Коэффициент показатель адиабаты для воды. Определение показателя адиабаты

Расчет давления во фронте воздушной ударной волны при разрушении емкости проводится по формулам (3.12), (3.45), в последней из которых величина aMQ v н заменяется на Е, значение коэффициента b 1 = 0,3.

Серьезную опасность представляет разлет осколков, образующихся при разрушении емкости. Движение осколка с известной начальной скоростью можно описать системой уравнений вида

\s\up15(x" = -\f((0C1S1 \b (x" -\f((0C2S2 \b (x"2 + y"2 (3.45)

где m - масса осколка, кг;C 1 ,C 2 - коэффициенты лобового сопротивления и подъемной силы осколка соответственно;S 1 ,S 2 - площадь лобовой и боковой поверхности осколка, м 2 ;r 0 - плотность воздуха, кг/м 3 ;a - угол вылета осколка;x, y - координатные оси.

Решение этой системы уравнений приведено на рис. 3.7.

В приближенных расчетах для оценки дальности разлета осколков допускается использовать соотношение

где L m - максимальная дальность разлета осколков, м;V 0 - начальная скорость полета осколков,м/с;g = 9,81 м/с 2 - ускорение свободного падения.

Соотношение (3.46) получено для случая полета осколков в безвоздушном пространстве. При больших величинах V 0 оно дает завышение значения L m . Дальность L m , определенную таким образом, следует ограничить сверху величиной L *

L m £ L * = 238 3.47,

где Е - энергия рассматриваемого взрыва, Дж;Q v тр - теплота взрыва тротила (табл.2), Дж/кг.Значения L * получены при взрывах тротиловых зарядов в металлической оболочке (бомб, снарядов).

При взрыве емкости со сжатым горючим газом энергия взрыва Е, Дж, находится по соотношению

E = + MQ v п 3.48,

где M = awM 0 - масса газа, участвующего во взрыве, кг;Q v п - теплота взрыва горючего газа, Дж/кг;a, w - коэффициенты, определяемые согласно (3.32), (3.45);

Масса газа в емкости до взрыва M 0 = Vr 0 , где величины P 0 , P г, V имеют то же значение, что и в формуле (3.46), а величина r 0 - плотность газа при атмосферном давлении.



Как отмечалось в разделе 3.4, показатель адиабаты продуктов взрыва ГВС g » 1,25. Более точные значения показателя адиабаты некоторых газов, используемые для расчета последствий взрыва, приведены в табл.3.8.

Таблица 3.8

В рассматриваемом случае также имеет место соотношение Е »E ув + Е оск + Е т, где Е - энергия взрыва, Е ув = b 1 Е - энергия, расходуемая на формирование воздушной ударной волны, Е оск = b 2 Е - кинетическая энергия осколков, Е т = b 0 Е - энергия, идущая на тепловое излучение. Согласно данным здесь коэффициенты b 1 = 0,2, b 2 = 0,5, b 3 = 0,3.

Расчет давления во фронте воздушной ударной волны и дальности разлета осколков при известных значениях энергии взрыва Е и коэффициентов b 1 , b 2 , b 3 приводится по аналогии с рассмотренным случаем взрыва емкости с инертным газом.

Необходимо отметить различие событий, происходящих при разгерметизации сосудов, содержащих газ под давлением, и сосудов, содержащих сжиженные газы. Если в первом случае основным поражающим фактором являются осколки оболочки, то во втором - осколки могут не образоваться, так как при нарушении герметичности баллонов с сжиженными газами их внутреннее давление практически одновременно с разгерметизацией становится равным внешнему и далее вступают в действие процессы истечения сжиженного газа из разрушенного баллона в окружающую среду и его испарения. При этом в случае взрыва основными поражающими факторами являются ударная волна и тепловое излучение.

) - отношение теплоёмкости при постоянном давлении (C_P) к теплоёмкости при постоянном объёме (C_V). Иногда его ещё называют фактором изоэнтропийного расширения . Обозначается греческой буквой \gamma (гамма) или \kappa (каппа). Буквенный символ в основном используется в химических инженерных дисциплинах. В теплотехнике используется латинская буква k .

Уравнение:

\gamma = \frac{C_P}{C_V} = \frac{c_P}{c_V},

Соотношения с использованием количества степеней свободы

Показатель адиабаты (\gamma) для идеального газа может быть выражен через количество степеней свободы (i) молекул газа:

\gamma = \frac{i+2}{i}\qquad или \qquad i = \frac{2}{\gamma - 1}.

Термодинамические выражения

Значения, полученные с помощью приближённых соотношений (в частности, C_p - C_v = R), во многих случаях являются недостаточно точными для практических инженерных расчётов, таких, как расчёты расходов через трубопроводы и клапаны. Предпочтительнее использовать экспериментальные значения, чем те, которые получены с помощью приближённых формул. Строгие значения соотношения \frac{C_p}{C_v} может быть вычислено путём определения C_v из свойств, выраженных как:

C_p - C_v \ = \ -T \frac{{\left({\frac{\part V}{\part T}} \right)_P^2 }} {\left(\frac{\part V}{\part P}\right)_T} \ = \ -T \frac{{ \left({\frac{\part P}{\part T}} \right) }^2} {\frac{\part P}{\part V}}

Значения C_p не составляет труда измерить, в то время как значения для C_v необходимо определять из формул, подобных этой. (англ. ) для получения более подробной информации о соотношениях между теплоёмкостями.

Адиабатический процесс

PV^\gamma = \text{constant}

где P - это давление и V - объём газа.

