Матричный биосинтез.

В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам.

Белковые вещества составляют основу всех жизненно важных структур клетки, обладают необычайно высокой реакционной способностью, наделены каталитическими функциями.

Нуклеиновые кислоты входят в состав важнейшего органа клетки - ядра, а также цитоплазмы, рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.

План синтеза белка хранится в ядре клетки, а непосредственно синтез происходит вне ядра, поэтому необходима помощь для доставки закодированного плана из ядра к месту синтеза. Такую помощь оказывают молекулы РНК.

Процесс начинается в ядре клетки: раскручивается и открывается часть «лестницы» ДНК. Благодаря этому буквы РНК образуют связи с открытыми буквами ДНК одной из нитей ДНК. Фермент переносит буквы РНК, чтобы соединить их в нить. Так буквы ДНК «переписываются» в буквы РНК. Новообразованная цепочка РНК отделяется, и «лестница» ДНК снова закручивается.

После дальнейших изменений этот вид закодированной РНК готов.

РНК выходит из ядра и направляется к месту синтеза белка, где буквы РНК расшифровываются. Каждый набор из трех букв РНК образует «слово», обозначающее одну конкретную аминокислоту.

Другой вид РНК отыскивает эту аминокислоту, захватывает ее с помощью фермента и доставляет к месту синтеза белка. По мере прочтения и перевода сообщения РНК цепочка аминокислот растет. Эта цепочка закручивается и укладывается в уникальную форму, создавая один вид белка.
Примечателен даже процесс укладки белка: на то, чтобы с помощью компьютера просчитать все возможности укладки белка среднего размера, состоящего из 100 аминокислот, потребовалось бы 10 27 лет. А для образования в организме цепочки из 20 аминокислот требуется не более одной секунды - и этот процесс происходит непрерывно во всех клетках тела.

Гены, генетический код и его свойства .

На Земле живет около 7 млрд людей. Если не считать 25-30 млн пар однояйцовых близнецов, то генетически все люди разные : каждый уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом.

Такие различия объясняются различиями в генотипах -наборах генов организма; у каждого он уникален. Генетические признаки конкретного организма воплощаются в белках - следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека.

Это не означает , что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцовых близнецов), у которых все белки были бы одинаковы.

Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК – гене – единице наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип .

Кодирование наследственной информации происходит с помощью генетического кода , который универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены, и кодирующих белки конкретных организмов.

Генетический код состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности (ААТ, ГЦА, АЦГ, ТГЦ и т.д.), каждый из которых кодирует определенную аминокислоту (которая будет встроена в полипептидную цепь).

Аминокислот 20 , а возможностей для комбинаций четырех нуклеотидов в группы по три – 64 четырех нуклеотидов вполне достаточно, чтобы кодировать 20 аминокислот

поэтому одна аминокислота может кодироваться несколькими триплетами .

Часть триплетов вовсе не кодирует аминокислоты, а запускает или останавливает биосинтез белка.

Собственно кодом считается последовательность нуклеотидов в молекуле и-РНК , т.к. она снимает информацию с ДНК (процесс транскрипции ) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции ).

В состав и-РНК входят нуклеотиды АЦГУ, триплеты которых называются кодонами: триплет на ДНК ЦГТ на и-РНК станет триплетом ГЦА, а триплет ДНК ААГ станет триплетом УУЦ.

Именно кодонами и-РНК отражается генетический код в записи.

Таким образом, генетический код - единая система записи наследственной ин­формации в молекулах нуклеиновых кислот в виде последова­тельности нуклеотидов. Генетический код основан на использо­вании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.

Основные свойства генетического кода :

1. Генетический код триплетен. Триплет (кодон) - последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав бел­ков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот оста­ются незакодированными). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, оказыва­ется равным трем. (В этом случае число возможных триплетов нуклеотидов составляет 4 3 = 64).

2. Избыточность (вырожденность) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими трип­летами (поскольку аминокислот 20, а триплетов - 64), за исключением метионина и триптофана, которые кодируются только одним триплетом. Кроме того, некоторые триплеты вы­полняют специфические функции: в молекуле иРНК триплеты УАА, УАГ, УГА - являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.

3. Одно­временно с избыточностью коду присуще свойство однозначнос­ти : каждому кодону соответствует только одна определенная аминокислота.

4. Код коллинеарен, т.е. по­следовательность нуклеотидов в гене точно соответствует после­довательности аминокислот в белке.

5. Генетический код непере­крываем и компактен , т. е. не содержит «знаков препинания». Это значит, что процесс считывания не допускает возможности перекрывания колонов (триплетов), и, начавшись на определенном кодоне, считывание идет непрерывно триплет за триплетом вплоть до стоп-сигналов (терминирующих кодонов ).

6. Генетический код универсален , т. е. ядер­ные гены всех организмов одинаковым образом кодируют инфор­мацию о белках вне зависимости от уровня организации и систематического положения этих организмов.

Существуют таблицы генетического кода для расшифровки кодонов и-РНК и построения цепочек белковых молекул.

Реакции матричного синтеза .

В живых системах встречается реакции, неизвестные в неживой природе - реакцииматричного синтеза .

Термином "матрица " в технике обозначают форму, употребляемую для отливки монет, медалей, типографского шрифта: затвердевший металл в точности воспроизводит все детали формы, служившей для отливки. Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул.

Матричный принцип лежит в основе важнейших синтетических реакций клетки, таких, как синтез нуклеиновых кислот и белков. В этих реакциях обеспечивается точная, строго специфичная последовательность мономерных звеньев в синтезируемых полимерах.

Здесь происходит направленное стягивание мономеров в определенное место клетки - на молекулы, служащие матрицей, где реакция протекает. Если бы такие реакции происходили в результате случайного столкновения молекул, они протекали бы бесконечно медленно. Синтез сложных молекул на основе матричного принципа осуществляется быстро и точно.

Роль матрицы в матричных реакциях играют макромолекулы нуклеиновых кислот ДНК или РНК.

Мономерные молекулы , из которых синтезируется полимер, - нуклеотиды или аминокислоты - в соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определенном, заданном порядке.

Затем происходит "сшивание" мономерных звеньев в полимерную цепь , и готовый полимер сбрасывается с матрицы.

После этого матрица готова к сборке новой полимерной молекулы. Понятно, что как на данной форме может производиться отливка только какой-то одной монеты, одной буквы, так и на данной матричной молекуле может идти "сборка" только какого-то одного полимера.

Матричный тип реакций - специфическая особенность химизма живых систем. Они являются основой фундаментального свойства всего живого - его способности к воспроизведению себе подобного .

К реакциям матричного синтеза относят:

1. репликацию ДНК - процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.

Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.

Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов.

Молекула способна к самоудвоению (репликации), причем на каждой старой половине молекулы синтезируется новая ее половина.

Кроме того, на молекуле ДНК может синтезироваться молекула и-РНК, которая затем переносит полученную от ДНК информацию к месту синтеза белка.

Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях.

Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться - процесс устранения ошибок называется репарацией . Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.

2. транскрипцию – синтез и-РНК на ДНК, процесс снятия информации с молекулы ДНК, синтезируемой на ней молекулой и-РНК.

И-РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности при участии фермента, который активирует начало и конец синтеза молекулы и-РНК.

Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей.

3. трансляцию - синтез белка на и-РНК; процесс перевода информации, содержащейся в последовательности нуклеотидов и-РНК, в последовательность аминокислот в полипептиде.

4 . синтез РНК или ДНК на РНК вирусов

Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы:

нетранскрибируемая цепь ДНК

А Т Г

Г Г Ц

Т А Т

транскрибируемая цепь ДНК

Т А Ц

Ц Ц Г

А Т А

транскрипция ДНК

кодоны мРНК

А У Г

Г Г Ц

У А У

трансляция мРНК

антикодоны тРНК

У А Ц

Ц Ц Г

А У А

аминокислоты белка

метионин

глицин

тирозин

Таким образом, биосинтез белка – это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах.

Молекулы белков по существу представляют собой полипептидные цепочки , составленные из отдельных аминокислот. Но аминокислоты недостаточно активны, чтобы соединиться между собой самостоятельно. Поэтому, прежде чем соединиться друг с другом и образовать молекулу белка, аминокислоты должны активироваться . Эта активация происходит под действием особых ферментов.

В результате активирования аминокислота становится более лабильной и под действием того же фермента связывается с т-РНК . Каждой аминокислоте соответствует строго специфическая т-РНК , которая находит «свою» аминокислоту и переносит ее в рибосому.

Следовательно, в рибосому поступают различные активированные аминокислоты, соединенные со своими т-РНК . Рибосома представляет собой как бы конвейер для сборки цепочки белка из поступающих в него различных аминокислот.

Одновременно с т-РНК, на которой «сидит» своя аминокислота, в рибосому поступает «сигнал» от ДНК, которая содержится в ядре. В соответствии с этим сигналом в рибосоме синтезируется тот или иной белок.

Направляющее влияние ДНК на синтез белка осуществляется не непосредственно, а с помощью особого посредника – матричной или информационной РНК (м-РНК или и-РНК), которая синтезируется в ядре под влиянием ДНК, поэтому ее состав отражает состав ДНК. Молекула РНК представляет собой как бы слепок с формы ДНК. Синтезированная и-РНК поступает в рибосому и как бы передает этой структуре план - в каком порядке должны соединяться друг с другом поступившие в рибосому активированные аминокислоты, чтобы синтезировался определенный белок. Иначе, генетическая информация, закодированная в ДНК, передается на и-РНК и далее на белок .

Молекула и-РНК поступает в рибосому и прошивает ее. Тот ее отрезок, который находится в данный момент в рибосоме, определенный кодоном (триплет ), взаимодействует совершенно специфично с подходящим к нему по строению триплетом (антикодоном ) в транспортной РНК, которая принесла в рибосому аминокислоту.

Транспортная РНК со своей аминокислотой подходит к определенному кодону и-РНК и соединяется с ним; к следующему, соседнему участку и-РНК присоединяется другая т-РНК с другой аминокислотой и так до тех пор, пока не будет считана вся цепочка и-РНК, пока не нанижутся все аминокислоты в соответствующем порядке, образуя молекулу белка.

А т-РНК, которая доставила аминокислоту к определенному участку полипептидной цепи, освобождается от своей аминокислоты и выходит из рибосомы.

Затем снова в цитоплазме к ней может присоединиться нужная аминокислота, и она снова перенесет ее в рибосому.

В процессе синтеза белка участвует одновременно не одна, а несколько рибосом - полирибосомы.

Основные этапы передачи генетической информации:

синтез на ДНК как на матрице и-РНК (транскрипция)

синтез в рибосомах полипептидной цепи по программе, содержащейся в и-РНК (трансляция).

Этапы универсальны для всех живых существ, но временные и пространственные взаимоотношения этих процессов различаются у про- и эукариотов.

У эукариот транскрипция и трансляция строго разделены в пространстве и времени: синтез различных РНК происходит в ядре, после чего молекулы РНК должны покинуть пределы ядра, пройдя через ядерную мембрану. Затем в цитоплазме РНК транспортируются к месту синтеза белка - рибосомам. Лишь после этого наступает следующий этап - трансляция.

У прокариот транскрипция и трансляция идут одновременно.

Таким образом,

местом синтеза белков и всех ферментов в клетке являются рибосомы - это как бы «фабрики» белка, как бы сборочный цех, куда поступают все материалы, необходимые для сборки полипептидной цепочки белка из аминокислот. Природа синтезируемого белка зависит от строения и-РНК, от порядка расположения в ней нуклеоидов, а строение и-РНК отражает строение ДНК, так что в конечном итоге специфическое строение белка, т. е. порядок расположения в нем различных аминокислот, зависит от порядка расположения нуклеоидов в ДНК, от строения ДНК.

Изложенная теория биосинтеза белка получила название матричной теории. Матричной эта теория называется потому , что нуклеиновые кислоты играют как бы роль матриц, в которых записана вся информация относительно последовательности аминокислотных остатков в молекуле белка.

Создание матричной теории биосинтеза белка и расшифровка аминокислотного кода является крупнейшим научным достижением XX века, важнейшим шагом на пути к выяснению молекулярного механизма наследственности.

Тематические задания

А1. Какое из утверждений неверно?

1) генетический код универсален

2) генетический код вырожден

3) генетический код индивидуален

4) генетический код триплетен

А2. Один триплет ДНК кодирует:

1) последовательность аминокислот в белке

2) один признак организма

3) одну аминокислоту

4) несколько аминокислот

А3. «Знаки препинания» генетического кода

1) запускают синтез белка

2) прекращают синтез белка

3) кодируют определенные белки

4) кодируют группу аминокислот

А4. Если у лягушки аминокислота ВАЛИН кодируется триплетом ГУУ, то у собаки эта аминокислота может кодироваться триплетами:

1) ГУА и ГУГ

2) УУЦ и УЦА

3) ЦУЦ и ЦУА

4) УАГ и УГА

А5. Синтез белка завершается в момент

1) узнавания кодона антикодоном

2) поступления и-РНК на рибосомы

3) появления на рибосоме «знака препинания»

4) присоединения аминокислоты к т-РНК

А6. Укажите пару клеток в которой у одного человека содержится разная генетическая информация?

1) клетки печени и желудка

2) нейрон и лейкоцит

3) мышечная и костная клетки

4) клетка языка и яйцеклетка

А7. Функция и-РНК в процессе биосинтеза

1) хранение наследственной информации

2) транспорт аминокислот на рибосомы

3) передача информации на рибосомы

4) ускорение процесса биосинтеза

А8. Антикодон т-РНК состоит из нуклеотидов УЦГ. Какой триплет ДНК ему комплементарен?

Способ записи генетической информации в молекуле ДНК. Биологический код и его свойства.

Генетич код - способ записи инф-ции об аминок-тах белка при помощи нуклеотидов ДНК.

Свойства:

1-триплетность (одна а/к кодируетсяся тремя нуклеотидамими, 3 нуклеотида-триплет)

2-избыточность (нек-рые а/к кодируются несколькими триплетами)

3-однозначность (каждому триплету соответствует одна а/к)

4-универсальность (для всех орг-в на Земле генетический код одинаков)

5-линейность (читается последовательноно)

6. Уникальные свойства ДНК: самоудвоение, самовосстановление структур.

