Метод моментов позволяет определить. Cредние величины в статистике

12.2. Метод моментов.

Метод моментов - самый «старый» и самый простой из регулярных методов оценивания параметров. Фактически он использовался еще в 19 веке. Согласно этому методу, оценки параметров так же выражаются через статистические моменты выборки, как параметры - через моменты генеральной совокупности. Более конкретно, пусть модель включает класс распределений с вектором параметрова =(a 1 , a 2 ,..., a m ), включающим m оцениваемых параметров. Эти параметры связаны с моментами (например, начальными) равенствами

где - какие-то функции,- моменты генеральной СВ. Тогда оценки параметров находятся по формулам

где (см. п. 6.3)

Статистический момент k -го порядка. Разумеется, можно выражать оцениваемые параметры через центральные моменты или, смешанно, через начальные и центральные.

Пример 1 . Класс распределений

с одним параметром . Выражение параметра через момент:=1/=1/m x , следовательно, оценка по методу моментов

.

Пример 2 . Тот же класс распределений с другим параметром:

Выражение параметра через момент: , следовательно, оценка по методу моментов

.

Пример 3 . Класс , - нормальное распределение с двумя оцениваемыми параметрами:имеет смысл математического ожидания,имеет смысл с. к. о. Выражения параметров через моменты:

следовательно, оценки по методу моментов

Пример 4 . Класс нормальных распределений с одним оцениваемым параметром(известно), имеющим смысл математического ожидания. Выражение параметра через момент:, оценка по методу моментов

.

Сравнивая с примером 3, видим, что известность или неизвестность не влияет на оценку математического ожидания по методу моментов.

Пример 5 . Класс нормальных распределений с одним параметром(m x известно), имеющим смысл с. к. о. Выражение параметра через момент: , оценка по методу моментов

.

Сравнивая с примером 3, видим, что оценка с. к. о. по методу моментов зависит от того, известно m x , или нет.

Свойства оценок по методу моментов (ММ-оценок) .

1) Метод прост, при его реализации как правило не возникает каких-либо математических проблем.

2) При довольно общих условиях ММ-оценки асимптотически нормальны, что облегчает построение интервальных оценок (см. п. 13) и испытание гипотез о параметрах распределений.

3) В общем случае ММ-оценки имеют смещение, порядок относительного смещения при больших n :

, с=с onst .

Часто (но не всегда) смещение этих оценок можно устранить с помощью простых поправок, т. е. образовать новые оценки (уже не ММ-оценки), не имеющие смещения (примеры устранения смещения приведены ниже).

4) Порядок дисперсии ММ-оценки при больших n :

5) ММ-оценки состоятельны.

6) Р. Фишер в 1921 г. показал, что ММ-оценки чаще всего не эффективны, и даже асимптотически не эффективны. Он рассмотрел большое число практически используемых распределений и показал, что нормальное распределение в этом смысле исключение: его ММ-оценки эффективны или асимптотически эффективны, а ММ-оценки параметров подавляющего большинства других распределений имеют эффективность и асимптотическую эффективность значительно меньшие единицы.

Смещение и эффективность ММ-оценок на примерах.

Пример 1 . Оценивание математического ожидания . Пусть единственным неизвестным параметром распределения является математическое ожидание m х . ММ-оценка этого параметра

.

Как неоднократно показано выше, эта оценка состоятельна и несмещенна. Ее эффективность зависит от класса распределений генеральной СВ, например, как показано выше, она эффективна для нормального, экспоненциального, биномиального, пуассоновского распределений.

Пример 2 . Оценивание дисперсии при известном математическом ожидании . Пусть единственным неизвестным параметром распределения является дисперсия D x , математическое ожидание m x известно, остальные параметры или отсутствуют, или известны. ММ-оценка дисперсии

;

ее математическое ожидание

следовательно, она несмещенная; ее эффективность зависит от класса распределений генеральной СВ.

Пример 3 . Одновременное оценивание математического ожидания и дисперсии . Пусть оценке подлежат m x , D x , остальные параметры отсутствуют или известны. ММ-оценки

Оценка несмещенная; покажем, что оценкасмещенная.

В соответствии с (6.3.4) можно записать:

,

Найдем каждый член в правой части по отдельности. Имеем:

,

.