Экспериментальное определение величины показателя адиабаты

Поскольку процессы, происходящие в небольших объёмах газа при прохождении звуковой волны, близки к адиабатическим , показатель адиабаты можно определить, измерив скорость звука в газе. В этом случае показатель адиабаты и скорость звука в газе будут связаны следующим выражением:

c = \sqrt{\frac{\gamma kT}{m}} = \sqrt{\frac{\gamma RT}{M}}

где \gamma - показатель адиабаты; k - постоянная Больцмана ; R - универсальная газовая постоянная ; T - абсолютная температура в кельвинах ; m - молекулярная масса ; M - молярная масса .

Другим способом экспериментального определения величины показателя адиабаты является метод Клемана - Дезорма , который часто используется в учебных целях при выполнении лабораторных работ. Метод основан на изучении параметров некоторой массы газа, переходящей из одного состояния в другое двумя последовательными процессами: адиабатическим и изохорическим.

Лабораторная установка включает стеклянный баллон, соединенный с манометром, краном и резиновой грушей. Груша служит для нагнетания воздуха в баллон. Специальный зажим предотвращает утечку воздуха из баллона. Манометр измеряет разность давлений внутри и вне баллона. Кран может выпускать воздух из баллона в атмосферу.

Пусть первоначально в баллоне было атмосферное давление и комнатная температура. Процесс выполнения работы можно условно разбить на два этапа, каждый из которых включает в себя адиабатный и изохорный процесс.

1-й этап:
При закрытом кране накачиваем в баллон небольшое количество воздуха и зажимаем шланг зажимом. При этом давление и температура в баллоне повысятся. Это адиабатный процесс. Со временем давление в баллоне начнет уменьшаться вследствие того, что газ в баллоне начнёт охлаждаться за счет теплообмена через стенки баллона. При этом давление будет уменьшаться при постоянном объёме. Это изохорный процесс. Выждав, когда температура воздуха внутри баллона сравняется с температурой окружающего воздуха, запишем показания манометра h_1.

2-й этап:
Теперь откроем кран 3 на 1-2 секунды. Воздух в баллоне будет адиабатно расширяться до атмосферного давления. При этом температура в баллоне понизится. Затем кран закроем. Со временем давление в баллоне начнет увеличиваться вследствие того, что газ в баллоне начнет нагреваться за счет теплообмена через стенки баллона. При этом снова будет увеличиваться давление при постоянном объёме. Это изохорный процесс. Выждав, когда температура воздуха внутри баллона сравнится с температурой окружающего воздуха, запишем показание манометра h_2. Для каждой ветви 2-х этапов можно написать соответствующие уравнения адиабаты и изохоры. Получится система уравнений, которые включают в себя показатель адиабаты. Их приближённое решение приводит к следующей расчетной формуле для искомой величины:

\gamma = {h_1 \over {h_1 - h_2}}

Недостатком данного метода является то, что процессы быстрого расширения газа в ходе лабораторной работы не являются чисто адиабатическими ввиду теплообмена через стенку сосудов, а рассматриваемый газ заведомо не является идеальным. И хотя полученная в ходе лабораторной работы величина будет заведомо содержать методическую погрешность, всё же существуют различные способы её устранения, например, за счет учета времени расширения и количества подведенного за это время тепла.

См. также

  • Термодинамические уравнения (англ. )

Напишите отзыв о статье "Показатель адиабаты"