Смотри 3 и 4 вопросы

Матричный синтез 3 типа:

Синтез ДНК - репликация - самоудв-е мол-л ДНК,к-ое обычно происх перед дел-ем кл-ки. Во время репликацииматер мол-ла раскручив, и комплемент нити её разъедин(образ репликативн вилка) Формир-е репликат вилки происх под дей-ем ферментов геликазы и топоизомеразы. Геликаза разрыв водор связи между комплемент-ными нуклеотидами и разъедин нити, топоизомераза сним напряж-е, возникающее при этом в мол-ле. Одиночн нити матер мол-лы служат матрицами для синтеза дочерних комплемент-х нитей. С одиночн нитями связыв SSB-белки(дестабилизирующие белки),к-ые не дают им соедин в двойн спираль. В рез-те репликации образ две одинак мол-лы ДНК,полностью повторяющие матер мол-лу. При этом кажд нов мол-ла сост из одной нов и одной стар цепи. Комплемент нити мол-лы ДНК антипараллельны. Наращив-е полинуклеотидной цепи всегда происх в направл от 5" конца к 3" концу. Вследствие этого одна нить лидирующ (3" конец в основании репликативной вилки), а др-запаздывающ (5" конец в основ вилки) и поэтому строится из фрагменьов Оказаки, растущих от 5" к 3" концу. Фрагменты Оказаки – это участки ДНК, которые у эукариот имеют длину 100-200 нуклеотидов, у прокариот – 1000-2000 нуклеотидов.

Синтез цепи ДНК осуществляет фермент ДНК-полимераза. Она наращив дочерн цепь, присоединяя к её 3" концу нуклеотиды, комплементарные нуклеотидам материнской цепи. Особ-ть ДНК-полимеразы сост в том, что она не может начать работу на «пустом месте», не имея 3" конца дочерней нити. Поэтому синтез лидирующей нити и синтез каждого фрагмента Оказаки начинает фермент праймаза. Это разновидность РНК-полимеразы. Праймаза способна начать синтез новой полинуклеотидной цепи с соедин-я двух нуклеотидов. Праймаза синтезирует из РНК-нуклеотидов короткие затравки - праймеры. Их длина около 10 нуклеотидов. К 3" концу праймера ДНК полимераза начин присоединять ДНК-нуклеотиды.

Фермент экзонуклеаза удал праймеры. ДНК-полимераза достраивает фрагменты Оказаки, фермент лигаза сшивает их.



Синтез РНК - транскрипция - синтез РНК на матрице ДНК (у эукариот в ядре, у прокариот-в цитоплазме). В процессе транскрипции строится комплемент копия одной из нитей ДНК. В рез-те транскрипции синтезир-ся иРНК, рРНК и тРНК. Транскр-ю осущ РНК-полимераза. У эукариот транскрипцию оскществл три разные РНК-полимеразы:

РНК-полимераза I синтезир рРНК

РНК-полимераза II синтезир иРНК

РНК-полимераза III синтезир тРНК

РНК-полимераза связыв-ся с молекулой ДНК в области промотора. Промотор – это участок ДНК, отмечающий начало транскрипции. Он расположен перед структурным геном. Присоединившись к промотору, РНК-полимераза раскручивает участок двойной спирали ДНК и раздел комплемент-ые цепи. Одна из двух цепей – смысловая – служит матрицей для синтеза РНК. Нуклеотиды РНК комплементарны нуклеотидам смысловой цепи ДНК. Транскрипция идёт от 5" конца к её 3" концу. РНК-полимераза отдел синтезиров-ый уч-к РНК от матрицы и восстанавливает двойную спираль ДНК. Транскрипция продолжается до тех пор, пока РНК-полимераза не доёдет до терминатора. Терминатор – это уч-к ДНК, обозначающий конец транскрипции. Достигнув терминатора, РНК-полимераза отделяется и от матричной ДНК и от новосинтезированной молекулы РНК.

Транскр-я дел на 3 этапа:

Инициация –присоед-е РНК-полимеразыи помогающих ей белков-факторов транскрипции к ДНК и начало их работы.

Элонгация -наращив- полинуклеот-ой цепи РНК.

Терминация -оконч-е синтеза мол-лы РНК.

Синтез белка - трансляция - процесс синтеза полипепт-ной цепи, проходящей на рибосоме. Происх в цитоплазме. Рибосома сост из двух субъединиц: большой и малой. Субъединицы построены из рРНК и белков. Неакт рибосома находится в цитоплазме в диссоциированном виде. Активная рибосома собирается из двух субъединиц, приэтом в ней образ-ся активные центры, в том числе – аминоацильный и пептидильный. В аминоацильном центре происход образ-е пептидной связи. Транспортные РНК специфичны, т.е. одна тРНК может перенос только одну определ-ую а/к. Эта а/к зашифрована кодоном, которому комплементарен антикодон тРНК. В процессе трансляции рибосома переводит последоват-ть нуклеотидов иРНК в последоват-ть а/к полипептидной цепи.

Трансляция дел на 3 этапа.

Инициация -сборка рибосомы на инициирующем кодоне иРНК и начало её работы. Инициация начинается с того, что с иРНК соедин-ся малая субъединица рибосомы и тРНК, несущая метионин, к-рый соответствует инициирующему кодону АУГ. Затем к этому комплексу присоедин-ся большая субъединица. В рез-те инициирующий кодон оказыв-ся в пептидильном центре рибосомы, а в аминоацильном центре наход-ся первый значащий кодон. К нему подходят различные тРНК, а останется в рибосоме только та, антикодон к-рой комплементарен кодону. Между комплемент-ми нуклеотидами кодона и антикодона образ-ся водородные связи. В итоге в рибосоме с иРНК оказыв-ся временно связаны две тРНК. Кажд тРНК принесла в рибосому а/к, зашифрованную кодоном иРНК. Между этими а/к образ-ся пептидная связь. После этого тРНК, принесшая метионин, отдел-ся от своей а/к и от иРНК и уходит из рибосомы. Рибосома перемещ-ся на один триплет от 5" конца к 3" концу иРНК.

Элонгация – процесс наращив-я полип-ой цепочки. В аминоацильный центр рибосомы будут подходить различн тРНК. Процесс узнавания тРНК и поцесс формирования пептидной связи будет повтор-ся до тех пор, пока в аминоацильном центре рибосомы не окажется стоп-кодон.

Терминация – заверш-е синтеза полипептида и диссоциация рибосомы на две субъединицы. Существ три стоп-кодона: УАА, УАГ и УГА. Когда один из них оказыв-ся в аминоацильном центре рибосомы, с ним связыв-ся белок – фактор терминации трансляции. Это вызывает распад всего комплекса.

РЕПЛИКАЦИЯ, И ЕЁ ЭТАПЫ.

РЕПАРАЦИЯ ДНК.

ТРАНСКРИПЦИЯ ГЕНА. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ГЕНЕ.

СОВРЕМЕННЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ ДНК.

Генетическая догма: информация записана в ДНК и передаётся на дочерние молекулы ДНК

из поколения в поколение с помощью процесса репликации.
ДНК ® РНК ® белок

РЕПЛИКАЦИЯ - процесс самоудвоения ДНК. Этот процесс стал полностью изучен только после того, как УОТСОН и КРИК предложили структуру ДНК в виде двойной спирали, полинуклеотидные цепи которой связаны комплиментарными, азотистыми основаниями (А:::Т, Г:::Ц). Если азотистые основания комплиментарны друг другу, то и полинуклеотидные цепи тоже комплиментарны. В основе механизма репликации лежит принцип комплиментарности. К механизму репликации относится матричный биосинтез. Репликация ДНК идёт полуконсервативным способом: на каждой материнской полинуклеотидной цепи синтезируется дочерняя цепь.

Условия необходимые для репликации:

1. Матрица - нити ДНК. Расщепление нити называется РЕПЛИКАТИВНАЯ ВИЛКА. Она

может образовываться внутри молекулы ДНК. Они движутся в разных направлениях,

образуя РЕПЛИКАТИВНЫЙ ГЛАЗОК. Таких глазков в молекуле ДНК ЭУКАРИОТ

несколько, каждый имеет две вилки

2. Субстрат. Пластическим материалом являются ДЕЗОКСИНУКЛЕОТИДТРИФОСФАТЫ:
дАТФ, дГТФ, дЦТФ, дТТФ. Затем происходит их распад до ДЕЗОКСИНУКЛЕОТИДМОНОФОСФАТОВ, двух молекул фосфата неорганического с выделением энергии, т.е. они одновременно являются источником и энергии, и пластического материала.

Д-АТФ® Д-АМФ + ФФ + Е.

3. Ионы магния.

Репликативный комплекс ферментов:

A) ДНК -раскручивающие белки:

1. DNA-A (вызывает расхождение нитей)

2. ХЕЛИКАЗЫ (расщепляют цепь ДНК)

3. ТОПОИЗОМЕРАЗЫ 1 и 2 (раскручивают сверх спирали). Разрывают (3",5") -

фосфодиэфирные связи. ТОПОИЗОМЕРАЗА 2 у ПРОКАРИОТ называется ГИРАЗА.

B) Белки, препятствующие соединению нитей ДНК (SSB -белки)

C) ДНК-ПОЛИМЕРАЗА (катализирует образование фосфодиэфирных связей). ДНК-
ПОЛИМЕРАЗА только удлиняет уже существующую нить, но не может соединить два свободных НУКЛЕОТИДА.

D) ПРАЙМАЗА (катализирует образование «затравки» к синтезу). Это по своей структуре РНК-ПОЛИМЕРАЗА, которая соединяет одиночные НУКЛЕОТИДЫ.

Е)ДНК-ЛИГАЗА.

5. ПРАЙМЕРЫ - «затравка» для репликации. Это короткий фрагмент, состоящий из РИБОНУКЛЕОТИДТРИФОСФАТОВ (2 - 10). Образование ПРАИМЕРОВ катализируется ПРАЙМАЗОЙ.

Основные этапы репликации.

1.ИНИЦИАЦИЯ репликации.

Происходит под влиянием внешних стимулов (факторов роста). Белки соединяются с рецепторами на плазматической мембране и вызывают репликацию в синтетическую фазу клеточного цикла. Смысл инициации заключается в присоединении в точку репликации DNA-A, стимулирующего расхождение двойной спирали. В этом принимает участие и ХЕЛИКАЗА. Действуют ферменты (ТОПОИЗОМЕРАЗЫ), вызывающие раскручивание сверх спирали. SSB-белки препятствуют соединению дочерних цепей.

Образуется РЕПЛИКАТИВНАЯ ВИЛКА.

Образование дочерних нитей.

Этому предшествует образование ПРАИМЕРОВ с помощью фермента ПРАЙМАЗЫ. Действует ДНК-ПОЛИМЕРАЗА и образуется дочерняя нить ДНК. Этот процесс происходит в соответствии с принципом комплиментарности, и синтез идёт от 5" к 3" концу синтезируемой нити.

На одной из материнских нитей будет строиться непрерывная цепь, а на противоположной нити - цепь из коротких фрагментов (фрагментов ОКАЗАКИ) Удаление ПРАИМЕРОВ с помощью ЭКЗОНУКЛЕАЗЫ.

Соединение коротких фрагментов с помощью ДНК-ЛИГАЗЫ.

Дочерние нити КОМПЛИМЕНТАРНЫ материнским. Дочерние молекулы ДНК являются копией материнской ДНК. Значение репликации: воспроизведение генотипа в поколениях.

2. РЕПАРАЦИЯ ДНК.

ДНК человека содержит примерно 3 млрд. НУКЛЕОТИДОВ. Если появится одна ошибка на 1млн. НУКЛЕОТИДОВ, то в целом в молекуле ДНК будет 3000 ошибок за один процесс репликации. Ошибки в репликации могут привести к летальному исходу. В организме существует система, исправляющая ошибки - система репарации ДНК. Она состоит из трёх ферментов:

ЭНДОНУКЛЕАЗА,

ЭКЗОНУКЛЕАЗА,

ДНК-ПОЛИМЕРАЗА РЕПАРИРУЮЩАЯ.

ЭНДОНУКЛЕАЗА вызывает разрыв фосфодиэфирных связей повреждённого НУКЛЕОТИДА с соседним, с той или с другой стороны. В результате образуется два конца. В действие вступает ЭКЗОНУКЛЕАЗА, отщепляющая НУКЛЕОТИДЫ с образующихся концов ДНК в обе стороны. В результате действия этих ферментов на одной нити ДНК возникает дефект. В работу вступает ДНК-ПОЛИМЕРАЗА РЕПАРИРУЮЩАЯ. Она достраивает повреждённую цепь в соответствии с принципом комплиментарности. Т.о. повреждённый НУКЛЕОТИД удаляется.

3. ТРАНСКРИПЦИЯ ГЕНА.

Транскрипция - передача информации с ДНК на РНК (биосинтез РНК). Транскрипции, в отличие от репарации, подвергаются только определённые части молекулы ДНК. Эта часть называется ТРАНСКРИПТОНОМ - фрагмент ДНК, транскрибируемый в РНК. ДНК эукариот прерывистая: участки, несущие информацию (ЭКЗОНЫ), чередуются с участками, не несущими информацию (ИНТРОНЫ). В ДНК с 5"-конца выделяют ПРОМОТОРНУЮ область - место присоединения РНК-ПОЛИМЕРАЗЫ. С 3"-конца - ТЕРМИНАТОРНАЯ зона. Эти области не транскрибируются.

УСЛОВИЯ ТРАНСКРИПЦИИ.

1. Матрица - 1 нить ДНК. Образуется транскрипционный глазок.

2. Структурные компоненты - РИБОНУКЛЕОЗИД-3-ФОСФАТЫ (АТФ, ГТФ, ЦТФ, УТФ). Они будут распадаться до МОНОФОСФАТОВ с выделением энергии.

3. ДНК-зависимая РНК-ПОЛИМЕРАЗА.

ОСНОВНЫЕ ЭТАПЫ ТРАНСКРИПЦИИ.

1. ИНИЦИАЦИЯ.

Заключается в присоединении РНК-ПОЛИМЕРАЗЫ к ПРОМОТОРУ, что приводит к расхождению нитей ДНК. Импульсом к присоединению РНК-ПОЛИМЕРАЗЫ является присоединение ТВР-белка к TATA-САЙТУ.

2. ЭЛОНГАЦИЯ (удлинение).

Соединение РИБОНУКЛЕОЗИДМОНОНУКЛЕОТИДОВ и образование фосфодиэфирных
связей между НУКЛЕОТИДАМИ с помощью РНК-ПОЛИМЕРАЗЫ, которая передвигается
вдоль нити ДНК. Присоединение НУКЛЕТИДОВ идет в соответствии с принципом
комплиментарности, только вместо ДЕЗОКСИНУКЛЕОТИДОВ будут РИБОНУКЛЕОТИДЫ, и вместо ТМФ - УМФ.синтез идёт со скоростью 30 - 50 НУКЛЕОТИДОВ в секунду, пока не дойдёт до Т-зоны.

3. ТЕРМИНАЦИЯ (окончание).Заключается в том, что со стороны 3"-конца образованной РНК присоединяется множество (до 200 - 300) АДЕНИЛОВЫХ НУКЛЕОТИДОВ - поли А. Образуется точная копия гена. АДЕНИЛОВЫЕ НУКЛЕОТИДЫ защищают 3"-конец от действия ЭКЗОНУКЛЕАЗ. С 5"-конца образуется защита, так называемый «САР» (чаще всего УДФ). Эта образовавшаяся копия гена называется ТРАНСКРИПТ.