Признаки единиц статистических совокупностей различны по своему значению, например, заработная плата рабочих одной профессии какого-либо предприятия не одинакова за один и тот же период времени, различны цены на рынке на одинаковую продукцию, урожайность сельскохозяйственных культур в хозяйствах района и т.д. Поэтому, чтобы определить значение признака, характерное для всей изучаемой совокупности единиц, рассчитывают средние величины.
Средняя величина это обобщающая характеристика множества индивидуальных значений некоторого количественного признака.

Совокупность, изучаемая по количественному признаку, состоит из индивидуальных значений; на них оказывают влияние, как общие причины, так и индивидуальные условия. В среднем значении отклонения, характерные для индивидуальных значений, погашаются. Средняя, являясь функцией множества индивидуальных значений, представляет одним значением всю совокупность и отражает то общее, что присуще всем ее единицам.

Средняя, рассчитываемая для совокупностей, состоящих из качественно однородных единиц, называется типической средней . Например, можно рассчитать среднемесячную заработную плату работника той или иной профессиональной группы (шахтера, врача библиотекаря). Разумеется, уровни месячной заработной платы шахтеров в силу различия их квалификации, стажа работы, отработанного за месяц времени и многих других факторов отличаются друг от друга, так и от уровня средней заработной платы. Однако в среднем уровне отражены основные факторы, которые влияют на уровень заработной платы, и взаимно погашаются различия, которые возникают вследствие индивидуальных особенностей работника. Средняя заработная плата отражает типичный уровень оплаты труда для данного вида работников. Получению типической средней должен предшествовать анализ того, насколько данная совокупность качественно однородна. Если совокупность состоит их отдельных частей, следует разбить ее на типические группы (средняя температура по больнице).

Средние величины, используемые в качестве характеристик для неоднородных совокупностей, называются системными средними . Например, средняя величина валового внутреннего продукта (ВВП) на душу населения, средняя величина потребления различных групп товаров на человека и другие подобные величины, представляющие обобщающие характеристики государства как единой экономической системы.

Средняя должна вычисляться для совокупностей, состоящих из достаточно большого числа единиц. Соблюдение этого условия необходимо для того, чтобы вошел в силу закон больших чисел, в результате действия которого случайные отклонения индивидуальных величин от общей тенденции взаимно погашаются.

Виды средних и способы их вычисления

Выбор вида средней определяется экономическим содержанием определенного показателя и исходных данных. Однако любая средняя величина должна вычисляться так, чтобы при замене ею каждой варианты осредняемого признака не изменился итоговый, обобщающий, или, как его принято называть, определяющий показатель , который связан с осредняемым показателем. Например, при замене фактических скоростей на отдельных отрезках пути их средней скоростью не должно измениться общее расстояние, пройденное транспортным средством за одно и тоже время; при замене фактических заработных плат отдельных работников предприятия средней заработной платой не должен измениться фонд заработной платы. Следовательно, в каждом конкретном случае в зависимости от характера имеющихся данных, существует только одно истинное среднее значение показателя, адекватное свойствам и сущности изучаемого социально-экономического явления.
Наиболее часто применяются средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая и средняя кубическая.
Перечисленные средние относятся к классу степенных средних и объединяются общей формулой:
,
где – среднее значение исследуемого признака;
m – показатель степени средней;
– текущее значение (варианта) осредняемого признака;
n – число признаков.
В зависимости от значения показателя степени m различают следующие виды степенных средних:
при m = -1 – средняя гармоническая ;
при m = 0 – средняя геометрическая ;
при m = 1 – средняя арифметическая ;
при m = 2 – средняя квадратическая ;
при m = 3 – средняя кубическая .
При использовании одних и тех же исходных данных, чем больше показатель степени m в вышеприведенной формуле, тем больше значение средней величины:
.
Это свойство степенных средних возрастать с повышением показателя степени определяющей функции называется правилом мажорантности средних .
Каждая из отмеченных средних может приобретать две формы: простую и взвешенную .
Простая форма средней применяется, когда средняя вычисляется по первичным (несгруппированными) данным. Взвешенная форма – при расчете средней по вторичным (сгруппированным) данным.