Примечания

Отрывок, характеризующий Показатель адиабаты

Соня утерла слезы и подошла к Наташе, опять вглядываясь в ее лицо.
– Наташа! – сказала она чуть слышно.
Наташа проснулась и увидала Соню.
– А, вернулась?
И с решительностью и нежностью, которая бывает в минуты пробуждения, она обняла подругу, но заметив смущение на лице Сони, лицо Наташи выразило смущение и подозрительность.
– Соня, ты прочла письмо? – сказала она.
– Да, – тихо сказала Соня.
Наташа восторженно улыбнулась.
– Нет, Соня, я не могу больше! – сказала она. – Я не могу больше скрывать от тебя. Ты знаешь, мы любим друг друга!… Соня, голубчик, он пишет… Соня…
Соня, как бы не веря своим ушам, смотрела во все глаза на Наташу.
– А Болконский? – сказала она.
– Ах, Соня, ах коли бы ты могла знать, как я счастлива! – сказала Наташа. – Ты не знаешь, что такое любовь…
– Но, Наташа, неужели то всё кончено?
Наташа большими, открытыми глазами смотрела на Соню, как будто не понимая ее вопроса.
– Что ж, ты отказываешь князю Андрею? – сказала Соня.
– Ах, ты ничего не понимаешь, ты не говори глупости, ты слушай, – с мгновенной досадой сказала Наташа.
– Нет, я не могу этому верить, – повторила Соня. – Я не понимаю. Как же ты год целый любила одного человека и вдруг… Ведь ты только три раза видела его. Наташа, я тебе не верю, ты шалишь. В три дня забыть всё и так…
– Три дня, – сказала Наташа. – Мне кажется, я сто лет люблю его. Мне кажется, что я никого никогда не любила прежде его. Ты этого не можешь понять. Соня, постой, садись тут. – Наташа обняла и поцеловала ее.
– Мне говорили, что это бывает и ты верно слышала, но я теперь только испытала эту любовь. Это не то, что прежде. Как только я увидала его, я почувствовала, что он мой властелин, и я раба его, и что я не могу не любить его. Да, раба! Что он мне велит, то я и сделаю. Ты не понимаешь этого. Что ж мне делать? Что ж мне делать, Соня? – говорила Наташа с счастливым и испуганным лицом.
– Но ты подумай, что ты делаешь, – говорила Соня, – я не могу этого так оставить. Эти тайные письма… Как ты могла его допустить до этого? – говорила она с ужасом и с отвращением, которое она с трудом скрывала.
– Я тебе говорила, – отвечала Наташа, – что у меня нет воли, как ты не понимаешь этого: я его люблю!
– Так я не допущу до этого, я расскажу, – с прорвавшимися слезами вскрикнула Соня.
– Что ты, ради Бога… Ежели ты расскажешь, ты мой враг, – заговорила Наташа. – Ты хочешь моего несчастия, ты хочешь, чтоб нас разлучили…
Увидав этот страх Наташи, Соня заплакала слезами стыда и жалости за свою подругу.
– Но что было между вами? – спросила она. – Что он говорил тебе? Зачем он не ездит в дом?
Наташа не отвечала на ее вопрос.
– Ради Бога, Соня, никому не говори, не мучай меня, – упрашивала Наташа. – Ты помни, что нельзя вмешиваться в такие дела. Я тебе открыла…
– Но зачем эти тайны! Отчего же он не ездит в дом? – спрашивала Соня. – Отчего он прямо не ищет твоей руки? Ведь князь Андрей дал тебе полную свободу, ежели уж так; но я не верю этому. Наташа, ты подумала, какие могут быть тайные причины?
Наташа удивленными глазами смотрела на Соню. Видно, ей самой в первый раз представлялся этот вопрос и она не знала, что отвечать на него.
– Какие причины, не знаю. Но стало быть есть причины!
Соня вздохнула и недоверчиво покачала головой.
– Ежели бы были причины… – начала она. Но Наташа угадывая ее сомнение, испуганно перебила ее.
– Соня, нельзя сомневаться в нем, нельзя, нельзя, ты понимаешь ли? – прокричала она.
– Любит ли он тебя?
– Любит ли? – повторила Наташа с улыбкой сожаления о непонятливости своей подруги. – Ведь ты прочла письмо, ты видела его?
– Но если он неблагородный человек?
– Он!… неблагородный человек? Коли бы ты знала! – говорила Наташа.
– Если он благородный человек, то он или должен объявить свое намерение, или перестать видеться с тобой; и ежели ты не хочешь этого сделать, то я сделаю это, я напишу ему, я скажу папа, – решительно сказала Соня.
– Да я жить не могу без него! – закричала Наташа.
– Наташа, я не понимаю тебя. И что ты говоришь! Вспомни об отце, о Nicolas.
– Мне никого не нужно, я никого не люблю, кроме его. Как ты смеешь говорить, что он неблагороден? Ты разве не знаешь, что я его люблю? – кричала Наташа. – Соня, уйди, я не хочу с тобой ссориться, уйди, ради Бога уйди: ты видишь, как я мучаюсь, – злобно кричала Наташа сдержанно раздраженным и отчаянным голосом. Соня разрыдалась и выбежала из комнаты.
Наташа подошла к столу и, не думав ни минуты, написала тот ответ княжне Марье, который она не могла написать целое утро. В письме этом она коротко писала княжне Марье, что все недоразуменья их кончены, что, пользуясь великодушием князя Андрея, который уезжая дал ей свободу, она просит ее забыть всё и простить ее ежели она перед нею виновата, но что она не может быть его женой. Всё это ей казалось так легко, просто и ясно в эту минуту.

В пятницу Ростовы должны были ехать в деревню, а граф в среду поехал с покупщиком в свою подмосковную.
В день отъезда графа, Соня с Наташей были званы на большой обед к Карагиным, и Марья Дмитриевна повезла их. На обеде этом Наташа опять встретилась с Анатолем, и Соня заметила, что Наташа говорила с ним что то, желая не быть услышанной, и всё время обеда была еще более взволнована, чем прежде. Когда они вернулись домой, Наташа начала первая с Соней то объяснение, которого ждала ее подруга.
– Вот ты, Соня, говорила разные глупости про него, – начала Наташа кротким голосом, тем голосом, которым говорят дети, когда хотят, чтобы их похвалили. – Мы объяснились с ним нынче.
– Ну, что же, что? Ну что ж он сказал? Наташа, как я рада, что ты не сердишься на меня. Говори мне всё, всю правду. Что же он сказал?
Наташа задумалась.
– Ах Соня, если бы ты знала его так, как я! Он сказал… Он спрашивал меня о том, как я обещала Болконскому. Он обрадовался, что от меня зависит отказать ему.
Соня грустно вздохнула.
– Но ведь ты не отказала Болконскому, – сказала она.
– А может быть я и отказала! Может быть с Болконским всё кончено. Почему ты думаешь про меня так дурно?
– Я ничего не думаю, я только не понимаю этого…
– Подожди, Соня, ты всё поймешь. Увидишь, какой он человек. Ты не думай дурное ни про меня, ни про него.
– Я ни про кого не думаю дурное: я всех люблю и всех жалею. Но что же мне делать?
Соня не сдавалась на нежный тон, с которым к ней обращалась Наташа. Чем размягченнее и искательнее было выражение лица Наташи, тем серьезнее и строже было лицо Сони.
– Наташа, – сказала она, – ты просила меня не говорить с тобой, я и не говорила, теперь ты сама начала. Наташа, я не верю ему. Зачем эта тайна?
– Опять, опять! – перебила Наташа.
– Наташа, я боюсь за тебя.
– Чего бояться?
– Я боюсь, что ты погубишь себя, – решительно сказала Соня, сама испугавшись того что она сказала.
Лицо Наташи опять выразило злобу.
– И погублю, погублю, как можно скорее погублю себя. Не ваше дело. Не вам, а мне дурно будет. Оставь, оставь меня. Я ненавижу тебя.
– Наташа! – испуганно взывала Соня.
– Ненавижу, ненавижу! И ты мой враг навсегда!
Наташа выбежала из комнаты.
Наташа не говорила больше с Соней и избегала ее. С тем же выражением взволнованного удивления и преступности она ходила по комнатам, принимаясь то за то, то за другое занятие и тотчас же бросая их.
Как это ни тяжело было для Сони, но она, не спуская глаз, следила за своей подругой.
Накануне того дня, в который должен был вернуться граф, Соня заметила, что Наташа сидела всё утро у окна гостиной, как будто ожидая чего то и что она сделала какой то знак проехавшему военному, которого Соня приняла за Анатоля.
Соня стала еще внимательнее наблюдать свою подругу и заметила, что Наташа была всё время обеда и вечер в странном и неестественном состоянии (отвечала невпопад на делаемые ей вопросы, начинала и не доканчивала фразы, всему смеялась).
После чая Соня увидала робеющую горничную девушку, выжидавшую ее у двери Наташи. Она пропустила ее и, подслушав у двери, узнала, что опять было передано письмо. И вдруг Соне стало ясно, что у Наташи был какой нибудь страшный план на нынешний вечер. Соня постучалась к ней. Наташа не пустила ее.
«Она убежит с ним! думала Соня. Она на всё способна. Нынче в лице ее было что то особенно жалкое и решительное. Она заплакала, прощаясь с дяденькой, вспоминала Соня. Да это верно, она бежит с ним, – но что мне делать?» думала Соня, припоминая теперь те признаки, которые ясно доказывали, почему у Наташи было какое то страшное намерение. «Графа нет. Что мне делать, написать к Курагину, требуя от него объяснения? Но кто велит ему ответить? Писать Пьеру, как просил князь Андрей в случае несчастия?… Но может быть, в самом деле она уже отказала Болконскому (она вчера отослала письмо княжне Марье). Дяденьки нет!» Сказать Марье Дмитриевне, которая так верила в Наташу, Соне казалось ужасно. «Но так или иначе, думала Соня, стоя в темном коридоре: теперь или никогда пришло время доказать, что я помню благодеяния их семейства и люблю Nicolas. Нет, я хоть три ночи не буду спать, а не выйду из этого коридора и силой не пущу ее, и не дам позору обрушиться на их семейство», думала она.