4. ПРОЦЕССИНГ (созревание).

Заключается в СПЛАЙСИНГЕ удаление неинформативных участков, и соединение ЭКЗОНОВ между собой. Играет важную роль в эволюции организмов, т.к. возможен альтернативный СПЛАЙСИНГ. Это свидетельствует о том, что из одной пре-ИРНК образуется несколько ИРНК и соответственно несколько белков, что проявляется в разнообразии признаков у организмов.

Лекция № 20. Биосинтез белка.

1.БЕЛОКСИНТЕЗИРУЮЩИЙ АППАРАТ.

2.ТРАНСЛЯЦИЯ.

3.РЕГУЛЯЦИЯ БИОСИНТЕЗА БЕЛКА.БИОСИНТЕЗ БЕЛКА.

Трансляция или собственно биосинтез белка - это перевод генетического текста М-РНК в последовательность аминокислот в белке. Характеристика белоксинтезирующего аппарата клетки.

1. МРНК - источник информации.

У эукариот имеется особенность - САР (шапка, кепка), представленная МЕТИЛ-ГТФ. САР защищает МРНК от гидролиза и способствует её соединению с РИБОСОМАМИ. С САР связываются САР-связывающие белки. На МРНК находится стартовый кодон, представленный триплетом АУГ, представленный аминокислотой - МЕТ.

РИБОСОМЫ - комплексы РРНК с порядка 80 белками, включая ферменты.
РИБОСОМА состоит из двух единиц- большой и малой. Она у ЭУКАРИОТ более крупная,
её формула 80S (40S и 60S). У ПРОКАРИОТ она имеет формулу 70S (30S и 50S)

Аминокислоты (20 видов).

ТРНК(31 вид).

Несоответствие числа транспортных РНК и числа кодонов (61) снимается за счёт возможности узнавания одной транспортной РНК нескольких кодонов данной аминокислоты (ГЛИЦИН имеет три варианта ДНК-кода - ГГУ, ГГЦ, ГГА). Все эти 3 варианта узнаются одним видом Т-РНК - ЦЦН. В состав транспортной РНК входят минорные азотистые основания, способные узнавать вариабельный участок разных кодонов одной и той же аминокислоты. Транспортная РНК выполняет функцию АДАПТОРА между МРНК и белком.

Фермент синтеза комплекса транспортной РНК с аминокислотой - АМИНОАЦИЛ-ТРНК-СИНТЕТАЗА (требует энергии АТФ).

Белковые факторы:

факторы ИНИЦИАЦИИ (ФИ) начала трансляции, факторы ЭЛОНГАЦИИ (ФЭ) - продолжатели, факторы ВЫСВОБОЖДЕНИЯ (R-факторы).

Ионы магния, как КОФАКТОРЫ.

АТФ, ГТФ - поддержка энергией.

Этапы трансляции:

1.РЕКОГНИЦИЯ (распознавание) - узнавание между аминокислотами и их транспортной

2.АК + ТРНК аминоацил-т-РНК-синтетаза АК-ТРНК

АТФ®АМФ + ФФ МЕТИОНИЛ-ТРНК

РЕКОГНИЦИЯ происходит столько раз, сколько аминокислот входит в состав белка.

3. ИНИЦИАЦИЯ - начало процесса трансляции.

На этом этапе РИБОСОМА взаимодействует с МРНК и находит стартовый кодон. Малая её единица взаимодействует с МЕТИОНИЛ-ТРНК и образует инициирующий комплекс, способный распознавать стартовый кодон. Этому предшествует разделение РИБОСОМЫ с помощью ФИ-3. Образование инициирующего комплекса происходит с помощью ФИ-2. Затем инициирующий комплекс присоединяется к МРНК с 5"-конца. Узнаванию 5"-конца способствуют САР и САР-связывающие белки. Реакцию обеспечивают ФИ-1. Сканирование инициирующим комплексом матричной РНК путём продвижения от 5" к 3"-концу до обнаружения стартового кодона антикодоном МЕТ-ТРНК. Данный процесс энергозависим, требует энергии АТФ. После обнаружения стартового кодона собирается полностью РИБОСОМА путём фиксации 60S единицы, и высвобождаются белковые ФИ-1,2,3 и САР-связывающие белки. В РИБОСОМЕ выделяют Р-участок и А-участок. Р-участок (ПЕПТИДИЛЬНЫЙ) - в нём происходит образование ПЕПТИДНЫХ связей. Это закрытая область РИБОСОМЫ. Вход в неё извне запрещён. А-участок (АМИНОАЦИЛЬНЫЙ). Это открытая область РИБОСОМЫ - для поступления следующей аминокислоты.

4. ЭЛОНГАЦИЯ (продолжение) протекает циклически в виде последовательной смены трёх
фаз:

Присоединение следующей АМИНОАЦИЛ-ТРНК в соответствии со смыслом следующего кодона. Для процесса требуется энергия ГТФ и ФЭ-1 (проникновение в РИБОСОМУ).

ПЕПТИЗАЦИЯ. Фермент ПЕПТИДИЛТРАНСФЕРАЗА образует ПЕПТИДНУЮ связь между двумя аминокислотными остатками и одновременно разрушает сложноэфирную связь между первой аминокислотой и её ТРНК. В результате идёт образование растущего ПЕПТИДА в А-участке и высвобождение первой ТРНК.

ТРАНСЛОКАЦИЯ (перемещение).

При этом происходит перемещение РИБОСОМЫ на один кодон в направлении 3"-конца. При этом все остальные компоненты (МРНК, ТРНК) остаются на месте. Для процесса требуется энергия ГТФ и белковый ФЭ-2. Процесс циклический, т.е. фазы чередуют друг друга. Это происходит до обнаружения стоп (нонсенс)-кодона. Он не кодирует ни одну аминокислоту. Элонгация становится невозможной. Элонгацию и инициацию обозначают как собственно трансляцию.

5. ТЕРМИНАЦИЯ (прекращение).

Стоп -кодон распознаётся R-факторами (РЕЛИЗИНГ). Эти факторы высвобождают из связи все компоненты белоксинтезирующего комплекса: РИБОСОМУ, МРНК, ПОЛИПЕПТИД. Помогает фермент - ПЕПТИДИЛТРАНСФЕРАЗА, отщепляющий транспортную РНК от образованного ПОЛИПЕПТИДА. Для ТЕРМИНАЦИИ нужна энергия ПГФ. РИБОСОМА может повторно использоваться в трансляции. Матричная РНК или повторно используется в трансляции, или гидролизуется. ПОЛИПЕПТИД вступает в этап ПРОЦЕССИНГА белка.

6. БРОЦЕССИНГ белка (созревание) совокупность химических модификаций

ПОЛИПЕПТИДА, заканчивающихся формированием зрелой белковой молекулы. ПРОЦЕССИНГ белка может быть:

КОНТРАНСЛЯЦИОННЫЙ (во время трансляции)

ПОСТТРАНСЛЯЦИОННЫЙ.
Варианты ПРОЦЕССИНГА:

A) ограниченный протеолиз: отщепление N-концевой аминокислоты (МЕТ), отщепление ПЕПТИДНОГО фрагмента.

АЦИЛИРОВАНИЕ (присоединение остатка СНЗСООН)

ФОСФОРИЛИРОВАНИЕ

ГЛИКОЗИЛИРОВАНИЕ - образование ГЛИКОПРОТЕИНОВ и ПРОТЕОГЛИКАНОВ.

E) ГИДРОКСИЛИРОВАНИЕ аминокислот

F) ОКИСЛЕНИЕ аминокислот

G) Образование четвертичной структуры в случае ОЛИГОМЕРНОСТИ белка.
ПРОЦЕССИНГ включает в себя наивысшую точку - ФОЛДИНГ - сворачивание, обретение
белком высших уровней пространственно-структурной организации, заканчивающееся
формированием структурно и функционально зрелой молекулы.

ШАПЕРОНЫ - над молекулярные комплексы белковой природы, способствующие быстрому и

правильному ФОЛДИНГУ. В большом числе представлены белками теплового шока.

ШАПЕРОНЫ препятствуют приобретению белком неправильной конформации. Неудачный ФОЛДИНГ заканчивается появлением аномальных белков, которые должны быть элиминированы.

УБИКВИТИН белок, присутствующий в каждой клетке организма. Это «билет» на уничтожение аномального белка. Белок, меченый УБИКВИТИНОМ, разрушается в ПРОТЕОСОМАХ. В норме обеспечивается гомеостаз структуры белка, сохранение его нативной структуры. При заболеваниях образуются аномальные белки, которые не утилизируются - ПРИОНЫ -ПРОТЕИНОГЕННЫЕ, информативные частицы. Это продукты неправильного ФОЛДИНГА, которые, попадая в организм извне, трансформируют нормальные белки данного организма в виде цепной реакции. ПРИОННЫЕ белки не расщепляются в ЖКТ, а всасываются в неизменённом виде. По сути ПРИОНЫ - это отрицательные ШАПЕРОНЫ. КОМПАРТМЕНТАЛИЗАЦИЯ БЕЛКОВ (механизмы адресования).

Белки должны быть правильно распределены в клетке или выделены из неё на экспорт. За этот процесс отвечает сигнальный участок - это фрагмент аминокислотной последовательности синтезированного ПОЛИПЕПТИДА, содержащего условный адрес размещения белка. Известно, что преобладание гидрофобных аминокислот в сигнальном участке, направляет белок в мембранную структуру клетки. Преобладание гидрофильных аминокислот в сигнальном участке способствует проникновению белка в цитоплазму и выделение на экспорт. Синтезированные белки могут быть в виде над молекулярных комплексов (ШАПЕРОНЫ, ПРОТЕОСОМЫ, белки мокро трубочек).

БИОСИНТЕЗ ИНСУЛИНА.

ПРЕПРОИНСУЛИН - ПОЛИПЕПТИД, содержащий 110 аминокислотных остатков. Он содержит сигнальный участок, представленный гидрофильными аминокислотами, которые адресуют ПРЕПРОИНСУЛИН в ЭПР. После этого сигнальный участок отщепляется и образуется ПРОИНСУЛИН, содержащий 84 аминокислотных остатка. Он подвергается ОГРАНИЧЕННОМУ ПРОТЕОЛИЗУ путём вырезки внутреннего участка С-ПЕПТИДА. Образуется две цепочки из 21 и 30 аминокислот, которые затем соединяются дисульфидными связями с образованием молекулы инсулина из 51 аминокислотного остатка.

РЕГУЛЯЦИЯ БИОСИНТЕЗА БЕЛКА.

Несмотря на единство общего генотипа, в организме человека присутствует примерно 200 фенотипов клеток, и фенотипические различия определяются экспрессией генов. В каждой клетке, независимо от фенотипа, экспрессируются гены «домашнего хозяйства» обеспечивающие элементарные процессы жизнедеятельности, характерные для каждой клетки. Регуляция биосинтеза белка у ПРО- и ЭУКАРИОТ различна. У ПРОКАРИОТ основные положения теории регуляции изложены в 1961г. Ф. ЖАКОБОМ и Ж. МОНО.

1. Регуляция происходит только на уровне транскрипции. Первичные транскрипты генов у них
транслируются до завершения транскрипции.

2. Неоднородность ГЕНОМОВ. В геноме есть структурные гены и есть регуляторные области,
которые могут включать регуляторные элементы и регуляторные гены. Структурные гены
кодируют синтез структурных и функциональных белков. Регуляторные элементы не
кодируют синтез белков вообще, но влияют на процесс транскрипции.

Регуляторными элементами являются:

ПРОМОТОР - место прикрепления к ДНК РНК-ПОЛИМЕР АЗЫ, ОПЕРАТОР - место взаимодействия регуляторных белков с ДНК. Регуляторные гены кодируют синтез регуляторных белков. К ним относится белок -РЕПРЕССОР, который Может блокировать считывание информации, связываясь с оператором. Фрагмент ДНК, подверженный транскрипции называется ОПЕРОН (ПРОМОТОР, ОПЕРАТОР, структурный ген). За пределами ОПЕРОНА находятся гены-регуляторы, кодирующие синтез белка - РЕПРЕССОРА.

3. Регуляция биосинтеза белков у ПРОКАРИОТ протекает альтернативно путём репрессии и индукции.

ПРИМЕР: ЛАКТОЗНЫЙ ОПЕРОН. В микробной клетке лактоза с помощью лактазы расщепляется до галактозы и глюкозы. Лактозный ОПЕРОН регулирует синтез лактазы. Если в среде присутствует лактоза, то БЕЛОК-РЕПРЕССОР вытесняется из связи с оператором и гены лактазы транскрибируются. Лактоза выступает индуктором.

Регуляция биосинтеза белка у ЭУКАРИОТ происходит на всех уровнях матричных биосинтезов.

1. На уровне транскрипции - групповая репрессия гистонами. У человека 90% ДНК репрессировано.

2. Амплификация генов - повышение числа копий гена в геноме (повышается площадь транскрипции).

3. Регуляция транскрипции сигналами-регуляторами (усилителями и душителями). Для сигналов усилителей принят термин ЭНХАЙСЕР. Они не кодируют синтез белка, чрезвычайно эффективны, может наблюдаться 200-кратное усиление транскрипции. Действие не специфично (одновременно может влиять на группу генов). Значительно удалён от ПРОМОТОРА гена-мишени. Подвержен влиянию регуляторных факторов (гормонов). Сигналы-душители называются САЙЛЕНСЕРЫ - угнетатели транскрипции. Особенности действия подобны ЭНХАЙСЕРАМ, только действие противоположное.

4. Регуляция на уровне процессинга МРНК разрешение или запрещение процессинга

дифференциальный процессинг включает альтернативный СПЛАЙСИНГ - сборка РНК из разных экзонов, и редактирование МРНК - замена одного из нуклеотидов с изменением генетической информации, приводящее к образованию изменённых белков

5. На уровне стабильности и активности МРНК. МРНК в клетке образует комплекс с белками, который называется ИНФОРМОСОМА. В их составе МРНК не разрушается ферментами, сохранения в активном, стабильном состоянии. При необходимости она высвобождается из комплекса и транслируется. Процесс образования и распада ИНФОРМОСОМ регулируется гормонами. С одной молекулы РНК транслируется большое количество белков.

6. Регуляция на уровне трансляции:

Тотальная регуляция может быть в виде тотальной репрессии или индукции за счёт

изменения концентрации белковых факторов трансляции

Избирательная дискриминация. Определённые виды МРНК избирательно не

транслируются. С них не синтезируется белок. Трансляция с альтернативных стартовых участков. Т.о. образом может происходить выбор исходной стартовой точки трансляции.

Лекция №21.

Ключевые позиции и проблемы молекулярной биологии геномного периода.

1. ПЕРВЫЕ ПРЕДСТАВЛЕНИЯ О ГЕНЕ.

2. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ПРИРОДЕ БИОХИМИЧЕСКОГО ПОЛИМОРФИЗМА.

3. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ СТРУКТУРНО-ФУНКЦИОНАЛЬНОЙ ОРГАНИЗАЦИИ ДНК.

Прочтение генома привело к формированию новой биологии. Предпосылки возможности биологии нового времени: 1953г. Д. УОТСОН и Ф. КРИК открыли структуру ДНК. 1961г. Ф. КРИК расшифровал генетический код. 1970г. Г. ТЕМЕН и Д. БАЛТИМОР открыли ОБРАТНУЮ ТРАНСКРИПТАЗУ (способность на основе РНК синтезировать ДНК). Значение: возможность изучения изолированных генов. 1983г. К. МЮЛЛИС - реакция PCR (ПОЛИМЕРАЗНАЯ ЦЕПНАЯ РЕАКЦИЯ) - управляемое тиражирование ДНК в пробирке. 2001г. первая версия генома человека.

ЭТАПЫ И ПРИНЦИПЫ PCR.

PCR - это метод, позволяющий в пробирке получать любое количество копий заданного участка молекулы ДНК. Стадии метода PCR:

1. Выделение ДНК из биологического материала.

2. Амплификация - репликация на органическом участке молекулы ДНК. Производится за счёт
работы ферментов и смены температурных режимов.

3. ДЕТЕКЦИЯ продуктов PCR (копий заданного участка)
Схема PCR:

Т= 90, Денатурация (расплетение) ДНК

Т=50. Отжиг ПРАЙМЕРОВ

Т=70. Синтез ДНК

ПРАЙМЕРЫ специфические ОЛИГОНУКЛЕОТИДНЫЕ последовательности комплиментарные изучаемому участку ДНК. Они синтезируются в искусственных условиях на основе НУКЛЕОТИДНОЙ последовательности ДНК. ПРАЙМЕРЫ ограничивают зону копирования, являются закладками в ДНК. Синтез ДНК идёт с помощью ДНК-ПОЛИМЕРАЗЫ. Этот фермент выделен из микроорганизмов, обитающих в горячих источниках. Т.о. в результате первого цикла вместо одной молекулы ДНК образуется две. На следующий цикл матрицей будут являться все продукты предшествующего цикла. За 20 - 30 циклов количество фрагментов ДНК вырастает в 1000000 раз. Эти реакции производят в АМПЛИФИКАТОРЕ - приборе, где чередуются циклы нагревания и охлаждения. Продолжительность каждого этапа измеряется секундами. Факторы необходимые для PCR:

1. изучаемая ДНК,

2. ПРАЙМЕРЫ изучаемого участка,

3.Термостабильная ДНК-ПОЛИМЕРАЗА,

4. Строительный материал. Он же является источником энергии,

5. Оборудование для АМПЛИФИКАЦИИ.
Сферы применения PCR.

В 1993г. К. МЮЛЛЕСУ была присуждена Нобелевская премия в области химии, за открытие

1. изучение генома микроорганизмов

2. клиническая лабораторная диагностика. PCR даёт возможность обнаружения
наследственных заболеваний, а также обнаружить чужеродный геном в тканях человека
(микроорганизмы, вирусы и т.д.). Реакция пойдёт или не пойдёт. В настоящее время PCR - самый точный метод микробиологической диагностики.

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О СТРУКТУРНО-ФУНКЦИОНАЛЬНОЙ ОРГАНИЗАЦИИ ДНК. 95% ДНК человека представляет не генная часть. 5% - собственно гены. Не генная часть представлена:

1. ТАНДЕМНЫЕ ПОВТОРЫ монотонные повторы НУКЛЕОТИДОВ, как правило дуплетного характера, не имеющие смысла. Это так называемые «пустынные участки» ДНК. В настоящее время смысл этих участков: выполнение структурной функции и площадки для образования генов в эволюции (эволюционный резерв).

2. ПСЕВДОГЕНЫ - неактивные, но стабильные генетические элементы, возникающие в результате мутации в ранее работавших генах (гены, выключенные мутацией). Это побочный
продукт и генетический резерв эволюции. Составляют 20 - 30% не генной части ДНК.

3. Мобильные генетические элементы:

ТРАНСПОЗОНЫ - участки ДНК, способные вырезаться и встраиваться в другие области

ДНК. Это так называемые «странники генов».

РЕТРОТРАНСПОЗОНЫ - участки ДНК, копирующиеся в пределах генома, как внутри

хромосомы, так и между ними. Могут изменять смысл структурных генов человека, приводят к мутациям. Геном человека изменяется в течении жизни на 10 - 30%.

Поврежденные неактивные, мобильные генетические элементы. Не могут ни вырезаться, ни встраиваться из-за отсутствия в клетке ОБРАТНОЙ ТРАНСФЕРАЗЫ. Если фрагмент поступает в клетку с вирусом, то тогда эти гены начинают транскрибироваться. ФУНКЦИОНАЛЬНЫЕ ЭЛЕМЕНТЫ ГЕНОМА:

1. СТРУКТУРНЫЕ ГЕНЫ

2. РЕГУЛЯТОРНЫЕ ЭЛЕМЕНТЫ

Структурные гены кодируют синтез МРНК, ТРНК, РРНК.

Регуляторные элементы не кодируют РНК и, соответственно, белков; влияют на работу

структурных генов.

ГЕНОМИКА - отрасль молекулярной биологии, изучающая структуру и механизмы работы гена. В настоящее время установлено и изучено 35000 генов человека. Из них в каждой клетке работает 25%.

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ПРИРОДЕ БИОХИМИЧЕСКОГО ПОЛИМОРФИЗМА.

В 40-е годы 20в БИДЛОМ и ТЕЙТУМОМ выдвинут принцип: 1 ген - I фермент. Они исходили из общей схемы биосинтеза белка, однако этот принцип не объясняет:

1. Фенотипическое различие между клетками,

2. Индивидуальные различия между организмами одного вида. Каждый человек отличается от другого человека на 0,1% генома.

3. Широкое разнообразие белков. На основе 35000 генов синтезируются около 5000000 белков.
В настоящее время нельзя сказать точно, что изучать важнее - геном или белковый состав
организма.

ПРОТЕОМИКА - отрасль молекулярной биологии, изучающая структуру и функцию белков, взаимосвязь между ними.

ПРОТЕОМ - совокупность белков клетки или организма. В настоящее время можно составить протеомный портрет человека, существует ПРОТЕОМНАЯ ДАКТИЛОСКОПИЯ.

Развитие ГЕНОМИКИ и ПРОТЕОМИКИ невозможно без компьютерного обеспечения. Компьютеры помогают расшифровать геном, определять структуру белков, моделировать функции и признаки.

БИОДЕКОДОМИКА- раздел молекулярной биологии, занимающийся расшифровкой биологических тестов.

МЕТОДЫ И ПРИНЦИПЫ ГЕНОТЕРАПИИ.

ГЕНОТЕРАПИЯ - введение конструкции в организм человека с лечебной целью.

ГЕНОТЕРАПИЯ подразделяется на:

1. ГЕНОТЕРАПИЯ ex vivo, т.е. коррекция генов в клетках, выведенных за пределы организма, коррекция и возвращение клеток в организм. Появилась в 1986г. - впервые был вылечен иммунодефицит, что необходимо повторять 2 - 3 года, т.е. временные ограничения.

2. ГЕНОТЕРАПИЯ in vivo - системная генотерапия с заменой или введением вновь
нормального гена во все клетки организма. Сложна и пока менее используется.

3. ГЕНОТЕРАПИЯ in situ - генетическую конструкцию вводят в зону патологического
процесса. Например, блокаторы онкогенов вводят в место локализации опухоли после её
удаления.

ГЕНОТЕРАПИЯ может быть фетальная (в настоящее время запрещена) и соматическая.

Способы доставки генов. Частицы, доставляющие фрагмент ДНК, называются векторами.

1. Вирусные - вирусные частицы, лишённые возможности вызывать заболевание, но сохраняют способность проникать в геном клетки и встраиваться в него. В них искусственно вводится нужный ген.

2. невирусные:

белковые - белок как доставляющая частица;

наначастицы - мельчайшие капсулы, представленные фосфолипидами, содержащие в

себе ген. Виды терапевтического переноса генов:

ИНТРО- или ЭКСТРОХРОМОСОМНАЯ КОРРЕКЦИЯ (за пределами хромосом),

Введение системы, продуцирующей нормальный белок взамен патологического - генно-
клеточная патология.

3. Блокада аномальных генов - обеспечивается комплиментарной последовательностью ДНК.
На 2001г. в мире было 3500 пациентов, получающих ГЕНОТЕРАПИЮ, более 2000 из них по
поводу раковых заболеваний. В мире утверждено 320 клинических протоколов ГЕНОТЕРАПИИ.
Перспективы: переход от генной к генно-клеточной терапии.

Лекция № 22. Матричные биосинтезы (окончание).

1.ВИДЫ ГЕННЫХ МУТАЦИЙ.

2.БИОХИМИЧЕСКИЙ ПОЛИМОРФИЗМ И ЕГО ПОСЛЕДСТВИЯ.

3.ОБРАТНАЯ ТРАНСКРИПЦИЯ. ВЛИЯНИЕ АНТИБИОТИКОВ И ТОКСИНОВ НА
4.БИОСИНТЕЗ БЕЛКА.

5.ТЕЛОМЕРЫ И ТЕЛОМЕРАЗЫ. ИХ РОЛЬ В РАЗВИТИИ ОПУХОЛЕВОГО РОСТА.

ВИДЫ ГЕННЫХ МУТАЦИЙ.

ДЕПУРИНИЗАЦИЯ - потеря или замена пуриновых оснований. За 70 лет теряется до 40%. С меньшей скоростью происходит ДЕЗАМИНИРОВАНИЕ и ДЕПИРИМИДИРОВАНИЕ. Белок Р-53 метит повреждённый участок ДНК. Если он работает, то включаются механизмы репарации. Если этого белка нет, то наступают мутации - нерепарированные изменения первичной структуры ДНК. Генные мутации затрагивают небольшой участок ДНК в пределах гена. Виды генных мутаций:

1. замена:

а) одного нуклеотида на другой без изменения смысла кода

ААГ® ААА (ЛИЗИН)

КВАЗИДУПЛЕТНОСТЬ - смысловую нагрузку несут в коде только два нуклеотида

б) замена одного нуклеотида на другой с изменением смысла кодона - МИССЕНС-МУТАЦИЯ

в) замена с образованием терминирующего кодона- НОНСЕНС-МУТАЦИЯ.

2. вставка:

а) вставка одного или нескольких кодонов без сдвига рамки считывания. В результате
образуется белок, удлинённый на одну или несколько аминокислот.

б) вставка 1, 2 (но не кратного 3) нуклеотидов. Происходит сдвиг рамки считывания. В
результате синтезируется белок со случайной аминокислотной последовательностью.

3. ДЕЛЕЦИЯ (выпадение):

а) выпадение одного или нескольких кодонов без сдвига рамки считывания. Образуется полипетид, укороченный на одну или несколько аминокислот.

б) выпадение одного или нескольких (но не кратное 3) нуклеотидов со сдвигом рамки считывания. Образуется ПОЛИПЕПТИД со случайной последовательностью аминокислот. По биологическим последствиям все мутации делятся на:

1. Нейтральные. В результате образуются белки с неизменёнными свойствами. Может произойти замена одной аминокислоты на другую, эквивалентную по свойствам (ВАЛ - АЛА, АСП - ГЛУ). Последствия не проявляются.

2. «Молчащие». В результате одна аминокислота заменяется на другую близкую по свойствам, но не эквивалентную. Свойства белка близки, но не совсем идентичные. Эта мутация в физиологических условиях может никак не проявиться, а в экстремальной ситуации может выявиться (обуславливает предрасположенность к заболеваниям)

3. Патогенные. Например, в гемоглобине А ГЛУТАМИНОВАЯ кислота даёт дополнительный отрицательный заряд, что способствует устойчивости белка в растворе. При замене её на ВАЛ устойчивость утрачивается и гемоглобин выпадает в осадок.

4. Полезные. Организм получает преимущества для выживания. Играют роль в эволюции

организмов.

БИОХИМИЧЕСКИЙ ПОЛИМОРФИЗМ И ЕГО ПОСЛЕДСТВИЯ.

В результате мутаций могут возникнуть варианты разных генов или одного и того же гена. Если они летальные, то наступает АПОПТОЗ. Если эти варианты не летальные, то они наследуются. Формируется генотипическая гетерогенность, следовательно, фенотипическая неоднородность.

Следствием генотипической гетерогенности является ПОЛИМОРФИЗМ белков -существование одного и того же белка в разных формах. Например, насчитывается около 700 вариантов гемоглобина. Каждый человек неповторим, биохимически уникален.

ПОСЛЕДСТВИЯ БИОХИМИЧЕСКОГО ПОЛИМОРФИЗМА.

1. Лежит в основе развития предрасположенности к заболеваниям (атеросклероз)

2. Лежит в основе непереносимости пищевых компонентов (лактозы)

3. Лежит в основе непереносимости лекарственных средств. ВЛИЯНИЕ АНТИБИОТИКОВ И ТОКИНОВ НА БИОСИНТЕЗ БЕЛКА.

Антибиотики - продукты жизнедеятельности микроорганизмов, образуемые с целью гибели других микроорганизмов. Антибиотики поражают самые важные процессы - матричные биосинтезы.

1. Вызывают структурную модификацию матрицы.

2. Вызывают модификацию РИБОСОМ.

3. Инактивируют ферменты.

4. Действуют на процессы биосинтеза белка у микроорганизмов, обычно на этапе трансляции. СТРЕПТОМИЦИН нарушает инициацию трансляции. КИРРОМИЦИН препятствует высвобождению ФЭ трансляции. ЭРИТРОМИЦИН и ХЛОРАМФЕНИКОЛ ингибируют ПЕПТИДИЛТРАНСФЕРАЗУ.

Антибиотики на процессы трансляции у эукариот не влияют.

Токсины - вещества, действующие на процессы трансляции у эукариот.

Дифтерийный токсин ингибирует ФЭ и ТРАНСЛОКАЦИЮ. РИЦИН ингибирует большую единицу РИБОСОМ.

ОБРАТНАЯ ТРАНСКРИПЦИЯ. УОТСОН и КРИК считали, что информация может идти только в одном направлении: ДНК

®РНК®белок.

В 1970г. американский учёный ТЕМЕН открыл ревертазу (ОБРАТНУЮ ТРАНСКРИПТАЗУ), обосновав возможность передачи информации в обратном направлении. Сейчас этот фермент называется РНК-зависимой ДНК-полимеразой. Он имеется у всех РНК содержащих вирусов (лейкоз мышей, ВИЧ).

