Квант энергии. Квант - это что такое? Определение и значение для науки

Постепенно, первоначальное представление о полях - дополнилось ещё более сложным, - т. н. квантовым представлением. Обнаружилось, что любое поле - обладает некими т. н. квантами, - которые объясняются, впрочем, довольно просто: кванты - это волны (локального) изменения напряжённости поля, способные распространяться по полю «подобно тому, как океанские волны - распространяются по поверхности океана». Пример: электромагнитные волны (=фотоны) - это кванты =волны, распространяющиеся «по поверхности» электромагнитных полей. Другие виды полей - тоже имеют свои кванты-волны: кванты «сильных» полей - называются мезонами, кванты гравитационных полей - гравитонами, кванты «слабых» полей - т. н. бозоны, и наконец, квантами глюонных полей - являются глюоны. Любые кванты - это волны, распространяющиеся по соответствующим полям. Поля же - были и остаются непрерывными и безграничными полу-субстанциями.

Теория квантов т. о. показала лишь, что каждое поле - «покрыто» соответствующими квантами, подобно тому, как океан - покрыт океанскими волнами. Океан - неспокоен, так же неспокойно и любое поле!

В целом, суть квантов т. о. довольно проста.

Итак, кванты - это явление, неотрывно связанное с тем, или иным, полем, и существующее лишь при наличии поля (также как океанские волны - существуют лишь при наличии океана). Нельзя оторвать океанскую волну от океана, а квант - от поля. Но при этом океан - не состоит из океанских волн, а поле - не состоит из квантов.

Далее: кванты любого вида полей - способны существовать в двух различных состояниях: т. н. видимом, и невидимом. Невидимость - это особое состояние кванта, когда квант - не может быть обнаружен никакими приборами! (ибо обладает т. н. минимально возможной энергией). А кванты в т. н. видимом состоянии - обладают любой энергией большей, чем минимальной, и поэтому легко обнаружимы (приборами). Например, электромагнитные кванты в видимом состоянии (=видимые фотоны) - это ультрафиолетовые, световые, инфракрасные фотоны, а также радиоволны, и др.

В общем, кванты (=волны в полях) - являются переносчиками взаимодействий (=притяжений и отталкиваний) между частицами. Любые взаимодействия частиц в природе - должны быть опосредованы обменом квантами! Частицы - не способны взаимодействовать непосредственно (ибо все частицы, как уже говорилось, - бесплотны, и не имеют поверхностей).

Электрический заряд электрона - прямо пропорционален числу невидимых фотонов, постоянно образующихся в электромагнитном поле электрона за единицу времени. Это число, среднестатистически - всегда одинаково (у всех электронов, и у всех протонов, и вообще у всех частиц обладающих электрическим зарядом равным плюс/минус единице).

Постоянный обмен невидимыми фотонами, идущий между электронами - создаёт силу взаимного отталкивания электронов, которая, в свою очередь, приводит к силам взаимного отталкивания молекул в макрообъектах. А из-за взаимного отталкивания молекул - макрообъекты обладают свойством плотности (твёрдости). Камень, например, обладает твёрдостью лишь потому, что когда мы его пытаемся сжать, силы электромагнитного отталкивания между молекулами в камне - начинают резко преобладать над силами электромагнитного притяжения. Эти силы (отталкивания) - и не позволяют нам сжать камень, и т. о. - создают у камня твёрдость.

В общем, свойство плотности (твёрдости) у макрообъектов - существует лишь благодаря силам взаимного отталкивания частиц, которые осуществляются посредством обмена невидимыми квантами. Сами же частицы (и поля, их слагающие), как уже говорилось - бесплотны!

Абсолютную бесплотность частиц - можно доказать и экспериментально: например, электроны, разогнанные в ускорителе - способны свободно проходить сквозь эпицентр протона, как будто протон - прозрачен. А так - и есть на самом деле: Частицы, по современным представлениям - плотностью (твёрдостью) - не обладают. Плотность имеется лишь у макрообъектов, т. е. объектов, сложенных из множества частиц, и возникает она - лишь благодаря силам отталкивания между частицами. А в основе любых сил отталкивания - лежат, в конечном итоге, обмены теми или иными, квантами, между теми, или иными, полями, входящими в состав частиц.