Средняя арифметическая

Средняя арифметическая применяется, когда объем совокупности представляет собой сумму всех индивидуальных значений варьирующего признака. Следует отметить, что если вид средней величины не указывается, подразумевается средняя арифметическая. Ее логическая формула имеет вид:

Средняя арифметическая простая рассчитывается по несгруппированным данным по формуле:
или ,
где – отдельные значения признака;
j – порядковый номер единицы наблюдения, которая характеризуется значением ;
N – число единиц наблюдения (объем совокупности).
Пример. В лекции «Сводка и группировка статистических данных» рассматривались результаты наблюдения стажа работы бригады из 10 человек. Рассчитаем средний стаж работы рабочих бригады. 5, 3, 5, 4, 3, 4, 5, 4, 2, 4.

По формуле средней арифметической простой вычисляются также средние в хронологическом ряду , если интервалы времени, за которое представлены значения признака, равны.
Пример. Объем реализованной продукции за первый квартал составил 47 ден. ед., за второй 54, за третий 65 и за четвертый 58 ден. ед. Среднеквартальный оборот составляет (47+54+65+58)/4 = 56 ден. ед.
Если в хронологическом ряду приведены моментные показатели, то при вычислении средней они заменяются полусуммами значений на начало и конец периода.
Если моментов больше двух и интервалы между ними равны, то средняя вычисляется по формуле средней хронологической

,
где n- число моментов времени
В случае, когда данные сгруппированы по значениям признака (т. е. построен дискретный вариационный ряд распределения) средняя арифметическая взвешенная рассчитывается с использовании либо частот , либо частостей наблюдения конкретных значений признака , число которых (k) значительно меньше числа наблюдений (N) .
,
,
где k – количество групп вариационного ряда,
i – номер группы вариационного ряда.
Поскольку , а , получаем формулы, используемые для практических расчетов:
и
Пример. Рассчитаем средний стаж рабочих бригад по сгруппированному ряду.
а) с использованием частот:

б) с использованием частостей:

В случае, когда данные сгруппированы по интервалам , т.е. представлены в виде интервальных рядов распределения, при расчете средней арифметической в качестве значения признака принимают середину интервала, исходя из предположения о равномерном распределении единиц совокупности на данном интервале. Расчет ведется по формулам:
и
где - середина интервала: ,
где и – нижняя и верхняя границы интервалов (при условии, что верхняя граница данного интервала совпадает с нижней границей следующего интервала).

Пример. Рассчитаем среднюю арифметическую интервального вариационного ряда, построенного по результатам исследования годовой заработной платы 30 рабочих (см. лекцию «Сводка и группировка статистических данных»).
Таблица 1 – Интервальный вариационный ряд распределения.

Интервалы, грн.

Частота, чел.

Частость,

Середина интервала,

600-700
700-800
800-900
900-1000
1000-1100
1100-1200

3
6
8
9
3
1

0,10
0,20
0,267
0,30
0,10
0,033

(600+700):2=650
(700+800):2=750
850
950
1050
1150

1950
4500
6800
8550
3150
1150

65
150
226,95
285
105
37,95

грн. или грн.
Средние арифметические, вычисленные на основе исходных данных и интервальных вариационных рядов, могут не совпадать из-за неравномерности распределения значений признака внутри интервалов. В этом случае для более точного вычисления средней арифметической взвешенной следует использовать не средины интервалов, а средние арифметические простые, рассчитанные для каждой группы (групповые средние ). Средняя, вычисленная по групповым средним с использованием взвешенной формулы расчета, называется общей средней .
Средняя арифметическая обладает рядом свойств.
1. Сумма отклонений вариант от средней равна нулю:
.
2. Если все значения вариант увеличиваются или уменьшаются на величину А, то и средняя величина увеличивается или уменьшается на ту же величину А:

3. Если каждую варианту увеличить или уменьшить в В раз, то средняя величина также увеличится или уменьшатся в то же количество раз:
или
4. Сумма произведений вариант на частоты равна произведению средней величины на сумму частот:

5. Если все частоты разделить или умножить на какое-либо число, то средняя арифметическая не изменится:

6) если во всех интервалах частоты равны друг другу, то средняя арифметическая взвешенная равна простой средней арифметической:
,
где k – количество групп вариационного ряда.