Интеграция - внедрение вирусной ДНК в ДНК хозяина. При репликации последней образуется РНК вируса. Она покрывается оболочкой, выходит из клетки хозяина и начинает поражать другие клетки.

Многие вирусы являются ОНКОГЕННЫМИ. Они живут в ДНК человека. Онкогены несут информацию о белках опухолевого роста. Они определённое время неактивны -ПРОТООНКОГЕНЫ.

ТЕЛОМЕРЫ И ТЕЛОМЕРАЗЫ. ИХ РОЛЬ В РАЗВИТИИ ОПУХОЛЕВОГО РОСТА.

ТЕЛОМ ЕРЫ - это специализированные кольцевые районы хромосомной ДНК, состоящие из многократно повторяющихся НУКЛЕОТИДНЫХ последовательностей. При каждой репликации их количество уменьшается.

ТЕЛОМЕРАЗЫ - ферменты, синтезирующие теломеры. По свойствам представляют РНК -зависимую ДНК-полимеразу. В своей структуре содержат участок РНК, по которому синтезируется ДНК.

Количество теломер определяет длительность жизни. Если теломераза активна, то клетка бессмертна.

В 1960г. Л. ХЕЙФЛИК открыл феномен - лимит ХЕЙФЛИКА, который заключается в том, что клетка делится ограниченное количество раз, и оно зависит от возраста. У новорожденных клетка делится 80 - 90 раз, в 70лет 20 -30 раз. В среднем у взрослого человека клетки делятся 50 -60 раз. Это связано с эффектом «КОЦЕВОЙ НЕДОРЕПЛИКАЦИИ». Её существование предложил ОНОВНИКОВ.

При каждом раунде репликации одна нить ДНК укорачивается из-за удаления ПРАЙМЕРА. Если есть ТЕЛОМЕРЫ и ТЕЛОМЕРАЗА, то нить ДНК достраивается, если их нет, то с каждым моментом ДНК становится короче. Все соматические клетки содержат 10000-15000 пар нуклеотидов и отсутствует ТЕЛОМЕРАЗНАЯ активность. Клетки с теломеразной активностью бессмертны. Обнаружено, что в раковых клетках активируется теломераза и постоянно количество теломер. Макрофаги, лейкоциты, половые клетки, стволовые клетки костного мозга содержат теломеразную активность.

МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ ОНКОГЕНЕЗА.

Рак - это болезнь генов. Поражение клеточных структур связано или с потерей, повреждением какого-то гена, активацией какого-то гена, или внесением его извне.

ОНКОГЕНЫ - это часто нормальные гены, функционирующие в эмбриональном периоде, но с возрастом утратившие свою активность. Механизм активации - мутации. В настоящее время насчитывается 100 онкогенов. Открыты и антионкогены. ОНКОГЕНЫ и АНТИОНКОГЕНЫ возникают среди генов, которые кодируют белок - передатчик сигналов. Более 100 мутаций ведёт к развитию опухоли. У 50% опухолей содержится мутация гена белка Р-53, участвующего в процессах репарации ДНК. Его отсутствие приводит к накоплению мутаций.

Лекция № 23. Сигнальные молекулы.

Основные задачи регуляции метаболизма и клеточных функций:

1.внутриклеточное и межклеточное согласование клеточных процессов,

2.исключение «холостых» циклов метаболизма, продукты которых не востребованы,

3.эффективное образование и использование энергии,

4.поддержание гомеостаза,

5.приспособление организма к условиям окружающей среды.

Регуляция метаболизма: внутренняя и внешняя. Внутренняя регуляция - управляющие сигналы образуются и действуют внутри одной и той же клетки (само-регуляция). Внешняя регуляция - управляющие сигналы поступают к клетке из внешней среды. Внутренняя регуляция осуществляется путём изменения активности ферментов активаторами или ингибиторами. Особенно активно при внутренней регуляции работают аллостерические ферменты (ФОСФОРИЛАЗА). Внешняя регуляция обеспечивается специализированными сигнальными молекулами - эндогенные химические соединения, которые в результате взаимодействия с ферментами, обеспечивают внешнее управление биохимическими процессами в клетках-мишенях.

Клетка-мишень - это клетка, имеющая специализированные воспринимающие рецепторы для данного вида сигнальных молекул. Сигнальные молекулы являются лигандами для рецепторов клеток-мишеней.

Характерные особенности сигнальных молекул.

1.малый период жизни (динамичность, оперативность регуляции).

2.высокая биологическая активность (действие развивается при очень низких концентрациях).

3.уникальность, неповторимость действия. Эффекты одного типа сигнальных молекул не могут быть смоделированы другим. Это обеспечивает разнообразие регуляции.

4.наличие эффекта усиления (одна сигнальная молекула может усиливать каскады биохимических реакций).

5.один вид сигнальных молекул может иметь несколько клеток-мишеней.

6.реакция разных клеток-мишеней на одну и ту же сигнальную молекулу отличается (объясняется многообразием рецепторов и их своеобразием).

Способы внешнего управления клетками-мишенями.

1.Управление экспрессией генов (биосинтез белков и ферментов). Это медленный способ регуляции.

2.Управление активностью ранее синтезированных белков:

Управление активностью ферментов, следовательно, изменение биохимических процессов;

Изменение активности функциональных белков, следовательно, прямое изменение функции клеток. Например, влияние сигнальных молекул на ионный канал вызывает деполяризацию мембраны и формирование потенциала действия. Чрезвычайно быстрый эффект.

Виды регуляторных эффектов сигнальных молекул:

1.Эндокринный. Сигнальные молекулы поступают с током крови из желудочно-воротной системы к клеткам-мишеням. Так действует большинство гормонов.

2.Паракринный - сигнальные молекулы вырабатывают в пределах одного органа или участка ткани. Таким образом действуют большинство факторов роста.

3.Аутокринное - сигнальные молекулы действуют на клетку, их образовавшую.

КЛАССИФИКАЦИЯ СИГНАЛЬНЫХ МОЛЕКУЛ.

1)По химической природе:

1.Органические (производные аминокислот, жиров). СТЕРОИДЫ, ПРОСТОГЛАНДИНЫ.

2.Неорганические - 1992г. МОНООКСИДАЗОТА (NO).
2)По физико-химическим свойствам:

1.Липофобные - не могут проникать через мембрану клетки. Они растворимы в воде.

2.Липофильные - растворяются в жирах. Свободно проникают через ЦПМ и действуют на рецепторы внутри клетки. Например, производные холестерина: МИНЕРАЛО-, ГЛЮКОКОРТИКОИДЫ, ЭСТРОГЕНЫ, АНДРОГЕНЫ, ЙОДТИРОНИНЫ, NO.

3)По биологическому принципу:

1.Гормоны - сигнальные молекулы с выраженным эндокринным эффектом.

2.Цитокины - факторы роста. Это сигнальные молекулы белковой природы, которые выделяются неспециализированными клетками организма. Они регулируют рост, дифференцировку, пролиферацию соседних клеток. Действие пара- и аутокринно.

3.Нейромедиаторы сигнальные молекулы, вырабатывающиеся нервными клетками, координирующие работу нейронов и управление периферическими тканями. Их действие связано с влиянием на ионные каналы. Они изменяют их проницаемость и вызывают деполяризацию мембраны.

МЕХАНИЗМ ДЕЙСТВИЯ СИГНАЛЬНЫХ МОЛЕКУЛ.

Механизм действия ОРГАНИЧЕСКИХ ЛИПОФИЛЬНЫХ сигнальных молекул.

1.взаимодействие с внутриклеточными рецепторами,

2.регуляторный эффект связан с изменением количества белков в результате влияния на экспрессию генов (действуют через геном),

3. биологическое действие продолжительное, но развивается медленно в пределах часов.
Факторы, необходимые для их действия:

Сигнальные молекулы,

Воспринимающий внутриклеточный рецептор, связанный с шапероном.

Участок ДНК, регулирующий транскрипцию определённых генов (ЭНХАНСЕР, САЙЛЕНСЕР),

Белок синтетический аппарат клетки.
Этапы действия:

1. проникновение внутрь клетки,

2. связывание с внутриклеточным рецептором,

3. освобождение шаперона (запуск таймера действия),

4. взаимодействие комплекса сигнальных молекул с регуляторными элементами ДНК, изменение биосинтеза некоторых белков, в том числе и их ферментов.

5. изменение метаболизма и клеточных функций.

Механизм прекращения действия органических липофильных сигнальных молекул:

1. разрушение рецепторов, обусловленное отсутствие защиты со стороны шаперона,

2. протеолиз синтезированных белков,

3. разрушение факторов транскрипции, участвующих в передаче сигналов к структурному гену.

По перечисленному механизму действуют СТЕРОИДНЫЕ гормоны и ЙОДТИРОНИН.

Механизм действия ЛИПОФОБНЫХ сигнальных молекул:

1. взаимодействие с поверхностными рецепторами,

2. сигнал передаётся от рецептора внутрь клетки (ТРАНСДУКЦИЯ) и устанавливается с помощью внутриклеточных регуляторов: высоко- и низкомолекулярных.

Высокомолекулярные регуляторы - это регуляторные белки. Они опосредуют действие сигнальной молекулы внутри клетки.

Низкомолекулярные регуляторы небелковой природы. Его называют второй МЕССЕНДЖЕР (первый МЕССЕНДЖЕР - сама сигнальная молекула) - полноправный представитель сигнальной молекулы внутри клетки. Это ионы кальция, ДИАЦИЛГЛИЦЕРОЛ, ИНОЗИТОЛТРИФОСФАТ, цАМФ и цГМФ.

3. биологическое действие обусловлено сочетанием регуляции активности ранее синтезированных белков и регуляция экспрессии генов. Регуляторный эффект двухфазный:

Первая фаза быстрая, но не продолжительная, она обеспечивает изменение структуры и активности ферментов;

Вторая фаза медленная за счёт изменения количества ферментов.

МЕХАНИЗМ ДЕЙСТВИЯ, ЗАВИСИМЫЙ ОТ ЦАМФ.

Факторы, необходимые для этого:

1. растворимая в воде сигнальная молекула;

2. поверхностные рецепторы клетки-мишени;

3. внутриклеточный трансдуктор G-белок. Состоит из 3 единиц: альфа, бета, гамма.

G-белок может быть ингибирующий и активирующий. Он находится в непосредственной близости к рецептору. При взаимодействии сигнальной молекулы с рецептором он активируется, его активность обусловлена альфа единицей. Она оказывает влияние на внутриклеточный фермент - АДЕНИЛАТЦИКЛАЗУ (превращает АТФ в ЦАМФ). Альфа-S повышает активность. альфа-I понижает активность G-белка. G-белок способен присоединять ГДФ или ГТФ. Альфа-единица активна, когда связана с ГТФ.

4. АДЕНИЛАТЦИКЛАЗА(АЦ);

5. ПРОТЕИНКИНАЗА-А ЦАМФ-зависимая. Она катализирует реакцию фосфорилирования белков. В результате белки изменяют активность;

6. Регуляторные элементы ДНК (ЭЕХАНСЕР и САЙЛЕНСЕР);

7. ФОСФОДИЭСТЕРАЗА - разрушает ЦАМФ;

8. ФОСФАТАЗА - дефосфорилируют белки;

9. Белок-синтетический аппарат клетки.

Этапы, стимулирующие ЦАМФ -зависимый механизм:

1. взаимодействие сигнальной молекулы с рецептором;

2. изменение конформации G-белка;

3. замена ГДФ на ГТФ в альфа-S единице G-белка;

4. альфа-S ГТФ активирует АЦ;

5. АЦ синтезирует ЦАМФ;

6. ЦАМФ активирует ПРОТЕИНКИНАЗУ-А (ПКА);

7. ПКА фосфорилирует белки и белковые факторы транскрипции, изменяющие активность и количество ферментов;

8. Прекращение действия, если рецептор освободился - альфа-5-С-ГТФ-азная активность:

альфа-единица может разрушать ГТФ - это таймер действия.

ФОСФОДИЭСТЕРАЗА - разрушает ЦАМФ.

ФОСФАТАЗА - ДЕФОСФОРИЛИРУЕТ белки. Этапы, ингибируюшие ЦАМФ -зависимый механизм:

С первого по третий те же самые этапы, отличие в G-белке (альфа-I единица). Четвёртый этап - связывание ГТФ с альфа-I единицей будет ингибировать АЦ. Ингибируюший механизм противодействует и прекращает эффекты ЦАМФ в клетке.

ЦГМФ -зависимый стимулирующий механизм действия.

Рецептор встроен в мембрану клетки и связан с ферментом ГУАНИЛАТЦИКЛАЗОЙ (ГЦ). При присоединении сигнальной молекулы ГЦ активируется и катализирует реакцию ГТФ * ЦГМФ. Последний активирует ПРОТЕИНКИНАЗУ-G (ПКО), а она запускает реакцию фосфорилирования белков (ферментов и факторов транскрипции).

ТИРОЗИНКИНАЗНЫЙ МЕХАНИЗМ ДЕЙСТВИЯ.

ТИРОЗИНКИНАЗА - фермент, фосфорилирующий белки. По этому механизму действует большинство факторов роста и пролиферации. Рецептор представлен дуплетом, который после взаимодействия с сигнальной молекулой ДИМЕРАЛИЗУЕТСЯ, что запускает АУТОФОСФОРИЛИРОВАНИЕ остатков тирозина в центральной части рецептора. Наблюдается отсутствие МЕССЕНДЖЕРОВ. Рецептор оказывает влияние на ферментные системы клетки. Он может поступать в ядро вместе с сигнальными молекулами и усиливать транскрипцию генов и изменять митотическую активность клетки.

Механизм действия НЕОРГАНИЧЕСКИХ ЛИПОФОБНЫХ сигнальных молекул (NO). NO беспрепятственно проникает через мембрану клетки. Это короткоживущая молекула, образующаяся в организме под действием NO-СИНТАЗЫ из аминокислоты АРГ. В клетке NO взаимодействует с ГЦ, активирует её, что вызывает накопление в клетке ЦГМФ. который активирует ПКО, и развивается клеточный ответ по выше рассмотренному механизму.

Эффекты NO:

1. фактор расширения сосудов;

2. регулятор АПОПТОЗА (запрограммированной клеточной смерти);

3.NO является свободным радикалом, поэтому способен влиять на процесс перекисного
окисления жиров и регулировать функции МИТОХОНДРИЙ;

4. является ИММУНОМОДУЛЯТОРОМ.

Лекция № 24. Сигнальные молекулы (продолжение).

1.РОЛЬ ГИПОТАЛАМУСА В РЕГУЛЯЦИИ ОБМЕНА ВЕЩЕСТВ.

2.ГОРМОНЫ ГИПОФИЗА.

ГИПОТАЛАМУС является компонентом и своеобразным «выходным каналом» лимбической системы. Это отдел промежуточного мозга, контролирующий различные параметры гомеостаза. С одной стороны он связан с ЦНС (центры ВНС), с другой - с гипофизом через нервные проводники и особую портальную систему.