Виды полей, существующие в бесконечной Вселенной - бесконечно разнообразны, но все поля - имеют соответствующие (свои) кванты, обмен которыми - может создавать взаимное отталкивание частиц, или же наоборот, взаимное притяжение. Взаимное отталкивание частиц - лежит в основе свойств плотности (твёрдости) и объёмности макрообъектов. А взаимное притяжение частиц - придаёт макрообъектам прочность на разрыв, а также свойство упругости.

Силы притяжения, связывающие, например, протоны и нейтроны в ядре атома - обусловлены обменом постоянно образующимися квантами «сильных» полей, (=невидимыми мезонами) - создающими прочность ядра атома на разрыв. В видимом состоянии, мезоны получены (и изучены) с помощью ускорителей заряженных частиц: при столкновениях ядер атомов, разогнанных в ускорителе, невидимые мезоны - могут обретать дополнительную энергию - и переходить т. о. в т. н. видимое состояние. Существование видимых мезонов - косвенное доказательство в пользу существования и мезонов невидимых. Подобным образом - доказывается существование невидимых квантов и для остальных известных видов полей.

Как уже говорилось, любой квант (=переносчик взаимодействия) - это волна (локального) изменения напряжённости соответствующего поля, распространяющаяся по (соответствующему) полю с определённой скоростью. Например, электромагнитная волна (=фотон) - это волна, распространяющаяся по безграничному электромагнитному полю со скоростью света. Итак, квант (любой) - это волна. А что такое волна? Любая волна - состоит, в общем-то, из движения: например, волна на поверхности океана - это ни что иное как движение, эстафетно передающееся от одних молекул океанской воды к другим, от других - к третьим, и т. д. В общем, океанская волна - это волновое движение, требующее для своего осуществления - наличия океана. Фотон - тоже является (волновым) движением, и это движение - требует наличия электромагнитного поля, по которому это движение (фотон), как волна, сможет распространяться. Подобным образом - устроены и кванты всех других видов полей. Т. е. любые кванты - это волны, бегущие по соответствующим полям. А сутью любых волн - является движение.


| | На нынешнем ликбезе мы вынесем мозг рядовому гуманитарию темой, которая давно его интересует, но любые попытки почитать научно-познавательную литературу оканчивается зависанием над первой же формулой. Сейчас мы попросим всех физиков закрыть глаза и уши и расскажем остальным, что такое кванты. Наверняка, вы все постоянно встречаете это слово в литературе, телевизорах, интернетах, шаражкиных конторах и нанотехнолохотронах. Пора уже восполнить пробел и немножко врубиться в тему.

Самый простой способ объяснить, что такое кванты – это (внезапно, да?) аналогия.

Возьмем расстояние между вашими глазами и монитором. Чисто математически это расстояние можно разделить на несколько отрезков. Сначала вполовину, потом еще на четыре, затем на восемь частей. И так, например, до бесконечности. И может показаться, что если вы захотите ткнуть пальцем в монитор, то не сможете это сделать, потому что это расстояние делится до бесконечности. Но вы знаете, что физически вы это сделаете без проблем, потому что, по-видимому, существует мельчайшая единица расстояния, меньше которой уже ничего нет.

Раньше считали, что мельчайший размер имеет атом, но нынче ученые докопались аж до кварков и суперструн (последние скорее нет, чем да, но звучат круто). Но вопрос определения мельчайшего расстояния оставим физикам – рано или поздно нам предъявят эталон. Факт в том, что наш опыт подтверждает, что деление отрезка в реальности не бесконечно.

Эти рассуждения близки известному парадоксу Ахиллеса и черепахи. Древние тоже задумывались о бесконечности деления пространства. Так то!

Теперь возьмем другой пример из жизни. Энергию как она есть. Вы поджарили шашлык, и он, стало быть, теперь горячий. Излучает тепло, которое в общем случае является тем, что мы называем энергией, а физики - электромагнитными волнами. Жизненный опыт нам подсказывает, что энергия существует в виде непрерывных волн (помните, непонятные синусоиды на уроках алгебры). То есть энергия, как мы считаем, излучается непрерывно. До начала XX века все ученые мира тоже так думали.

А вот и фигушки. Выяснилось, что существует конечный кусочек энергии. Самая маленькая порция энергии, меньше которой не существует. Как и в случае с расстоянием, передачу энергии можно делить на кусочки (или пакеты, если вы, простигосподи, вэб-программист, и вам так понятнее). Самый крошечный кусочек энергии и называют квантом.