Анатоль последнее время переселился к Долохову. План похищения Ростовой уже несколько дней был обдуман и приготовлен Долоховым, и в тот день, когда Соня, подслушав у двери Наташу, решилась оберегать ее, план этот должен был быть приведен в исполнение. Наташа в десять часов вечера обещала выйти к Курагину на заднее крыльцо. Курагин должен был посадить ее в приготовленную тройку и везти за 60 верст от Москвы в село Каменку, где был приготовлен расстриженный поп, который должен был обвенчать их. В Каменке и была готова подстава, которая должна была вывезти их на Варшавскую дорогу и там на почтовых они должны были скакать за границу.
У Анатоля были и паспорт, и подорожная, и десять тысяч денег, взятые у сестры, и десять тысяч, занятые через посредство Долохова.
Два свидетеля – Хвостиков, бывший приказный, которого употреблял для игры Долохов и Макарин, отставной гусар, добродушный и слабый человек, питавший беспредельную любовь к Курагину – сидели в первой комнате за чаем.
В большом кабинете Долохова, убранном от стен до потолка персидскими коврами, медвежьими шкурами и оружием, сидел Долохов в дорожном бешмете и сапогах перед раскрытым бюро, на котором лежали счеты и пачки денег. Анатоль в расстегнутом мундире ходил из той комнаты, где сидели свидетели, через кабинет в заднюю комнату, где его лакей француз с другими укладывал последние вещи. Долохов считал деньги и записывал.
– Ну, – сказал он, – Хвостикову надо дать две тысячи.
– Ну и дай, – сказал Анатоль.
– Макарка (они так звали Макарина), этот бескорыстно за тебя в огонь и в воду. Ну вот и кончены счеты, – сказал Долохов, показывая ему записку. – Так?
– Да, разумеется, так, – сказал Анатоль, видимо не слушавший Долохова и с улыбкой, не сходившей у него с лица, смотревший вперед себя.
Долохов захлопнул бюро и обратился к Анатолю с насмешливой улыбкой.
– А знаешь что – брось всё это: еще время есть! – сказал он.
– Дурак! – сказал Анатоль. – Перестань говорить глупости. Ежели бы ты знал… Это чорт знает, что такое!
– Право брось, – сказал Долохов. – Я тебе дело говорю. Разве это шутка, что ты затеял?
– Ну, опять, опять дразнить? Пошел к чорту! А?… – сморщившись сказал Анатоль. – Право не до твоих дурацких шуток. – И он ушел из комнаты.
Долохов презрительно и снисходительно улыбался, когда Анатоль вышел.
– Ты постой, – сказал он вслед Анатолю, – я не шучу, я дело говорю, поди, поди сюда.
Анатоль опять вошел в комнату и, стараясь сосредоточить внимание, смотрел на Долохова, очевидно невольно покоряясь ему.
– Ты меня слушай, я тебе последний раз говорю. Что мне с тобой шутить? Разве я тебе перечил? Кто тебе всё устроил, кто попа нашел, кто паспорт взял, кто денег достал? Всё я.
– Ну и спасибо тебе. Ты думаешь я тебе не благодарен? – Анатоль вздохнул и обнял Долохова.
– Я тебе помогал, но всё же я тебе должен правду сказать: дело опасное и, если разобрать, глупое. Ну, ты ее увезешь, хорошо. Разве это так оставят? Узнается дело, что ты женат. Ведь тебя под уголовный суд подведут…
– Ах! глупости, глупости! – опять сморщившись заговорил Анатоль. – Ведь я тебе толковал. А? – И Анатоль с тем особенным пристрастием (которое бывает у людей тупых) к умозаключению, до которого они дойдут своим умом, повторил то рассуждение, которое он раз сто повторял Долохову. – Ведь я тебе толковал, я решил: ежели этот брак будет недействителен, – cказал он, загибая палец, – значит я не отвечаю; ну а ежели действителен, всё равно: за границей никто этого не будет знать, ну ведь так? И не говори, не говори, не говори!