ГИПОТАЛАМУС участвует во многих функциях нервной регуляции, выделяя НЕЙРОТРАНСМИТТЕРЫ и НЕЙРОМОДУЛЯТОРЫ. а также регулирует эндокринную систему. Внешние или внутренние факторы среды

ГИПОТАЛАМУС

АДЕНОГИПОФИЗ

ТРОЙНЫЕ ГОРМОНЫ

ИПОФИЗЗАВИСИМЫЕ

ЖВС ГОРМОНЫ ЖВС

летки-мишени

Физиологический или биохимический ответ.

Функция ГИПОТАЛАМУСА не всегда строго зависима от ЦНС.

Гормоны ГИПОТАЛАМУСА Сокращение Гормоны гипофиза
ЛИБЕРИНЫ: КОРТИКОТРОПИНРЕЛИЗИНГ ГОРМОН ТИРЕОТРОПИНРЕЛИЗИНГ ГОРМОН ГОНАДОТРОПИНРЕЛИЗИНГ ГОРМОН ГОРМОН РОСТА РЕЛИЗИНГ ГОРМОН КРГ ТРГ ГнРГ СтГ-РГ АКТГ ТТГ ФСГ и ЛГ СТГ
СТАТИНЫ: ГОРМОН ИНГИБИРУЮЩИЙ ОСВОБОЖДЕНИЕ ГОРМОНА РОСТА (СОМАТОСТАТИН) ГОРМОН ИНГИБИРУЮЩИЙ ОСВОБОЖДЕНИЕ ПРОЛАКТИНА СС ПИГ ГР ПРЛ

Многие из факторов ГИПОТАЛАМУСА образуются в периферических тканях (ТРГ, КРГ, СС). СС больше всего в D-клетках ПЖЖ. Действуют через ЦАМФ (АДЕНИЛАТЦИКЛАЗУ). Гормоны ГИПОТАЛАМУСА стимулируют транскрипцию генов гормонов гипофиза.

ГИПОФИЗ. В нём выделяют три доли:

1. Передняя

2. Промежуточная

АДЕНОГИПОФИЗ

(выделяет тропные гормоны)

3. Задняя - НЕЙРОГИПОФИЗ.

ТРОПНЫЕ гормоны можно разделить на 3 группы в зависимости от их химической природы:

1. простые белки;

2. ГЛИКОПРОТЕИНЫ;

3. ПЕПТИДЫ, образующиеся из предшественников ПРООПИОМЕЛАНОКОРПИНА (ПОМК).

ПРОСТЫЕ БЕЛКИ.

К ним относятся: ГР, ПРЛ, ПЛАЦЕНТАРНЫЙ ХОРИОНИЧЕСКИЙ СОМАТОМАММОТРОПИН (ХС). Состоят из 191 - 198 аминокислот. ГР близок по строению с ХС на 85%, ПРЛ - на 35%.Среди этих гормонов наибольшую концентрацию имеют ГР. Секреция ГР эпизодическая. Максимальная секреция в момент засыпания или перед пробуждением. На секрецию влияют стресс, голод, физические упражнения. ГР сберегает глюкозу для тканей.

Он повышает ЛИПОЛИЗ,® повышается концентрация жирных кислот, ® повышает

транспорт в клетку ® повышает концентрацию аминокислот ® повышает

ГЛЮКОНЕОГЕНЕЗ ® повышение глюкозы ® мозг.

ГР действует через инсулиноподобный фактор роста (ИФР), близкий по строению к проинсулину. Выделяют ИФР 1 и ИФР 2, но главным посредником действия ГР является ИФР 1. Влияние ГР на обмен веществ:

1. Стимуляция синтеза белка: (через ИФР I.)_

Повышение транспорта аминокислот в клетки,

Повышение интенсивности процесса трансляции,

Повышение синтеза РНК и ДНК

2. Влияние на углеводный обмен:

Повышение глюкозы (уменьшение утилизации глюкозы периферическими тканями, стимуляция процессов ГЛЮКОНЕОГЕНЕЗА),

3. Влияние на минеральный обмен (через ИФР1) - задержка кальция, фосфора, магния в организме,

4. Влияние на липидный обмен (не через ИФР 1):

повышение ЛИПОЛИЗА, повышение окисления ВЖК.

ГИПОСЕКРЕЦИЯ в детском возрасте приводит к нарушению синтеза белка, понижению минерализации костной ткани, задержке роста и развитию карликовости в нескольких вариантах.

ГИПЕРСЕКРЕЦИЯ гормона роста в детском возрасте приводит к развитию гигантизма, во взрослом развитию акромегалии. Нарушение синтеза гормона роста на умственную деятельность не влияет.

ПРЛ состоит из 198 аминокислот. Синтезируется при беременности и лактации. Функция заключается в инициации и поддержании лактации.

ХС проявляет ЛАКТОГЕННУЮ и МОТЕОТРОПНУЮ активность. Функция заключается в регуляции синтеза молока, развития желтых тел и развития плода.

ГЛИКОПРОТЕИНЫ. К ним относятся ТТГ, гонадотропины (ЛГ, ФСГ, ПЛАЦЕНТАРНЫЙ ХОРИОНИЧЕСКИЙ ГОНАДОТРОПИН (ХГЧ)). Действуют через ЦАМФ.

Женские клетки-мишени - фолликулярные клетки яичника,

Мужские клетки-мишени - клетки СЕРТОЛИ семенников.

В женском организме стимулирует рост фолликулов, подготавливают их к действию ЛГ. В мужском организме индуцирует синтез АНДРОГЕНСВЯЗЫВАЮЩЕГО белка. Стимулирует рост семенных канальцев семенников и сперматогенез.

Женские клетки-мишени - клетки желтых тел, Мужские клетки-мишени - клетки ЛЕЙДЕГА.

Стимулирует образование в женском организме ПРОГЕСТЕРОНА, а в мужском -ТЕСТОСТЕРОНА. Предшественником их является ХОЛЕСТЕРОЛ. ЛГ индуцирует овуляцию у женщин. ХГЧ синтезируется в плаценте и близок по эффектам к ЛГ. Появляется в моче после имплантации зародыша. Его определение служит диагностическим маркером беременности.

ТТГ: Клетки-мишени - ТИРЕОЦИТЫ.

Повышает синтез ТРИЙОДТИРОНИНА и ТИРОКСИНА.

Повышает гидролиз белка - ТИРЕОГЛОБУЛИНА.

Повышает включение йода в структуру ТИРЕОИДНЫХ гормонов.

Стимулирует синтез белка и нуклеиновых кислот в щитовидной железе (способствует

Повышению количества и росту ТИРЕОИДНЫХ гормонов)

ПЕПТИДЫ СЕМЕЙСТВА ПОМК.

ПОМК - белок, состоящий из 285 аминокислот. Процессинг его происходит в передней и промежуточной доле гипофиза. Из него образуются пептиды: АКТГ. бета ЛИПОТРОПИН. N-концевой пептид. АКТГ:

1. альфа -МЕЛАНОЦИТСТИМУЛИРУЮЩИЙ гормон (МСГ) (промежуточная доля).

2. КОРТИКОТРОПИНОПОДОБНЫЙ ПЕПТИД. Бета-ЛИПОТРОПИН:

1. бета -ЭНДОРФИНЫ: альфа -ЭНДОРФИНЫ, гамма -ЭНДОРФИНЫ.

2. Альфа-ЛИПОТРОПИН.

3. Бета -МСГ.

N-концевой ПЕПТИД: гамма -МСГ.

АКТГ - полипептид, состоящий из 39 аминокислот. Клетки-мишени - клетки коры надпочечников. Стимулирует синтез стероидов коры надпочечников из холестерина через ЦАМФ.

Повышается АДЕНИЛАТЦИКЛАЗА в жировой ткани.

Усиливается ЛИПОЛИЗ ® ВЖК ® АЦЕТИЛ-КОА ® ХОЛЕСТЕРОЛ

СТЕРОИДНЫЕ ГОРМОНЫ.

АКТГ стимулирует процессы пентозного цикла и является поставщиком НАДН2 Повышает синтез белка и нуклеиновых кислот в надпочечниках. ГИПЕРСЕКРЕЦИЯ проявляется в виде синдрома КУШИНГА:

1. повышение пигментации,

2. отрицательный азотистый баланс, выход азота, калия, фосфора.

3. задержка в организме натрия (отёки, повышение АД).

Бета -ЛИПОТРОПИН усиливает липолиз.

Бета -ЭНДОРФИНЫ в гипофизе связаны и неактивны. В гипоталамусе и ЦНС они переходят в активную форму и играют роль нейромедиаторов, трансмиттеров. Понижают чувствительность к боли. Играют важную роль в эмоциональных состояниях. МСГ стимулирует образование меланина.

ГОРМОНЫ ЗАДНЕЙ ДОЛИ ГИПОФИЗА.

1. Вазопрессин (АДГ).

2. Окситоцин.

Образуются в ядрах гипоталамуса. Являются циклическими НАНАПЕПТИДАМИ (9

аминокислот)

АДГ: клетки-мишени - клетки кровяных сосудов, дистальных извитых канальцев и

собирательных трубочек почек. Повышают реабсорбцию воды в почках. Действует через ЦАМФ.

ГИПОСЕКРЕЦИЯ - несахарный диабет.

ОКСИТОЦИН: клетки-мишени - главные миоциты матки, клетки молочных желез. Повышает

сокращение матки и секрецию молока. Используется для стимуляции родовой деятельности.

Лекция № 25.

Сигнальные молекулы (продолжение).

1. ГОРМОНЫ ЩИТОВИДНОЙ И ПАРАЩИТОВИДНОЙ ЖЕЛЕЗ.

2. ГОРМОНЫ ПЖЖ.

3. ГОРМОНЫ НАДПОЧЕЧНИКОВ.

ГОРМОНЫ ЩИТОВИДНОЙ ЖЕЛЕЗЫ: В щитовидной железе синтезируется и выделяется 3 гормона:

1. ТРИЙОДТИРОНИН (ТЗ).

2. ТЕТРАЙОДТИРОНИН (Т4).

3. КАЛЫДИТОНИН.

Трийодтиронин и тетрайодтиронин синтезируются из аминокислоты тирозина, включённой в состав тиреоглобулина. Он подвергается нормированию с образованием 3-МОНОЙОДТИРОЗИНА, 3,5-ДИЙОДТИРОЗИН, ТЕТРАЙОДТИРОНИН.

Через СООН- и NН2-группы тироксин встроен в структуру тиреоглобулина. Две молекулы тироксина связываются с помощью конденсирующего фермента. Для синтеза тироксина требуется йодид. Превращение йода в йодид происходит путём окисления с помощью ТИРЕОПЕРОКСИДАЗЫ. Синтез тиреоидных гормонов происходит в составе тиреоглобулина. В свободном виде гормоны из железы выделяются в кровь после гидролиза тиреоглобулина с образованием свободных ТЗ и Т4. Этот процесс стимулирует ТТГ гипофиза. Тормозит распад тиреоглобулина ионы йода. т.е. с одной стороны ионы йода необходимы для синтеза тиреоглобулина, с другой стороны при их избытке они тормозят его гидролиз. Поэтому для лечения гипертириоза используют KI. ТЗ и Т4 плохо растворимы в воде и транспортируются с кровью тироксин связывающим глобулином (ТСГ). В клинической практике большой интерес представляет определение свободных ТЗ и Т4.

МЕХАНИЗМ ДЕЙСТВИЯ ТИРЕОИДНЫХ ГОРМОНОВ.

Т.к. они гидрофобны. то легко проникают через мембрану клетки. Рецепторы к ним находятся внутри клетки, главным образом в ядре, небольшая часть в цитоплазме. Сродство рецепторов к ТЗ больше, чем к Т4 в 10 раз, несмотря на то, что образуется больше Т4. Рецептор внутри ядер -негистоновый белок хроматина. ВЛИЯНИЕ НА МЕТАБОЛИЗМ.

1. Повышение поглощения тканями кислорода за исключением мозга, ретикуло-эпителиальной системы и гонад.

2. Повышается активность натрий-калттевой АТФ-азы, при этом уровень АТФ понижается.

3. Повышается синтез белка, положительный азотистый баланс - эффект физиологической концентрации гормонов. При повышении концентрации тиреоидных гормонов синтез белка понижается и наблюдается отрицательный азотистый баланс.

4. Повышает транскрипцию гена гормона роста. НАРУШЕНИЕ ФУНКЦИИ ЩИТОВИДНОЙ ЖЕЛЕЗЫ.

ГИПОФУНКЦИЯ (ГИПОТИРЕОЗ):

1. У детей возникает кретинизм, проявляющийся:

В отставании в росте;

В отставании в физическом развитии;

В отставании в умственном развитии.

2. У взрослых возникает МИКСДЕМА (слизистый отёк):

понижается распад гликопротеинов; повышение онкотического давления; отёк тканей.

3. ЭНДЕМИЧЕСКИЙ ЗОБ возникает в регионах с недостатком йода в воде и пище. Понижается объём железистой ткани, но увеличивается объём самой железы за счёт соединительной ткани. ГИПЕРФУНКЦИЯ (ГИПЕРТИРЕОЗ) проявляется:

Повышением потоотделения.

Экзофтальм.

Повышение окислительных процессов.

Повышение температуры тела.

Похудание и т.д.

КАЛЬЦИТОНИН - полипептид, синтезирующийся К-клетками щитовидной железы. Снижает уровень кальция в крови.

ГОРМОНЫ ПАРАЩИТОВИДНОЙ ЖЕЛЕЗЫ.

Синтезирует ПАРАТИРЕОИДНЫЙ ГОРМОН (паратгормон) ПТГ. Это пептид, состоящий из 84 аминокислотных остатка. Увеличивает уровень кальция в крови за счёт:

1. стимулирует выход кальция и фосфора из костей в кровь,

2. повышает реабсорбцию кальция в почках,

3. стимулирует образование из витамина D3 гормона кальцитриола в почках, который стимулирует всасывание кальция в кишечнике.

ГОРМОНЫ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ.

ПЖЖ -это смешанная железа, осуществляющая эндокринную и экзокринную функцию. Эндокринная функция осуществляется островками ЛАНГЕРГАНСА. В них образуется 4 гормона четырьмя видами клеток:

1. ИНСУЛИН (70%) синтезируется в В-клетках.

2. ГЛЮКАГОН (25%) синтезируется в А-клетках.

3. СОМАТОСТАТИН (5%) синтезируется в D-клетках.

4. ПАНКРЕАТИЧЕСКИЙ ПОЛИПЕПТИД синтезируется в F-клетках. Инсулин - это пептид, состоящий из 51 аминокислотных остатка в двух цепях.

ПРИНСУЛИН состоит из 84 АК.

