мелкому геохронологическому подразделению - эпохе). Он начался примерно 3 миллиона лет назад и, судя по всему, еще далек от завершения.

В свою очередь, ледниковые периоды складываются из более кратковременных - несколько десятков тысяч лет - ледниковых эпох, или оледенений (иногда используется термин «гляциал»). Теплые промежутки между ними именуют межледниковьями, или интергляциалами. Мы сейчас живем именно во время такой межледниковой эпохи, сменившей на Русской равнине Валдайское оледенение. Оледенения при наличии несомненных общих черт характеризуются региональными особенностями, поэтому получают названия по той или иной местности.

Внутри эпох различают стадии (стадиалы) и интерстадиалы, на протяжении которых климат испытывает самые кратковременные колебания - пессимумы (похолодания) и оптимумы. Настоящее время характеризуется климатическим оптимумом субатлантического интерстадиала.

Возраст Валдайского оледенения и его фазы

По хронологическим рамкам и условиям разделения на стадии этот ледник несколько отличается от Вюрмского (Альпы), Вислинского (Средняя Европа), Висконсинского (Северная Америка) и прочих соответствующих ему покровных оледенений. На Восточно-Европейской равнине начало эпохи, сменившей Микулинское межледниковье, относят ко времени около 80 тысяч лет назад. Следует отметить, что установление четких временных границ представляет серьезную трудность - как правило, они размыты, - поэтому хронологические рамки этапов существенно колеблются.

Большинство исследователей различают две стадии Валдайского оледенения: это Калининская с максимумом льдов приблизительно 70 тысяч лет назад и Осташковская (около 20 тысяч лет назад). Разделяет их Брянский интерстадиал - потепление, продолжавшееся примерно с 45-35 до 32-24 тысяч лет назад. Некоторые ученые, однако, предлагают более дробное членение эпохи - до семи стадий. Что касается отступления ледника, то оно произошло за период от 12,5 до 10 тысяч лет назад.

География ледника и климатические условия

Центром последнего оледенения в Европе была Фенноскандия (включает территории Скандинавии, Ботнического залива, Финляндии и Карелии с Кольским полуостровом). Отсюда ледник периодически разрастался к югу, в том числе и на Русскую равнину. Он был менее масштабным по охвату, чем предшествовавшее Московское оледенение. Граница Валдайского ледового щита проходила в северо-восточном направлении и в максимуме не достигала Смоленска, Москвы, Костромы. Затем на территории Архангельской области граница круто поворачивала на север к Белому и Баренцеву морям.

В центре оледенения мощность Скандинавского ледового щита достигала 3 км, что сравнимо с Ледник Восточно-Европейской равнины имел мощность 1-2 км. Интересно, что при значительно меньшей развитости ледового покрова Валдайское оледенение характеризовалось суровыми климатическими условиями. Среднегодовые температуры во время последнего ледникового максимума - Осташковского - лишь ненамного превышали температуры эпохи очень мощного Московского оледенения (-6 °C) и были на 6-7 °С ниже современных.

Последствия оледенения

Повсеместно распространенные на Русской равнине следы Валдайского оледенения свидетельствуют о сильном влиянии, которое оно оказало на ландшафт. Ледник стер многие неровности, оставленные Московским оледенением, и сформировал при своем отступлении, когда из массы льда вытаивало огромное количество песка, обломков и прочих включений, отложения мощностью до 100 метров.

Ледовый покров продвигался не сплошной массой, а дифференцированными потоками, по бортам которых образовались нагромождения обломочного материала - краевые морены. Таковыми являются, в частности, некоторые гряды в составе нынешней Валдайской возвышенности. Вообще, для всей равнины характерна холмисто-моренная поверхность, например, большое количество друмлинов - невысоких вытянутых холмов.

Очень наглядные следы оледенения - это озера, образовавшиеся в ложбинах, выпаханных ледником (Ладожское, Онежское, Ильмень, Чудское и другие). Речная сеть региона также приобрела современный вид в результате воздействия ледового щита.

Валдайское оледенение изменило не только ландшафт, но и состав флоры и фауны Русской равнины, повлияло на ареал расселения древнего человека - словом, имело для данного региона важные и многогранные последствия.

В настоящее время глобальный объем льда составляет более 20 миллионов кубических километров. По оценкам некоторых ученых, чтобы весь он растаял, необходимо более 5000 лет. Если человечество продолжит сжигать ископаемое топливо, очень вероятно, что в итоге мы получим свободную ото льда планету со средней температурой 26 °C вместо нынешних 14 °C.

Представленные карты показывают наш мир таким, как он выглядит сейчас, с одной лишь разницей: весь лед на Земле превратился в воду, что привело к повышению уровня моря на 65 метров и образованию новых береговых линий у континентов и внутренних морей.

Итак, посмотрим, каким же может быть «растаявший» мир.

Северная Америка

Исчезнет все Атлантическое побережье вдоль Флориды и Мексиканского залива. Холмы Сан-Франциско в Калифорнии станут скоплением островов, а Центральная долина — гигантским заливом. Калифорнийский залив будет простираться на север выше широты Сан-Диего.

Южная Америка

Бассейн Амазонки на севере и бассейн реки Парагвай на юге стали бы атлантическими заливами, стерев с лица Земли Буэнос-Айрес, прибрежные районы Уругвая и большую часть Парагвая. Горные участки уцелели ли бы вдоль побережья Карибского моря и в Центральной Америке.

Африка

По сравнению с другими континентами Африка потеряет меньше всего земли из-за повышения уровня моря, но рост глобальной температуры может сделать многие из ее территорий непригодными для проживания. В Египте Александрию и Каир затопит Средиземное море.

Европа

Лондон останется лишь воспоминанием, как и Венеция, поглощенная Адриатическим морем. Через тысячи лет, согласно этому катастрофическому сценарию, Нидерланды и большая часть Дании тоже уйдут под воду. Вместе с тем все сильнее будут разрастаться Черное и Каспийское моря, питаемые средиземными водами.

Азия

Земли, на которых сейчас проживают 600 миллионов китайцев, будут затоплены, равно как и Бангладеш с населением 160 миллионов человек, и большая часть прибрежной Индии. В Камбодже, в дельте реки Меконг, останутся лишь Кардамоновы горы в виде острова на отмели.

Австралия

В основном пустынный континент получил бы новое внутреннее море — но потерял бы большую часть узкой прибрежной полосы, где в настоящее время проживают четыре пятых населения.

Антарктика

Ледяной покров Восточной Антарктики настолько велик (на него приходится четыре пятых всего льда на Земле), что может показаться устойчивым. Он пережил прежние теплые периоды, оставшись невредимым. Но в последнее время из-за глобального потепления его утолщение совсем незначительно. Хотя чем теплее атмосфера, тем больше она содержит водяного пара, который падает на регион в виде снега. Но даже это «ледяное чудище» вряд ли выдержит возвращение климата эпохи эоцена.

Как и ледяной покров Гренландии, Западная Антарктика была, очевидно, намного меньше в более ранние периоды потепления. Эти регионы уязвимы, так как большая часть их территорий представляет собой скальную породу, расположенную ниже уровня моря. При потеплении океана ледниковый покров тает снизу, что способствует его разрушению. С 1992 года он убывал в среднем на 65 миллионов тонн льда в год.