Лабораторная работа

ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЯ АДИАБАТЫ ВОЗДУХА

Задание

    Определить показатель адиабаты воздуха методом Клемана-Дезорма.

    Сравнить полученное значение показателя адиабаты с его теоретическим значением и сделать вывод о точности проведенных измерений и достоверности использованного метода.

Приборы и принадлежности

Установка для определения показателя адиабаты воздуха с манометром и насосом.

Общие сведения

Адиабатическим называется процесс, совершаемый термодинамической системой, при котором отсутствует теплообмен между этой системой и внешней средой.

Уравнение, описывающее состояние системы в адиабатическом процессе, имеет вид:

где и– давление и объем газа;– показатель адиабаты.

Показатель адиабаты – это коэффициент, численно равный отношению теплоемкостей газа при постоянном давлении и при постоянном объеме:

Физический смысл его заключается в том, что он показывает, во сколько раз количество теплоты, необходимой для нагревания газа на 1 К в изобарическом процессе (), больше количества теплоты, необходимой для той же цели в изохорическом процессе ().

Для идеального газа показатель адиабаты определяется по формуле:

где i – число степеней свободы молекул газа.

Совершение газом адиабатического процесса требует его идеальной термоизоляции, что в реальных условиях не вполне достижимо. Тем не менее будем считать, что в данной работе экспериментальная установка позволяет осуществить адиабатический процесс.

Описание установки

Установка (рис. 1) для определения показателя адиабаты воздуха состоит из стеклянного сосуда 1, жидкостного манометра 2 и насоса 3, соединенных резиновыми и стеклянными трубками. Горловина сосуда закрыта пробкой с краном 4 для сообщения сосуда с атмосферой. Насос позволяет изменять давление в сосуде при закрытом кране, а манометр - измерять это изменение.

Теория метода

Все изменения состояния воздуха в процессе эксперимента качественно представлены на рис. 2.

Суть эксперимента заключается в переводе воздуха в разные состояния различными процессами и анализе качественных изменений этих состояний (точнее - изменений давления воздуха в сосуде). Исходное состояние (точка 0) воздуха в сосуде (кран 4 открыт) характеризуется давлением p 0 , равным атмосферному, объемом V 0 и температурой T 0 , равной температуре окружающей среды.

Закрыв кран, создают насосом в сосуде избыточное давление: при этом воздух, испытывая адиабатическое сжатие, переходит в первое состояние (точка 1). Это состояние характеризуется параметрами ,и, при этоми(адиабатическое сжатие газа сопровождается его нагреванием).

После прекращения работы насоса вследствие теплообмена через стенки сосуда температура газа снижается до первоначальной температуры , что вызывает некоторое снижение его давления. В результате в сосуде устанавливается давление, превышающее атмосферное давление на некоторое значение. Это второе состояние газа (точка 2) характеризуется параметрами , и .

Если кран кратковременно открыть и закрыть, то газ в сосуде адиабатически расширится (так как теплообмен произойти не успеет), и его давление практически мгновенно выровняется с атмосферным давлением. Это третье состояние газа (точка 3) характеризуется параметрами , и, при этом (адиабатическое сжатие газа сопровождается его охлаждением).

Сразу после закрытия крана в сосуде начинается изохорический процесс нагревания воздуха путем теплообмена с внешней средой, сопровождающийся некоторым повышением его давления. В результате в сосуде устанавливается давление, повышенное по сравнению с атмосферным давлением на некоторое значение . Это четвертое состояние газа (точка 4) характеризуется параметрами , и .

Показатель адиабаты полностью определяется значениями избыточных давлений и.

Для состояний 2 и 3 выполняется соотношение, получающееся при выводе уравнения состояния газа в адиабатическом процессе:

. (4)

Для состояний 3 и 4 с помощью уравнения Клапейрона–Менделеева можно получить соотношение (закон Шарля):

С учетом того, что ,,, подставляя выражение (4) в (3), получим:

. (6)

Логарифмируя последнее выражение, получим:

. (7)

Известно, что при. С учетом этого можно записать, что

, (8)

откуда следует, что

. (9)

Избыточное давление в сосуде, измеряемое манометром, пропорционально разности уровней h жидкости в обоих коленах трубки манометра (см. рис. 2). С учетом этого обстоятельства выражение (9) примет окончательный вид:

Отсчет уровней производится с учетом кривизны поверхности жидкости в трубке. Для отсчета берется деление шкалы, совпадающее с касательной к поверхности жидкости.

Порядок выполнения работы

1. При закрытом кране насосом создать избыточное давление в сосуде (необходимо избегать резких движений, так как жидкость может быть легко вытолкнута из трубки манометра).

2. Выждать, пока уровни жидкости в манометре перестанут изменять свое положение, и произвести отсчет их разности h 1 .

3. Открыть кран для выпуска воздуха и быстро его закрыть в момент первого пересечения уровнями жидкости исходного их положения (до накачки насосом).

4. Выждать, пока уровни жидкости в манометре перестанут изменять свое положение, и произвести отсчет их разности h 2 .

    Эксперимент необходимо повторить не менее 5 раз, и полученные результаты занести в таблицу 1.

Таблица 1

6. По формуле (10) вычислить оценку показателя адиабаты, использовав средние значения ()разностей уровней жидкости в манометре.

8. Сравнить полученный доверительный интервал значений показателя адиабаты с его теоретическим значением и сделать вывод о точности проведенных измерений и достоверности использованного метода.