Собственно на этом можно и закончить. Но ведь вам наверняка интересно, как это было обнаружено, да и почему из такого пустяка родилась целая наука – квантовая физика.

О том, что кванты существуют, никто не догадывался. Пока физики чисто из интереса не решили попрактиковаться в расчетах на всяких идеальных ситуациях. Они заморочились на так называемом абсолютно черном теле. Это такая выдуманная фиговина, типа духовки, которую нагревают, а она при этом не теряет (не отражает) ни капельки энергии - все тепло забирает себе без остатка.

Эта гипотетическая духовка после нагревания, разумеется, тоже начнет излучать тепло. Физики стали считать, сколько тепла (энергии) будет излучать такая духовка. И неожиданно у них по тогдашним, казалось бы логичным, формулам умника Максвелла выходила бесконечная энергия. Это была засада – практика показывала, что в реальности подобные бесконечности не наблюдается вообще нигде и тем более в духовках. И вот на этой ерунде вся классическая физика пошла дремучим лесом.

Первым что-то путное высказал Макс Планк – дедушка квантовой физики. Он чисто по-студенчески подогнал результат под задачу, придумав формулу, из которой следовало, что энергия излучается порциями. То есть каждая электромагнитная волна несет в себе определенное количество энергии, пропорциональное частоте этой волны. Чем больше частота волны, тем больше энергии несет в себе один квант. Коэффицент пропорциональности назвали постоянной Планка, которая впоследствии оказалась не просто какой-то случайной цифрой, а фундаментальной физической величиной вселенского масштаба.

Интересная аналогия: когда мы играем на скрипке, и плавно увеличиваем громкость, то на самом деле громкость растет не непрерывно, а скачками, но такими маленькими, что мы не замечаем этого.

Планк, к сожалению, сам не понял, что открыл – до конца жизни он был противник квантовой физики. Квантование энергии было вообще очень оскорбительным для классиков. Один известный ученый-шутник (Георгий Гамов, советский эмигрант, кстати) объяснял квантование энергии так: это все равно, что природа разрешила либо пить целый литр пива сразу, либо вообще не пить ничего, не допуская промежуточных доз. Ну или аналогия от нас: вы покупаете пиво только в бутылках (разной емкости), но никакого розливного пива! Так получается и с энергией.

Формула Планка для излучения абсолютно черного тела выдала адекватный результат без всяких бесконечностей. Потому что кусочки энергии в отличие от бесконечно малых величин можно подсчитать. После этого научный мир замер в нехорошем предчувствии.

Окончательно добил классическую физику Эйнштейн. Его первым открытием была совсем не теория относительности - он сумел объяснить загадку фотоэффекта. За что и получил нобелевскую премию (а совсем не за ТО).

Фотоэффект - это когда свет падает на пластинку и выбивает из нее электроны. Только вот энергия выбитых электронов не зависит от увеличения мощности (яркости) света, хоть ставь сто ламп, но увеличивается только число электронов, а не их скорость. Энергия же выбитых из пластинки электронов растет, если увеличить частоту волны света, уменьшая ее длину: то есть посветить не красным, а, например, фиолетовым светом. Свет с малой частотой, типа очень красного, вообще не производит эффекта. Это, кстати, напрямую касается великой тайны, почему фотографии проявляют при красном свете - только этот цвет не засвечивает пленку, не выбивает электроны, улавливаете?

Явление фотоэффекта вообще никто не мог объяснить в рамках классической физики.

На картинке, походу, нарисован прибор для изучения фотоэффекта.

Никто не мог объяснить, кроме агента мировых заговорщиков Эйнштейна. Чтобы ответить, почему цвет падающего луча света, а не его энергия, определяет скорость выбиваемых электронов, Эйнштейн решил перенести идейки о порциях энергии Планка на световую волну. Ведь озадаченный Планк применял свою теорию только к тепловым излучениям.

Для начала Эйнштейн впервые озвучил идею, что свет можно и нужно рассматривать не как волну, а как частицу (впоследствии ее назовут фотоном, а Эйнштейн называл ее световым квантом ). Для любознательных: обычная лампочка в 100 Ватт излучает в секунду примерно сто миллиардов миллиардов фотонов (это 10 в 20 степени).