Процессинг: ПРОИНСУЛИН ® ИНСУЛИН + С -ПЕПТИД

В клинике определяется количество инсулина и С-пептида. МЕХАНИЗМ ДЕЙСТВИЯ ИНСУЛИНА.

Клетки-мишени: клетки печени, миоциты, жировой ткани.

Рецепторы находятся на поверхности ЦПМ, т.к. инсулин не может проникать в клетки без связи с

рецептором. Может встречаться явление интернализации рецепторов, т.е. проникновение

комплекса инсулин - рецептор в клетку путём эндоцитоза и последующее его разрушение. Т.о.

количество рецепторов к инсулину снижается. С этим явлением связано возникновение инсулин

независимого сахарного диабета. ВЛИЯНИЕ НА МЕТАБОЛИЗМ:

1. Углеводный обмен:

это единственный гормон, понижающий уровень глюкозы в крови, за счёт повышения транспорта глюкозы через мембрану клеток жировой и мышечной ткани. В печени глюкоза легко проникает в гепатоциты в силу разницы её концентрации в крови и в клетках. Но в печени инсулин повышает активность фермента ГЛКЖОКИНАЗЫ, катализирующего превращение глюкозы в глюкозо-6-фосфат. Повышает активность процессов гликолиза.

Повышает активность фермента ГЛЮКОГЕНСИНТЕТАЗЫ (синтез гликогена). Понижает активность глюкозо-6-фосфатазы, катализирующей превращение глюкозо-6-фосфата в глюкозу.

Инсулин необходим для усвоения глюкозы.

2. ЛИПИДНЫЙ ОБМЕН:

Ингибирует липолиз.

Стимулирует липогенез из углеводов.

3. Обмен белков:

Стимулирует синтез белков.

Стимулирует транспорт аминокислот в клетку.

Тормозит распад белков.

Активизирует процесс транскрипции и трансляции.

Стимулирует пролиферацию клеток за счёт повышения секреции фактора роста фибробластов, тромбоцитарного фактора роста, фактора роста эпидермиса. Дефицит инсулина проявляется в виде сахарного диабета.

1. Инсулин зависимый сахарный диабет связан с нарушением секреции инсулина (генетические нарушения, поражение ПЖЖ). Встречается у 10%.

2. Инсулин независимый сахарный диабет - уменьшение количества рецепторов к инсулину в результате интернализации. Встречается у 90%.

Предрасполагающий фактор - ожирение. Клинические проявления:

1. голод клеток на фоне ГИПЕРГЛИКЕМИИ,

2. ПОЛИФАГИЯ,

3. ПОЛИДИПСИЯ,

4. ГЛЮКОЗУРИЯ (более 10 ммоль/л),

5. ПОЛИУРИЯ,

6. КЕТОЗ - повышение кетоновых тел (за счёт не окисления АЦЕТИЛ-КОА),

7. КЕТОАЦИДОЗ (диабетическая кома).

ГЛЮКАГОН -полипептид, состоящий из 29 аминокислот.

МЕХАНИЗМ ДЕЙСТВИЯ.

Клетки-мишени: гепатоциты.

Рецепторы лежат на поверхности мембраны клеток. Действует через циклическую АМФ.

Активизирует превращение фосфорилазы В в фосфорилазу А, в результате гликоген

расщепляется с образованием глюкозы.

ВЛИЯНИЕ НА МЕТАБОЛИЗМ:

1. Повышает концентрацию глюкозы в крови,

2. Усиливает процессы глюконеогенеза,

3. Повышает интенсивность липолиза.

СОМАТОСТАТИН - пептид, состоящий из 14 аминокислот. Подавляет образование других

гормонов ПЖЖ.

Функция ПАНКРЕАТИЧЕСКОГО ПОЛИПЕПТИДА недостаточно изучена.

ГОРМОНЫ НАДПОЧЕЧНИКОВ.

1. Мозговой слой

А) Адреналин (гормон) образуются из аминокислоты тирозина.

В) Норадреналин (нейромедиатор).

Это гормоны стресса. Их действие близко.

МЕХАНИЗМ ДЕЙСТВИЯ.

Клетки мишени: клетки печени, скелетных мышц, сердца, слюнных желез, матки.

Рецепторы находятся на поверхности мембран. Посредником является ЦАМФ, которая

активизирует протеинкиназу.

ВЛИЯНИЕ НА МЕТАБОЛИЗМ.

1. Повышает уровень глюкозы в крови.

2. Адреналин действует не только на печень, но и на мышцы, где из глюкозы образуется молочная кислота.

3. Усиливают липолиз.

4. Повышается содержание не этерефицированных жирных кислот.

5. Повышает АД, частоту сердечных сокращений и т.д.

2. Корковый слой (более 30 стероидов)

1. ГЛЮКОКОРТИКОИДЫ (кортикостерон, кортизол, кортизон).

В организме человека наибольшую роль играет кортизол - производное ЦИКЛОПЕНТАНПЕРГИДРОФЕНАНТРЕНА

2. МИНЕРАЛОКОРТИКОИДЫ (альдостерон).

МЕХАНИЗМ ДЕЙСТВИЯ.

Механизм действия цитозольный (проникают через мембрану). Рецепторы находятся внутри клетки. Действуют по принципу гормон ® ген ® белок. В печени, почках усиливают синтез белков; в лимфатической ткани, соединительной ткани, скелетных мышцах - тормозят синтез белка.

ВЛИЯНИЕ НА МЕТАБОЛИЗМ.

1. Глюкокортикоиды:

Повышают глюконеогенез,

Повышают синтез гликогена,

Усиливают липолиз,

Усиливают образование кетоновых тел,

Понижают синтез антител, следовательно, противовоспалительное противоаллергическое действие.

2. Минералокортикоиды:

Повышают транспорт натрия через мембрану,

Задерживают натрий, хлор в организме,

Понижают содержание калия в организме.

Недостаточность гормонов коры ведёт к АДДИСОНОВОЙ болезни:

Пигментация кожи,

ГИПЕРКАЛИЕМИЯ,

ГИПОТОНИЯ,

Понижение резистентности к стрессовым воздействиям.

1. ПОНЯТИЕ О ВИТАМИНАХ, КЛАССИФИКАЦИЯ.

2. ПОНЯТИЕ ОБ АВИТАМИНОЗАХ, ГИПО- И ГИПЕРВИТАМИНОЗАХ.

3. ЖИРОРАСТВОРИМЫЕ ВИТАМИНЫ A, D.

Возникновение научной витаминологии относят к 19 в. Французский патолог МАЖАНДИ впервые установил, что для обеспечения нормального роста молодых животных недостаточно только основных поддерживающих жизнь веществ. Русский врач ЛУНИН в эксперименте на животных установил, что животные, которых кормили казеином, жирами, лактозой, водой и минеральными солями болели и погибали, в отличие от животных, получавших свежее молоко.

В 1911г. учёный ФУНД выделил и кристаллизовал азотсодержащее вещество, которое вылечивало экспериментальную бери-бери. Это вещество он назвал ВИТАМИНОМ (амином жизни).

Витамины - это низкомолекулярные органические соединения различного строения, синтез которых в организме отсутствует или ограничен. Особенности витаминов:

1. не синтезируются в организме или синтезируются в недостаточном количестве;

2. не выполняют пластической функции, т.е. не являются структурным компонентом клеток;

3. не выполняют энергетической функции;


Похожая информация.


Как уже упоминалось (стр. 59), важнейшие биополимеры – белки и нуклеиновые кислоты - синтезируются в живом организме путем матричной поликонденсации. Для осуществления матричного синтеза полимера необходима макромолекула-матрица , несущая всю информацию о первичной структуре синтезируемой макромолекулы. В ходе синтеза происходит «считывание» этой информации, и разные мономеры вступают в реакции синтеза в определенном порядке . Для этого необходимо, чтобы каждый мономер «узнавал» то место на макромолекуле-матрице, где «записана» информация именно об этом мономере. Иными словами, необходимо некое структурное соответствие между молекулой мономера и соответствующим ему участком матрицы; это соответствие принято называть комплементарностью (в некоторых русскоязычных источниках встречается написание «компли ментарность»; дело, вероятно, в том, что английское слово с ompl e mentary произносится как ‘kompl i ment ry ).

Принцип комплементарности макромолекулы-матрицы и синтезируемого полимера может быть использован для синтеза полимеров с определенной первичной структурой любым методом (и полимеризациейи поликонденсацией); ведутся исследования по матричному получению синтетических сополимеров. Однако до настоящего времени единственными эффективными примерами матричных синтезов полимеров являются синтезы белков и нуклеиновых кислот путем матричной поликонденсации. Все эти синтезы протекают в ходе генетических процессов , прежде всего – репликации, транскрипции и трансляции (синтез небольших участков ДНК протекает также в ходе еще одного генетического процесса – репарации).

Во всех этих случаях матрицей является макромолекула нуклеиновой кислоты : при репликации и транскрипции – ДНК, при трансляции – матричной (информационной) РНК. Комплементарное узнавание осуществляется: А. При репликации и транскрипции (а также репарации) - между нуклеотидными звеньями макромолекулы матрицы и мономерами (нуклеозидтрифосфатами); Б. При трансляции – между нуклеотидными звеньями макромолекулы - матрицы и нуклеотидными звеньями антикодонов. Это узнавание осуществляется путем образования водородных связей между гетероциклическими основаниями: для ДНК в парах аденин-тимин (A-T, Ade-Thy) и гуанин-цитозин (G-C, Gua-Cyt), для РНК – в парах аденин-урацил (А-U, Ade-Ura) и гуанин-цитозин. В парах А-Т и А-U образуются две водородные связи, в паре G-C – три:

Эти пары имеют абсолютно одинаковый размер (1,085 нм); это делает возможным построение регулярных вторичных структур (прежде всего, двойной спирали ДНК).

Репликация, транскрипция и трансляция начинаются и заканчиваются в строго определенных местах макромолекулы-матрицы (иначе говоря, для матричных синтезов существуют «старт-сигнал» и «стоп-сигнал»). Начало этих процессов называют инициацией , процесс формирования полимерной цепи – элонгацией, окончание – терминацией. Все эти процессы протекают при катализе несколькими ферментами.

Репликация. В ходе этого генетического процесса происходит удвоение молекул ДНК, т.е. копирование генетической информации. Суть процесса – расплетение двойной спирали ДНК на единичные цепи; каждая из них служит матрицей для синтеза новой (дочерней) цепи из мономеров – дезоксирибонуклеозид-5’-трифосфатов. Синтез катализируется ферментами ДНК-полимеразами , которые осуществляют линейный синтез (т.е. на каждой стадии формирования цепи взаимодействуют полимер и мономер) по направлению 5’→3’ (т.е. на каждой стадии реагируют 3’-концевая группа ОН полимера и 5’-трифосфатная группа мономера:

Поскольку каждый мономер узнает свой участок, дочерняя цепь представляет собой точную копию отделившейся [если в ходе синтеза все же к цепи присоединяется «неправильный» мономер (т.е. не комплементарный своему звену матрицы), то фермент осуществляет коррекцию – отщепляет это звено].

Двойная связь начинает расплетаться в каком-то определенном месте; синтез дочерних цепей начинается сразу вслед за началом расплетения двойной спирали; двойная спираль продолжает расплетаться, а вслед за расплетением (движением «репликативной вилки») идет наращивание дочерних цепей. При этом на двух одиночных цепях-матрицах синтез идет по разным схемам. Дело в том, что в двойной спирали исходной (материнской) ДНК цепи ориентированы антипараллельно ; поэтому для одной цепи репликативная вилка движется в направлении 5’→3’ (эта цепь называется ведущей ), а для другой – в направлении 3’→5’ (эта цепь называется отстающей ). Поскольку синтез дочерней цепи может идти только в направлении 5’→3’, то на ведущей цепи она синтезируется в том же направлении , что и движение вилки, а на отстающей – в противоположном направлении. Поэтому на ведущей цепи идет непрерывный синтез «вдогонку» движению вилки, а на отстающей – прерывистый , в виде отдельных фрагментов, называемых фрагментами Оказаки (пока синтезируется один фрагмент, вилка движется в обратном направлении и освобождается место на матрице; тогда синтез этого фрагмента прекращается, и на освободившемся месте начинается синтез второго фрагмента и т.д.):

После окончания синтеза фрагменты Оказаки сшиваются специальными ферментами (лигазами) в одну цепь. Таким образом, на одной цепи (ведущей) идет чисто линейный синтез, а на другой – отстающей – блочный (конвергентный).

Дочерние цепи образуют с материнскими цепями двойные спирали – копии исходных двойных спиралей.

Полимеразная цепная реакция (амплификация фрагментов ДНК)

Относительно недавно (К. Маллис, 1988) разработана методика, позволяющая проводить процесс, подобный репликации, не в организме, а «в колбе» (in vitro ) . Такой процесс получил название полимеразной цепной реакции, ПЦР (Polymerase Chain Reaction , PCR ) . Полимеразная цепная реакция позволяет многократно увеличивать количество первоначально взятой ДНК; такое увеличение количества (размножение) принято обозначать термином «амплификация». Амплификации по способу ПЦР подвергается не вся нативная ДНК, а ее фрагменты, содержащие гены, интересующие исследователя. Для получения таких фрагментов нативную ДНК подвергают специфическому расщеплению (рестрикции) специальными ферментами – рестриктазами (будут рассмотрены в дальнейшем). Необходимое условие для амплификации: для амплифицируемого фрагмента должна быть известна первичная структура с 3’- концов обеих цепей примерно на 20-30 звеньев.

Для проведения полимеразной цепной реакции необходимо иметь праймеры – олигонуклеотиды длиной 20-30 звеньев, комплементарные первичным структурам обоих цепей с 3’ –концов. Синтез таких олигонуклеотидов разработан достаточно хорошо.

Для проведения ПЦР в реакционный сосуд помещают амплифицируемый фрагмент ДНК, прибавляют большой избыток обоих праймеров и мономеров – дезоксирибонуклеотид – 5’-трифосфатов - и вводят ДНК-полимеразу; обычно используют термостойкую полимеразу, выделенную из термобактерий. Смесь нагревают до 95 0 С; при этом двойная спираль амплифицируемого фрагмента ДНК распадается на одиночные цепи; затем быстро охлаждают до 60 0 С; при этом праймеры координируются с комплементарными им 3’-концами каждой цепи. Это более вероятно, чем воссоздание распавшейся двойной спирали, т.к. праймеры находятся в большом избытке. Праймеры, ассоциированные с цепями, служат затравками для матричного синтеза ДНК из мономеров, который катализируется ДНК-полимеразой. Синтез идет в направлении 5’→3’; на каждой цепи синтезируется комплементарная ей вторая цепь и, следовательно, количество ДНК удваивается. Далее цикл нагрев-охлаждение повторяется; каждая из макромолекул ДНК снова удваивается и т.д. Таким образом, удается провести несколько циклов и многократно увеличить количество ДНК; большой избыток праймеров и мономеров это позволяет сделать. Проведение ПЦР представлено на приведенной ниже схеме; для упрощения изображены праймеры длиной 7 звеньев, хотя в действительности они заметно длиннее (20-30 звеньев):

Синтез полинуклеотидных цепей идет, разумеется, по той же схеме (полимер + мономер), что и при обычной репликации (стр. 91).