Вычисление погрешностей

1. В этой работе велика роль случайных погрешностей, поэтому приборными погрешностями, ввиду их относительной малости, следует пренебречь.

Случайные погрешности рассчитываются по методу Стьюдента.

2. Полная относительная погрешность измерения показателя адиабаты:

.

3. Полная абсолютная погрешность измерения показателя адиабаты:

Полученный результат округляется и записывается в виде:

Правильность проведенных измерений и вычислений должна подтверждаться "перекрытием" полученного доверительного интервала для значения показателя адиабаты воздуха и его теоретического значения.

Контрольные вопросы

1. Дайте определения изохорическому, изобарическому и изотермическому процессам. Изобразите эти процессы графически в координатных осях p-V . Запишите уравнение состояния идеального газа в этих процессах и поясните смысл входящих в них физических величин.

2. Дайте определение адиабатическому процессу. Изобразите этот процесс графически в координатных осях p-V. Запишите уравнение состояния газа в этом процессе (уравнение Пуассона) и поясните смысл входящих в него физических величин.

3. Что такое показатель адиабаты? Как определить его теоретическое значение?

4. Опишите состав экспериментальной установки и порядок действий при определении показателя адиабаты воздуха.

5. Сформулируйте первый закон термодинамики.

6. Что такое внутренняя энергия вещества? Чему равна внутренняя энергия идеального газа в различных изопроцессах?

7. Дайте определение теплоемкости вещества. Что такое удельная и молярная теплоемкости вещества? Чему равна молярная теплоемкость идеального газа в различных изопроцессах?

8. Как вычислить работу, совершаемую идеальным газом, в изохорическом, изотермическом, изобарическом и адиабатическом процессах?

9. Как вычислить изменение внутренней энергии идеального газа при совершении им изохорического (изобарического, изотермического, адиабатического) процессов?

10. Как определить количество теплоты, получаемой (или отдаваемой) идеальным газом при совершении им изохорического (изобарического, изотермического, адиабатического) процессов?

Министерство образования РФ

Камский государственный политехнический институт

ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЯ АДИАБАТЫ

Методические указания к лабораторной

работе по дисциплине “Теплотехника” для очной формы обучения.

г. Набережные Челны

УДК 621.1:536 (076)

Печатается по решению научно-методического совета Камского государственного политехнического института от ___________________2003 г.

Определение показателя адиабаты: Методические указания к лабораторной работе./ Составили: В.М. Гуреев, И.М. Безбородова, А.Т. Галиакбаров – Набережные Челны: КамПИ, 2003 г., 14 с.

Методические указания к лабораторной работе составлены для студентов машиностроительных специальностей.

Ил.2, список лит. 3 назв.

Рецензент к.т.н. доцент. Тазмеев Х. К.

Камский государственный политехнический институт, 2003

Цель работы : Экспериментальное определение величины отношения изобарной теплоемкости воздуха и его изохорной теплоемкости.

Задание:

Теоретические основы работы

Отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме, обозначаемое буквой К, часто используется в различных термодинамических расчетах. Показатель К называют показателе адиабаты.

Значение К можно выразить через отношения массовых, объемных или мольных теплоемкостей:

(1)

В молекулярно-кинетической теории газов для определения показателя адиабаты приводится следующая формула:

(2)

гдеп – число степеней свободы движения молекулы газа.

Для одноатомного газап = 3,К = 1,667, для двухатомных газовп = 5,К = 1,4 и для трехатомных газовп = 6,К = 1,33.

Теплоемкости С р и зависят от температуры, следовательно, и показатель адиабаты“К” должен зависеть от температуры. Установим эту зависимость следующим образцом:

Используя уравнение Майера,

. (3)

Запишем выражение, (1) в виде

. (4)

Для 1 моля газа получается

. (5)

Обычно зависимость показателя адиабаты от температуры выражается формулой вида:

, (6)

гдеК 0 –значение показателя “К ”при 0 0 С;

- коэффициент.

Для двухатомныхгазов при температурах до 2000 0 С эмпирически получена следующая зависимость:

Изменение состояния термодинамической системы, происходящее без теплообмена с окружающей средой(
) называется адиабатным процессом. Обратимый адиабатныйпроцесс (
и
) называется изоэнтропным процессом, т.е. процессом, в котором
,
- диссилативные потери.

Из первого начала термодинамики следует, что для1 кг закрытой термохимической гомогенной (однородной) системы, совершающей обратимый процесс, внешняя теплота.

или используя известные выражения:

;
;

получим выражение:

(9),

Но так как для атмосферного воздуха допустимы равенства

,
;
,

совершенно точные лишь для идеального газа, то

Так как в обратимых адиабатных термодинамических процессах

и
, то:

(11)

где
- введенный ранее показатель адиабаты.

Разделив переменные и исключив P и V , при помощи равенства ,являющегося дифференциальной формой уравнения Клайперона,получим три уравнения адиабаты:

;

(12)

В интегральной форме при (
) они принимают вид:

;
;

Следовательно, показатель адиабатного процесса может быть выражен также и равенствами

;
(13)

В идеальном изотермическом процессе
,

и
или
(14)

Поэтому, если через определенную точку с параметрами
в
и
- осях (рис.1) процессы
и
, то в состоянииI отношении
или
, входящее в уравнение(13) и (14), будет одно и то же.

Тогда величина:

Т
аким образом, для определения истинного показателя адиабаты необходимы аналитически или экспериментально установленные значения калорических (,)или же термических параметров (P , V , T ) , а также их частных дифференциалов и производных.

Но если в уравнение (15) подставить малые конечные приращения, то при средний показатель адиабаты

а при Р = Рб, т.е. равном барометрическому давлению.