При фотоэффекте в силу размеров сражение между электроном и фотоном идет один на один. Чтобы фотон при столкновении с электроном вырвал последний из металлической пластинки, он должен иметь для этого достаточное количество энергии. А если применить формулу Планка именно для света, то выходило, что энергия каждого фотона пропорциональна частоте световой волны, то есть отдельно взятый фотон обладает определенной энергией, зависящей от собственной частоты. Вот и получалось, что частота света (его цвет) определяет скорость вылетающих электронов, а интенсивность (яркость) света влияет только на количество выбитых электронов.

Это как сотни детишек будут сбивать снежками сосульки, но никто не сможет докинуть, а потом придет переросток из старшей группы и метнет снежок до самой крыши и собьет цель.

Таким образом, Эйнштейн показал, что электромагнитная волна (свет) состоит из маленьких частиц – фотонов, которые в свою очередь представляют собой маленькие порции или кванты света.

    квант поля - lauko kvantas statusas T sritis fizika atitikmenys: angl. field quantum vok. Feldquant, n rus. квант поля, m pranc. quantum de champ, m … Fizikos terminų žodynas

    Особая форма материи; физ. система с бесконечно большим числом степеней свободы. Примерами П. ф. могут служить эл. магн, и гравитац. поля, поле яд. сил, а также волновые (квантованные) поля, соответствующие разл. элем. ч цам. Понятие поля… … Физическая энциклопедия

    Квант (от лат. quantum «сколько») неделимая порция какой либо величины в физике. В основе понятия лежит представление квантовой механики о том, что некоторые физические величины могут принимать только определённые значения (говорят, что… … Википедия

    У этого термина существуют и другие значения, см. Квант (значения). Квант (от лат. quantum «сколько») неделимая порция какой либо величины в физике. В основе понятия лежит представление квантовой механики о том, что некоторые… … Википедия

    - [нем. Quant Словарь иностранных слов русского языка

    А; м. [от лат. quantum сколько] Физ. 1. Наименьшее возможное количество, на которое может изменяться дискретная по своей природе величина (действие, энергия, количество движения т.п.). К. световой энергии. К. действия (одна из основных постоянных … Энциклопедический словарь

    КВАНТ - частица носитель свойств какого либо физ. поля (К. электромагнитного поля (см.), носитель сильного взаимодействия (см.). К. это минимальная «порция», на которую может изменяться дискретная (см.) по своей природе физ. величина, т. е. целиком… … Большая политехническая энциклопедия

    У этого термина существуют и другие значения, см. Квант (значения). Модуль космической станции МИР КВАНТ … Википедия

    квант - а; м. (от лат. quantum сколько); физ. см. тж. квантовый 1) Наименьшее возможное количество, на которое может изменяться дискретная по своей природе величина (действие, энергия, количество движения т.п.) Квант световой энергии. Квант действия… … Словарь многих выражений

    - (КТП), релятивистская квант. теория физ. систем с бесконечным числом степеней свободы. Пример такой системы эл. магн. поле, для полного описания к рого в любой момент времени требуется задание напряжённостей электрич. и магн. полей в каждой точке … Физическая энциклопедия

    Релятивистская квантовая теория физических систем с бесконечным числом степеней свободы (релятивистских полей). Квантовая теория поля является основным аппаратом физики элементарных частиц, их взаимодействий и взаимопревращений. Включает теорию… … Энциклопедический словарь

Книги

  • ИндуктоМеханика , Гребенщиков Г.. В книге представлены модели зарядов и основных взаимодействий - электрического, магнитного, гравитационного, сильного и слабого, представлены модели инертной и гравитационной масс, модель…
  • Субчастицы. Частицы. Ядра , Г. К. Гребенщиков. Универсальная субчастица, на основе которой построены модели всех фундаментальных взаимодействий, есть одновременно квант электрического поля, квант массы и гравитационный заряд. Модель…

У всех классических механических волн (в жидкостях, газах и твердых телах) главный параметр, определяющий энергию волны, - это ее амплитуда (точнее, квадрат амплитуды). В случае света амплитуда определяет интенсивность излучения. Однако при изучении явления фотоэффекта - выбивания светом электронов из металла - обнаружилось, что энергия выбитых электронов не связана с интенсивностью (амплитудой) излучения, а зависит только от его частоты. Даже слабый голубой свет выбивает электроны из металла, а самый мощный желтый прожектор не может выбить из того же металла ни одного электрона. Интенсивность определяет, сколько будет выбито электронов, - но только если частота превышает некоторый порог. Оказалось, что энергия в электромагнитной волне раздроблена на порции, получившие название квантов. Энергия кванта электромагнитного излучения фиксирована и равна

E = h ν ,

где h = 4·10 –15 эВ ·с = 6·10 –34 Дж ·с - постоянная Планка, еще одна фундаментальная физическая величина, определяющая свойства нашего мира. С отдельным электроном при фотоэффекте взаимодействует отдельный квант, и если его энергии недостаточно, он не может выбить электрон из металла. Давний спор о природе света - волны это или поток частиц - разрешился в пользу своеобразного синтеза. Одни явления описываются волновыми уравнениями, а другие - представлениями о фотонах, квантах электромагнитного излучения, которые были введены в оборот двумя немецкими физиками - Максом Планком и Альбертом Эйнштейном.