Транскрипция. В ходе этого процесса происходит передача информации от ДНК на матричную (информационную) ДНК (а также на транспортные и рибосомальные РНК). Процесс имеет много общего с репликацией: макромолекула ДНК является матрицей для синтеза макромолекулы РНК из мономеров – рибонуклеозид-5 ’-трифосфатов; синтез также начинается с расплетения двойной спирали ДНК и протекает в направлении 5’→3’ по линейной схеме при катализе ферментами –РНК-полимеразами. Однако имеются и принципиальные особенности: 1) В отличие от репликации, матрицей служит только одна цепь исходной ДНК (так называемая минус-цепь); 2) Синтезируемая цепь не образует двойную спираль с молекулой-матрицей, а отделяется в виде единичной цепи; молекула- матрица снова образует двойную спираль с ранее отделившейся цепью ДНК (плюс-цепью): двойная спираль ДНК-ДНК устойчивее спирали ДНК-РНК:

И при репликации и при транскрипции синтезируются весьма высокомолекулярные полинуклеотидные цепи с высочайшей скоростью (у эукариот –1000-3000 звеньев в мин., у прокариот – до 50000 тыс. звеньев в мин.). А. Скорость процесса обусловлена: 1. Точной пространственной ориентацией реагирующих частиц : 5’-трифосфатная группа мономера точно подводится к 3’-ОН-концевому звену синтезируемой цепи; это происходит в процессе комплементарного узнавания; 2. Ферментативным катализом , который, как известно, наиболее эффективен. Матричный синтез нуклеиновых кислот, в отличие от нематричного, не требует защиты «лишних групп»: приведенные факторы обеспечивают абсолютную специфичность взаимодействия функциональных групп. Б. Высокая молекулярная масса синтезируемого полимера достигается полным удалением низкомолекулярного продукта реакции – пирофосфата, которых гидролизуется до фосфата [как уже упоминалось (стр. 72), синтез нуклеиновых кислот относится к равновесной поликонденсации].

Трансляция. Матричный биосинтез полипептидов. В ходе трансляции происходит передача генетической информации от матричной РНК (мРНК) на белок.

Матрицей для синтеза полипептидной цепи служит молекула мРНК; при этом возникает проблема перевода информации из 4- буквенного «алфавита» РНК на 20-буквенный «алфавит» полипептидной цепи (одно из значений термина «трансляция» – перевод). Иными словами, необходимо существование структурного соответствия между определенными участками РНК-матрицы и определенными мономерами для синтеза полипептидов - α-аминокислотами. Это соответствие получило название белкового кода. Код является триплетным : каждая аминокислота соответствует участку мРНК, содержащему три нуклеотидных звена ; иначе говоря, она кодируется триплетом нуклеотидных звеньев; такой триплет называется кодоном. Совокупность всех кодонов – белковый код .

Белковый код является вырожденным – большинство α-аминокислот кодируется более чем одним кодоном. Кодоны, кодирующие одну и ту же аминокислоту, называют синонимичными ; как правило, первые два звена синонимичных кодонов одинаковы, а третье различается: например, пролин (Pro ) кодируется четырьмя кодонами: ССU, CCA, CCC, CCG. Из 64 кодонов (это число возможных сочетаний из четырех типов звеньев по три) 61 кодируют α-аминокислоты, а три не кодируют ничего; они называются терминальными или стоп-кодонами; на этих участках матрицы синтез полипептида останавливается. Код, как правило, не перекрывается, кодоны идут «встык» один за другим: если, например, в последовательности GAAUGUCCG первые три звена (GAA) кодируют одну аминокислоту, то вторые три (UGU) – вторую, а третьи (CCG) – третью; в то же время, например, триплет AAU здесь кодоном не является.

Белковый код был расшифрован в 60-х годах ХХ века во многом благодаря использованию синтетических матриц – продуктов поликонденсации олигонуклеотидов (стр. 89).

α-Аминокислоты не могут непосредственно узнавать соответствующие им кодоны, поскольку нет прямой комплементарности между их структурами. Узнавание осуществляется с помощью молекул- посредников (адапторов или уж совсем по русски - переходников) – молекул, которые могут специфически координироваться с одной стороны с кодонами, а с другой – с соответствующими им α-аминокислотами. Такими адапторами являются транспортные РНК (тРНК) – сравнительно низкомолекулярные полинуклеотиды (73-85 нуклеотидных звеньев); эти РНК растворимы и весьма мобильны, что и позволяет им выполнять транспортную функцию – доставку аминокислот к матрице. Транспортная РНК имеет специфическую пространственную структуру («клеверного листа»); один из фрагментов этой структуры («акцепторный стебель») специфически связывается со своей α-аминокислотой (и только с ней!); другой фрагмент («антикодоновая петля») содержит триплет нуклеотидных звеньев, комплементарных кодону, который кодирует именно эту аминокислоту; этот триплет называют антикодоном (например, если аминокислота кодируется триплетом UСA, то в ее тРНК антикодон – AGU).

Перед процессом собственно трансляции происходит узнавание α-аминокислотами «своих» тРНК и далее ковалентное связывание с ними с образованием сложного эфира по 3’-концевому звену «акцепторного стебля» - аминоацил-тРНК:

Ковалентное связывание происходит при участии 5’-аденозинтрифосфата (АТР, рррА), который поставляет необходимую для этого энергию (расщепляясь до аденозинмонофосфата и пирофосфата). Образование аминоацил-тРНК катализируются ферментами – аминоацил-тРНК-синтетазами; каждая из них узнает с одной стороны «свою» α-аминокислоту, а с другой – «свою» тРНК («двойной контроль», практически исключающий ошибки при узнавании).

Далее т-РНК транспортирует связанную с ней α-аминокислоту к матрице, где и происходит «сборка» полипептидной цепи. Матрица – мРНК – образует комплекс с рибосомой – клеточной органеллой, представляющей собой специфический комплекс рибосомальных РНК с белками. Рибосома в ходе синтеза перемещается вдоль цепи мРНК от кодона к кодону (это перемещение называется транслокацией) . Именно на рибосоме и происходит синтез полипептидной цепи. Опуская описание строения рибосомы, отметим, что на ней имеются два центра связывания А-центр (аминокислотный) и Р-центр (пептидный), которые и принимают непосредственное участие в синтезе.

Опять-таки опуская начало (инициацию) процесса трансляции, рассмотрим единичный цикл элонгации – совокупность процессов, при которых полипептидная цепь увеличивается на одно звено (рис. 9)

Один цикл элонгации включает три этапа. Перед первым этапом Р-центр занят тРНК, связанной с С-концевым звеном формирующейся полипептидной цепи; А-центр свободен и находится у кодона, кодирующего следующую аминокислоту. На первом этапе (1) тРНК, связанная с этой следующей аминокислотой (здесь – фенилаланином), узнает кодон этой аминокислоты (при помощи антикодона) и координируется с ним, закрепляясь на А-центре. При этом весьма важно, что пептидная цепь на Р-центре и очередная аминокислота точно ориентированы друг по отношению к другу – группа NH 2 очередной аминокислоты точно «нацелена» на сложноэфирный карбонил С-концевого звена пептидной цепи. Такая ориентация обусловлена специфической структурой рибосомы. Точная ориентация позволяет весьма эффективно осуществить ключевой второй этап (2) – образование пептидной связи (конденсацию). Эта реакция идет по типу аминолиза сложного эфира; «спиртовая» компонента – тРНК – вытесняется и остается на Р-центре, а пептидная цепь, удлинившаяся на одно звено, теперь связана с новой молекулой тРНК, прикрепленной к А-центру.

Образование пептидной связи катализируется ферментом – пептидилтрансферазой – и протекает с очень большой скоростью – за время порядка 10 -2 – 10 -3 сек.

Далее следует третий этап (3), который состоит из трех стадий. На первой стадии освободившаяся тРНК предыдущей аминокислоты уходит с Р-центра (удаление побочного продукта равновесной поликонденсации). На второй стадии тРНК с прикрепленной к ней пептидной цепью переходит с А-центра на освободившийся Р-центр. Наконец, на третьей стадии рибосома перемещается вдоль цепи мРНК на один кодон (на рисунке - вправо), т.е. происходит транслокация. После этого картина полностью аналогична исходной (до начала первого этапа), но полипептидная цепь имеет на одно звено больше, а рядом с А-центром находится новый кодон; далее все повторяется. Один цикл элонгации проходит в течение порядка 0,05 сек., так что синтез достаточно большого белка из 400 звеньев проходит за 20 сек. Синтез идет в направлении 5"->3" мРНК и от N-конца полипептидной цепи к ее С-концу.

Терминация трансляции наступает при попадании А-центра рибосомы на стоп-кодон; синтез прекращается, готовая полипептидная цепь отделяется от последней тРНК и покидает рибосому.

Рис. 9. Схема одного цикла элонгации при трансляции

Резюме

Процессы поликонденсации в подавляющем большинстве случаев (за исключением поли- рекомбинации) сводятся к взаимодействию между собой функциональных групп мономеров. Если каждый мономер содержит две группы, образуется линейный полимер (линейная поликонденсация), если три или более – возможно сшивание с образованием трехмерной структуры (трехмерная поликонденсация). Концевые группы полимеров – неиспользованные функциональные группы мономеров.

Для поликонденсации используют самые разнообразные взаимодействия между функциональными группами, из которых, вероятно, наиболее часто – полиацилирование; по этой схеме, в частности, идет синтез белков и по сходной схеме – синтез нуклеиновых кислот.

Реакции поликонденсации протекают по ступенчатым механизмам. Конечный результат линейной поликонденсации определяется, в основном, двумя факторами: степенью обратимости реакции и соотношением реагирующих групп. По степени обратимости различают равновесную и неравновесную поликонденсацию. В первом случае обратные реакции (деструкции) протекают в заметной степени, поэтому необходимо удаление низкомолекулярного продукта реакции; во втором случае такое удаление не обязательно. Нарушение эквивалентности реагирующих групп во всех случаях ограничивает длину полимерной цепи. Поэтому для достижения высоких молекулярных масс нужно обеспечить строгую эквивалентность групп; напротив, для получения олигомеров нужно использовать рассчитанный избыток одной из групп. Для трехмерной поликонденсации эти ограничения не столь существенны, т.к. для сшивания во многих случаях достаточно неполной глубины процесса.

При обычной непрограммируемой поликонденсации образуются полимеры с высокой степенью полидисперсности; однако, долю молекул любой величины (как по числу, так и по массе) во многих случаях можно достаточно точно рассчитать.

С другой стороны, именно поликонденсация предоставляет возможность осуществления программируемых синтезов, в результате которых образуются монодисперсные полимеры, в том числе сополимеры с заданной первичной структурой. Это могут быть синтезы с контролем каждой стадии формирования полимерной цепи (синтез дендримеров, синтезы полипептидов и полинуклеотидов «в пробирке»). Наиболее совершенный вариант программируемого синтеза – матричный синтез, в ходе которого считывается информация, «записанная» на молекуле-матрице. Это – процессы репликации, транскрипции и трансляции; ферментативный катализ и точная ориентация реагирующих молекул позволяет проводить эти синтезы не только с высочайшей точностью, но и с высочайшей скоростью.

На вопрос Матричный синтез это заданный автором Алена Августеняк лучший ответ это МАТРИЧНЫЙ СИНТЕЗ - ЭТО
1. Полимеризация и поликонденсация, при к-рых строение образующегося полимера и (или) кинетика процесса определяются др. макромолекулами (матрицами) , находящимися в непосредств. контакте с молекулами одного или неск. мономеров и растущими цепями. Пример М. с. в живой природе - синтез нуклеиновых к-т и белков, в к-ром роль матрицы играют ДНК и РНК, а состав и порядок чередования звеньев в растущей (дочерней) цепи однозначно определяются составом и структурой матрицы. Термин "М. с. " обычно используют при описании синтеза нуклеиновых к-т и белков, а при рассмотрении способов получения др. полимеров пользуются такими терминами, как матричные полиреакции, полимеризация, поликонденсация.

Такой М. с. реализуется при условии хим. и стерич. соответствия (комплементарности) мономеров и растущей цепи, с одной стороны, и матрицы - с другой; при этом элементарные акты осуществляются между мономерами и растущими макромолекулами (а также олигомерами - при матричной поликонденсации) , связанными с матрицей. Обычно мономеры и олигомеры обратимо связываются с матрицей достаточно слабыми межмол. взаимод. - электростатич. , донорно-акцепторным и т. д. Дочерние цепи практически необратимо ассоциируют с матрицей ("узнают" матрицу) только после того, как достигнут нек-рой определенной длины, зависящей от энергии взаимод. между звеньями матрицы и дочерней цепи. "Узнавание" матрицы растущей цепью - необходимая стадия М. с. ; дочерние цепи практически всегда содержат фрагмент или фрагменты, образовавшиеся по "обычному" механизму, т. е. без влияния матрицы. Скорость М. с. может быть выше, ниже или равна скорости процесса в отсутствие матрицы (кинетич. матричный эффект). Структурный матричный эффект проявляется в способности матрицы влиять на длину и хим. строение дочерних цепей (в т. ч. их стерич. структуру) , а если в М. с. участвуют два или более мономера - то также на состав сополимера и способ чередования звеньев. Методом М. с. получают полимер-полимерные комплексы, обладающие более упорядоченной структурой, чем поликомплексы, синтезируемые простым смешением р-ров полимеров, а также поликомплексы, к-рые нельзя получить из готовых полимеров вследствие нерастворимости одного из них. М. с. - перспективный метод получения новых полимерных материалов. Термин "М. с. " обычно используют при описании синтеза нуклеиновых к-т и белков, а при рассмотрении способов получения др. полимеров пользуются такими терминами, как матричные полиреакции, полимеризация, поликонденсация. Лит. : Кабанов В. А. , Паписов И. М. , "Высокомолекулярные соединения", сер. А, 1979, т. 21, № 2, с. 243-81; Картина О. В. [и др.] , "ДАН СССР", 1984, т. 275, №3, с. 657-60; Литманович А. А. , Марков С. В. , Паписов И. М. , "Высокомолекулярные соединения", сер. А, 1986, т. 28, №6, с. 1271-78; Ferguson J., Al-Alawi S., Graumayen R., "European Polymer Journall", 1983, v. 19, № 6, p. 475-80; Polоwinski S., "J. Polymer. Sci.", Polimer Chemistry Edition, 1984, v. 22, № 11, p. 2887-94. И. М. Паписов.
ссылка