При уменьшении избыточного давления Р и1 средний показатель адиабаты
будет приближаться к истинному К, присущему атмосферному воздуху.

Определив средний показатель адиабаты и используя равенство:

(17)

можно вычислить,
и
, а затем известныхи
найти
,
,
и
, т.е. определить средние изохорные и изобарные весовые, мольные и объемные теплоемкости воздуха.

Описание экспериментальной установки

Лаборатория-установка (рис.2) имеет металлический бак 5, водяной U - образный манометр 1, 2, 3, компрессор 6, зажим 7, манометр 4.

Бак термически не изолирован, поэтому воздух, который находится в этом баке, вследствие теплообмена с окружающей средой принимает ее температуру. Большое проходное сечение крана позволяет очень быстро выпускать часть воздуха из бака. При этом процесс расширения воздуха, остающегося внутри бака, происходит настолько быстро, что его можно считать адиабатным.

Порядок проведения опытов

1. Определить давлениеР б и температуру t воздуха в лаборатории Полученные результаты внести в таблицу 1.

Р б = … мм. р т . с т ; Р б = … кг с /см 2 …Н/м 2 ; t = 0 С, Т= …К

Р u1

Р и3

    Опустить зажим и при закрытом кране, вращая маховик компрессора, накачать немного воздуха в бак. Начальное давление должно быть возможно меньшим.

    Создав небольшое избыточное давление в системе, закрыть зажим.

    После установления термического равновесия между воздухом в баке и окружающей средой, что будет видно по стационарному показанию манометра, записать значение.

    Открыть и немедленно закрыть кран, т.е. выпустив часть газа из бака, снизить давление в нем до атмосферного. В результате адиабатного расширения воздуха, находящегося внутри бака, температура там понизится. Вследствие этого начнется изохорной процесс нагрева воздуха, оставшегося в баке, за счет подвода тепла от окружающей среды. В баке вновь возникает избыточное давление, которое растет до Р.

    Опыт повторяется п -раз.

Обработка результатов измерений.

1. Определить вероятное значение показателя адиабаты воздуха.

2. Вычислить изохорные и изобарные весовые (С V , С р ) мольные (
,
) и объемные
теплоемкости воздуха, используя выражение (17) и вытекающие из него равенства:


(19)


(20)

(21)

(22)


(23)


(24)

где
- объем одного кмоля, т.е. и
) атмосферного воздуха при нормальных условиях.

3. Все полученные результаты сравнить с табличными значениями и найти допущенную абсолютную ошибку
и относительную.

4.
, где
- табличное значение показателя адиабаты.

5. Для каждого опыта вычислить значения
воздуха в точке 1, 2, 3 (рис.1). При этом использовать уравнения
,Клайперона иМайера
и равенства

;

;
,
, а при нормальных условиях
. Тогда:

По конечным результатам построить в масштабе
и
- диаграммы процессов 1-2, 2-3, 3-1.

Указания по охране труда

Запрещается стоять рядом со студентом, вращающим ручку поршневого компрессора.

Требование к отчету по работе.

Отчет по лабораторной работе должен содержать материалы:

    Наименование и цель работы.

    Схема установки и ее описание.

    Методика проведения экспериментов и обработки результатов экспериментов.

    Таблицы результатов измерений и расчетов.

    Процессы, изображенные в Р-V, Т-S координатах.

    Выводы о работе, содержащие сведения о величинах показателя адиабаты, полученные в результате эксперимента, и их сравнение с табличными значениями.

Контроль ные вопросы.

    Ввести понятия показателя адиабаты.

    Записать уравнение адиабатного термодинамического процесса в интегральной форме.

    Записать уравнения Клайперона и Майера.

    Записать 1-й и 2-й законы термодинамики.

Список литературы.

    Сб. под ред. Н. К. Арсланова. Практикум по технической термодинамике. – Казань, 1973.

    Н. М. Беляев. Термодинамика. – Киев: Вища школа, 1987.

    А. П. Баскаков. Теплотехника. – М.: Энергоиздат, 1982.

Цель работы : познакомиться с адиабатическим процессом, определить показатель адиабаты для воздуха.

Оборудование : баллон с клапаном, компрессор, манометр.

ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

Адиабатический процесс – это процесс, протекающий в термодинамической системе без теплообмена с окружающей средой. Термодинамической системой является система, содержащая огромное количество частиц. Например, газ, число молекул которого сравнимо с числом Авагадро 6,02∙10 23 1/моль. Хотя движение каждой частицы подчиняется законам Ньютона, но их так много, что решить систему уравнения динамики для определения параметров системы невозможно. Поэтому состояние системы характеризуют термодинамическими параметрами, такими как давление P , объем V , температура T .

Согласно первому началу термодинамики , являющемуся законом сохранения энергии в термодинамических процессах, теплота Q , подводимая к системе, расходуется на совершение работы А и на изменение внутренней энергии Δ U

Q = A + D U. (1)

Теплота – это количество энергии хаотического движения, передаваемое термодинамической системе. Подвод теплоты приводит к повышению температуры: , где n – количество газа, С − молярная теплоемкость, зависящая от вида процесса. Внутренняя энергия идеального газа − это кинетическая энергия молекул. Она пропорциональна температуре: , где C v – молярная теплоемкость при изохорическом нагревании. Работа элементарного изменения объема силами давления равна произведению давления на изменение объема: dA = PdV.

Для адиабатического процесса, происходящего без теплообмена (Q = 0), работа совершается за счет изменения внутренней энергии, A = − D U . При адиабатическом расширении работа газа положительна, поэтому внутренняя энергия и температура понижаются. При сжатии – наоборот. Все быстро протекающие процессы можно достаточно точно считать адиабатическими.