Энергию квантов в физике принято выражать в электрон-вольтах. Это внесистемная единица измерения энергии. Один электрон-вольт (1 эВ ) равен энергии, которую приобретает электрон, когда разгоняется электрическим полем напряжением 1 вольт. Это очень небольшая величина, в единицах системы Си 1 эВ = 1,6·10 –19 Дж . Но в масштабах атомов и молекул электрон-вольт - вполне солидная величина.

От энергии квантов напрямую зависит способность излучения производить определенное воздействие на вещество. Многие процессы в веществе характеризуются пороговой энергией - если отдельные кванты несут меньшую энергию, то, как бы много их ни было, они не смогут спровоцировать надпороговый процесс.

Немного забегая вперед, приведем примеры. Энергии СВЧ-квантов хватает для возбуждения вращательных уровней основного электронно-колебательного состояния некоторых молекул, например воды. Энергии в доли электрон-вольта хватает для возбуждения колебательных уровней основного состояния в атомах и молекулах. Этим определяется, например, поглощение инфракрасного излучения в атмосфере. Кванты видимого света имеют энергию 2–3 эВ - этого достаточно для нарушения химических связей и провоцирования некоторых химических реакций, например, тех, что протекают в фотопленке и в сетчатке глаза. Ультрафиолетовые кванты могут разрушать более сильные химические связи, а также ионизировать атомы, отрывая внешние электроны. Это делает ультрафиолет опасным для жизни. Рентгеновское излучение может вырывать из атомов электроны с внутренних оболочек, а также возбуждать колебания внутри атомных ядер. Гамма-излучение способно разрушать атомные ядра, а самые энергичные гамма-кванты даже внедряются в структуру элементарных частиц, таких как протоны и нейтроны.

ПОЛЯ И КВАНТЫ

Постепенно, первоначальное представление о полях - дополнилось ещё более сложным, - т. н. квантовым представлением. Обнаружилось, что любое поле - обладает некими т. н. квантами, - которые объясняются, впрочем, довольно просто: кванты - это волны (локального) изменения напряжённости поля, способные распространяться по полю «подобно тому, как океанские волны - распространяются по поверхности океана». Пример: электромагнитные волны (=фотоны) - это кванты =волны, распространяющиеся «по поверхности» электромагнитных полей. Другие виды полей - тоже имеют свои кванты-волны: кванты «сильных» полей - называются мезонами, кванты гравитационных полей - гравитонами, кванты «слабых» полей - т. н. бозоны, и наконец, квантами глюонных полей - являются глюоны. Любые кванты - это волны, распространяющиеся по соответствующим полям. Поля же - были и остаются непрерывными и безграничными полу-субстанциями.

Теория квантов т. о. показала лишь, что каждое поле - «покрыто» соответствующими квантами, подобно тому, как океан - покрыт океанскими волнами. Океан - неспокоен, так же неспокойно и любое поле!

В целом, суть квантов т. о. довольно проста.

Итак, кванты - это явление, неотрывно связанное с тем, или иным, полем, и существующее лишь при наличии поля (также как океанские волны - существуют лишь при наличии океана). Нельзя оторвать океанскую волну от океана, а квант - от поля. Но при этом океан - не состоит из океанских волн, а поле - не состоит из квантов.

Далее: кванты любого вида полей - способны существовать в двух различных состояниях: т. н. видимом, и невидимом. Невидимость - это особое состояние кванта, когда квант - не может быть обнаружен никакими приборами! (ибо обладает т. н. минимально возможной энергией). А кванты в т. н. видимом состоянии - обладают любой энергией большей, чем минимальной, и поэтому легко обнаружимы (приборами). Например, электромагнитные кванты в видимом состоянии (=видимые фотоны) - это ультрафиолетовые, световые, инфракрасные фотоны, а также радиоволны, и др.