Выведем уравнениеадиабатического процесса идеального газа. Для этого применим уравнение первого начала термодинамики для элементарного адиабатического процесса dA= − dU, котороепринимает вид РdV =−n С v dT . Добавим к этому дифференциальному уравнению еще одно, полученное дифференцированием уравнения Менделеева–Клапейрона (PV=νRT ): PdV +VdP =nR dT. Исключая в двух уравнениях один из параметров, например, температуру, получим соотношение для двух других параметров . Интегрируя и потенцируя, получим уравнение адиабаты через давление и объем:

P V g = const.

Аналогично:

T V g -1 = const, P g -1 T -- g = const . (2)

Здесь показатель адиабаты , равный отношению теплоемкостей газа при изобарическом и изохорическом нагревании.

Получим формулу для показателя адиабаты в молекулярно-кинетической теории. Молярная теплоемкость по определению это количество теплоты, необходимое для нагревания одного моля вещества на один Кельвин . При изохорическом нагревании теплота расходуется только на повышение внутренней энергии . Подставив теплоту, получим .

Приизобарическом нагревании газа в условиях постоянного давления дополнительно часть теплоты расходуется на работу изменения объема . Поэтому количество теплоты, (dQ = dU + dA ) полученное при изобарическом нагревании на один Кельвин будет равно . Подставив в формулу теплоемкости, получим .

Тогда показатель адиабаты может быть определен теоретически по формуле

Здесь i число степеней свободы молекул газа. Это число координат, достаточное для определения положения молекулы в пространстве или число составляющих компонентов энергии молекулы. Например, для одноатомной молекулы кинетическая энергия может быть представлена как сумма трех компонентов энергии, соответствующих движению вдоль трех осей координат, i = 3. Для жесткой двухатомной молекулы следует добавить еще два компонента энергии вращательного движения, так как энергия вращения относительно третьей оси, проходящей через атомы, отсутствует. Итак, для двухатомных молекул i = 5. Для воздуха как для двухатомного газа теоретическое значение показателя адиабаты будет равно g = 1,4.

Показатель адиабаты можно определить экспериментально методом Клемана – Дезорма. В баллон нагнетают воздух, сжимая до некоторого давления Р 1 , немного больше атмосферного. При сжатии воздух несколько нагревается. После установления теплового равновесия баллон на короткое время открывают. В этом процессе расширения 1–2 давление падает до атмосферного Р 2 =Р атм , а исследуемая масса газа, которая до этого занимала часть объема баллона V 1 , расширяется, занимая весь баллон V 2 (рис.1). Процесс расширения воздуха (1−2) происходит быстро, его можно считать адиабатическим, происходящим по уравнению (2)

. (4)

В адиабатическом процессе расширения воздух охлаждается. После закрытия клапана охлажденный воздух в баллоне через стенки баллона нагревается до температуры лаборатории Т 3 = Т 1 . Это изохорический процесс 2–3

. (5)

Решая совместно уравнения (4) и (5), исключая температуры, получим уравнение, , из которого следует определить показатель адиабаты γ . Датчик давления измеряет не абсолютное давление, которое записано в уравнениях процессов, а избыточное над атмосферным давлением. То есть Р 1 = ΔР 1 + Р 2 , и Р 3 =ΔР 3 +Р 2 . Переходя к избыточным давлениям, получим . Избыточные давления невелики по сравнению с атмосферным давлением Р 2 . Разложим члены уравнения в ряд по соотношению . После сокращения на Р 2 получим для показателя адиабаты расчетную формулу

. (6)

Лабораторнаяустановка (рис. 2) состоит из стеклянного баллона, который сообщается с атмосферой через клапан Атмосфера . Воздух накачивается в баллон компрессором при открытом кране К . После накачивания, во избежание утечки воздуха, кран закрывают.

ВЫПОЛНЕНИЕ РАБОТЫ

1. Включить установку в сеть 220 В.

Открыть кран баллона. Включить компрессор, накачать воздух до избыточного давления в диапазоне 4 –11 кПа. Закрыть кран баллона. Выждать 1,5 –2 мин, записать величину давления ΔР 1 в таблицу.

2. Повернуть клапан Атмосфера до щелчка, клапан откроется и захлопнется. Произойдет адиабатический сброс воздуха с понижением температуры. Следить за повышением давления в баллоне по мере нагрева. Измерить наивысшее давление ΔР 3 после установления теплового равновесия. Результат записать в таблицу.

Повторить опыт не менее пяти раз, изменяя исходное давление в диапазоне 4–11 кПа.

ΔР 1 , кПа
ΔР 3 , кПа
γ

Выключить установку.

3. Произвести расчеты. Определить показатель адиабаты в каждом опыте по формуле (6). Записать в таблицу. Определить среднее значение показателя адиабаты <γ >

4. Оценить случайную погрешность измерения по формуле для прямых измерений

. (7)

5. Записать результат в виде g = <g > ± dg . Р = 0,9. Сравнить результат с теоретическим значением показателя адиабаты двухатомного газа g теор = 1,4.

Сделать выводы.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Дайте определение адиабатического процесса. Запишите первое начало термодинамики для адиабатического процесса. Объясните изменение температуры газа при адиабатических процессах сжатия и расширения.

2. Выведите уравнение адиабатического процесса для параметров давление – объем.

3. Выведите уравнение адиабатического процесса для параметров давление – температура.

4. Дайте определение числа степеней свободы молекул. Как зависит внутренняя энергия идеального газа от вида молекул?

5. Как осуществляются процессы с воздухом в цикле Клемана – Дезорма, как изменяются давления и температуры в процессах?

6. Выведите расчетную формулу для экспериментального определения показателя адиабаты.


Похожая информация.