В общем, кванты (=волны в полях) - являются переносчиками взаимодействий (=притяжений и отталкиваний) между частицами. Любые взаимодействия частиц в природе - должны быть опосредованы обменом квантами! Частицы - не способны взаимодействовать непосредственно (ибо все частицы, как уже говорилось, - бесплотны, и не имеют поверхностей).

Электрический заряд электрона - прямо пропорционален числу невидимых фотонов, постоянно образующихся в электромагнитном поле электрона за единицу времени. Это число, среднестатистически - всегда одинаково (у всех электронов, и у всех протонов, и вообще у всех частиц обладающих электрическим зарядом равным плюс/минус единице).

Постоянный обмен невидимыми фотонами, идущий между электронами - создаёт силу взаимного отталкивания электронов, которая, в свою очередь, приводит к силам взаимного отталкивания молекул в макрообъектах. А из-за взаимного отталкивания молекул - макрообъекты обладают свойством плотности (твёрдости). Камень, например, обладает твёрдостью лишь потому, что когда мы его пытаемся сжать, силы электромагнитного отталкивания между молекулами в камне - начинают резко преобладать над силами электромагнитного притяжения. Эти силы (отталкивания) - и не позволяют нам сжать камень, и т. о. - создают у камня твёрдость.

В общем, свойство плотности (твёрдости) у макрообъектов - существует лишь благодаря силам взаимного отталкивания частиц, которые осуществляются посредством обмена невидимыми квантами. Сами же частицы (и поля, их слагающие), как уже говорилось - бесплотны!

Абсолютную бесплотность частиц - можно доказать и экспериментально: например, электроны, разогнанные в ускорителе - способны свободно проходить сквозь эпицентр протона, как будто протон - прозрачен. А так - и есть на самом деле: Частицы, по современным представлениям - плотностью (твёрдостью) - не обладают. Плотность имеется лишь у макрообъектов, т. е. объектов, сложенных из множества частиц, и возникает она - лишь благодаря силам отталкивания между частицами. А в основе любых сил отталкивания - лежат, в конечном итоге, обмены теми или иными, квантами, между теми, или иными, полями, входящими в состав частиц.

Виды полей, существующие в бесконечной Вселенной - бесконечно разнообразны, но все поля - имеют соответствующие (свои) кванты, обмен которыми - может создавать взаимное отталкивание частиц, или же наоборот, взаимное притяжение. Взаимное отталкивание частиц - лежит в основе свойств плотности (твёрдости) и объёмности макрообъектов. А взаимное притяжение частиц - придаёт макрообъектам прочность на разрыв, а также свойство упругости.

Силы притяжения, связывающие, например, протоны и нейтроны в ядре атома - обусловлены обменом постоянно образующимися квантами «сильных» полей, (=невидимыми мезонами) - создающими прочность ядра атома на разрыв. В видимом состоянии, мезоны получены (и изучены) с помощью ускорителей заряженных частиц: при столкновениях ядер атомов, разогнанных в ускорителе, невидимые мезоны - могут обретать дополнительную энергию - и переходить т. о. в т. н. видимое состояние. Существование видимых мезонов - косвенное доказательство в пользу существования и мезонов невидимых. Подобным образом - доказывается существование невидимых квантов и для остальных известных видов полей.

Как уже говорилось, любой квант (=переносчик взаимодействия) - это волна (локального) изменения напряжённости соответствующего поля, распространяющаяся по (соответствующему) полю с определённой скоростью. Например, электромагнитная волна (=фотон) - это волна, распространяющаяся по безграничному электромагнитному полю со скоростью света. Итак, квант (любой) - это волна. А что такое волна? Любая волна - состоит, в общем-то, из движения: например, волна на поверхности океана - это ни что иное как движение, эстафетно передающееся от одних молекул океанской воды к другим, от других - к третьим, и т. д. В общем, океанская волна - это волновое движение, требующее для своего осуществления - наличия океана. Фотон - тоже является (волновым) движением, и это движение - требует наличия электромагнитного поля, по которому это движение (фотон), как волна, сможет распространяться. Подобным образом - устроены и кванты всех других видов полей. Т. е. любые кванты - это волны, бегущие по соответствующим полям. А сутью любых волн - является движение.

Из книги Метаморфозы власти автора Тоффлер Элвин

ВНЕ ПОЛЯ ЗРЕНИЯ Все пространство, от одного края США до другого, покрыто сегодня отметинами многомиллионного долларового перетягивания каната - гигантскими промышленными компаниями, такими как «Набиско» (Nabisco), «Ревлон» (Revlon), «Проктер энд Гэмбл» (Procter&Gamble),

Из книги Тайны пространства и времени автора Комаров Виктор

Калибровочные поля Обнаружение мультиплетов поставило перед физиками новую задачу: необходимость различать, в каких состояниях находятся в данный момент эти взаимопревращающиеся объекты. Решение было найдено – наложение на систему определенного физического поля.

Из книги Фантастика и футурология. Книга 2 автора Лем Станислав

Проблемные поля фантастики

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

Квантовая теория поля Предмет, известный под названием «квантовая теория поля», возник из объединения идей специальной теории относительности и квантовой механики. От стандартной (т. е. нерелятивистской) квантовой механики квантовая теория поля отличается тем, что

Из книги Советский кишлак [Между колониализмом и модернизацией] автора Абашин Сергей

Из книги Процессуальный ум. Руководство по установлению связи с Умом Бога автора Минделл Арнольд

Магнитные поля земли Такие объекты, как электрический заряд или магнит, окружены силовыми линиями, показывающими их влияние на другие объекты. Силовые поля существуют только в воображении. Это понятия, математические идеи, позволяющие ученым визуализировать

Из книги Квантовый ум [Грань между физикой и психологией] автора Минделл Арнольд

Линии вашего поля Наше воображение наделяет формой поля, подобные сущности. Еще до того, как наши предки узнали о магнетизме, они понимали, что нами движут поля призрачных сил – Дао, Тайцзы, тяготения и электромагнетизма. Когда мы размышляем о поле земли, наше воображение

Из книги Логика: учебник для юридических вузов автора Кириллов Вячеслав Иванович

Характеристические поля В предыдущей главе вы, возможно, ощутили, что каждый из нас обладает определенным присутствием или полем. Ваша связанная с землей ассоциация присутствия этого поля создает то, что я называю вашим «характеристическим полем»Это связанное с землей

Из книги Архитектура и иконография. «Тело символа» в зеркале классической методологии автора Ванеян Степан С.

ЧИСЛА КАК ПОЛЯ Прежде чем думать о полях в математике, физике и психологии, давайте рассмотрим повседневное употребление термина «поле». Большинство из нас представляют себе поле как часть земли, выделенную для того или иного использования, например в качестве пастбища

Из книги Проект «Человек» автора Менегетти Антонио

Поля в математике Математики тоже используют понятие поля1. Поле чисел – это также разновидность игрового поля. Здесь действуют особые правила, простейшими из которых являются сложение и вычитание.К примеру, рассмотрим поле ряда положительных действительных чисел, то

Из книги автора

Правила числового поля Вспомните, что на данном поле могут происходить только те игры или процессы, которые соответствуют его правилам. Каковы правила числового поля? Вот они. 1. Замыкание. Первое правило числового поля – это правило всех полей: все, что происходит на этом

Из книги автора

Поля осознания Некоторым людям не нравятся графы, проекции или поля, наподобие тех, что обсуждались выше. Они не считают их интересными. Но мне они нравятся, так как я думаю об этой графе не просто как о количественном описании нашей способности считать действительные и

Из книги автора

Как поля становятся частицами Наше изучение идей физики и психологии позволяет мне объяснять, как из энергии можно было бы создавать материальные частицы. Вы, вероятно, помните уравнение атомной энергии E = mc2. На основании наших знаний о том, как энергия может создавать

Из книги автора

§ 5. ПОЛЯ АРГУМЕНТАЦИИ 1. Понятие и состав полей аргументацииУчастники (субъекты) аргументации - пропонент, оппонент и аудитория - при обсуждении спорных проблем придерживаются различных взглядов относительно тезиса и антитезиса, аргументов и способов

Из книги автора

Семантические поля иконографии Но продолжим следить за его собственным – теоретическим (то есть метаязыковым) – повествованием. Очень скоро мы поймем, что скрывается за идеей «семантических полей», которые вбирают в себя формально непохожие образы, взаимодействующие и

Из книги автора

4.1.3. Типы семантического поля Классифицируя семантическое поле, мы выделяем три его типа.Биологическое, или эмоциональное, семантическое поле – как элементарная форма познания – относится ко всему отражаемому, включая аспекты сексуальности и агрессивности. Это –