Использование свойств средней позволяет упростить ее вычисление.
Допустим, что все варианты (х) сначала уменьшены на одно и то же число А, а затем уменьшены в В раз. Наибольшее упрощение достигается, когда в качестве А выбирается значение середины интервала, обладающего наибольшей частотой, а в качестве В – величина интервала (для рядов с одинаковыми интервалами). Величина А называется началом отсчета, поэтому этот метод вычисления средней называется спосо бом отсчета от условного нуля или способом моментов .
После такого преобразования получим новый вариационный ряд распределения, варианты которого равны . Их средняя арифметическая, называемая моментом первого порядка, выражаетсяформулой и согласно второго и третьего свойств средней арифметической равна средней из первоначальных вариант, уменьшенной сначала на А, а потом в В раз, т. е. .
Для получения действительной средней (средней первоначального ряда)нужно момент первого порядка умножить на В и прибавить А:

Расчет средней арифметической по способу моментов иллюстрируется данными табл. 2.
Таблица 2 – Распределение работников цеха предприятия по стажу работы


Стаж работников, лет

Количество работников

Середина интервала

0 – 5
5 – 10
10 – 15
15 – 20
20 – 25
25 – 30

12
16
23
28
17
14

2,5
7,5
12,7
17,5
22,5
27,5

15
-10
-5
0
5
10

3
-2
-1
0
1
2

36
-32
-23
0
17
28

Находим момент первого порядка . Затем, зная, что А=17,5, а В=5, вычисляем средний стаж работы работников цеха:
лет

Средняя гармоническая
Как было показано выше, средняя арифметическая применяется для расчета среднего значения признака в тех случаях, когда известны его варианты x и их частоты f.
Если статистическая информация не содержит частот f по отдельным вариантам x совокупности, а представлена как их произведение , применяется формула средней гармонической взвешенной . Чтобы вычислить среднюю, обозначим , откуда . Подставив эти выражения в формулу средней арифметической взвешенной, получим формулу средней гармонической взвешенной:
,
где - объем (вес) значений признака показателя в интервале с номером i (i=1,2, …, k).

Таким образом, средняя гармоническая применяется в тех случаях, когда суммированию подлежат не сами варианты, а обратные им величины: .
В тех случаях, когда вес каждой варианты равен единице, т.е. индивидуальные значения обратного признака встречаются по одному разу, применяется средняя гармоническая простая :
,
где – отдельные варианты обратного признака, встречающиеся по одному разу;
N – число вариант.
Если по двум частям совокупности численностью и имеются средние гармонические, то общая средняя по всей совокупности рассчитывается по формуле:

и называется взвешенной гармонической средней из групповых средних .

Пример. В ходе торгов на валютной бирже за первый час работы заключены три сделки. Данные о сумме продажи гривны и курсе гривны по отношению к доллару США приведены в табл. 3 (графы 2 и 3). Определить средний курс гривны по отношению к доллару США за первый час торгов.
Таблица 3 – Данные о ходе торгов на валютной бирже

Средний курс доллара определяется отношением суммы проданных в ходе всех сделок гривен к сумме приобретенных в результате этих же сделок долларов. Итоговая сумма продажи гривны известна из графы 2 таблицы, а количество купленных в каждой сделке долларов определяется делением суммы продажи гривны к ее курсу (графа 4). Всего в ходе трех сделок куплено 22 млн. дол. Значит, средний курс гривны за один доллар составил
.
Полученное значение является реальным, т.к. замена им фактических курсов гривны в сделках не изменит итоговой суммы продаж гривны, выступающей в качестве определяющего показателя : млн. грн.
Если бы для расчета была использована средняя арифметическая, т.е. гривны, то по обменному курсу на покупку 22 млн. дол. нужно было бы затратить 110,66 млн. грн., что не соответствует действительности.

Средняя геометрическая
Средняя геометрическая используется для анализа динамики явлений и позволяет определить средний коэффициент роста. При расчете средней геометрической индивидуальные значения признака представляют собой относительные показатели динамики, построенные в виде цепных величин, как отношения каждого уровня к предыдущему.
Средняя геометрическая простая рассчитывается по формуле:
,
где – знак произведения,
N – число осредняемых величин.
Пример. Количество зарегистрированных преступлений за 4 года возросло в 1,57 раза, в т. ч. за 1-й – в 1,08 раза, за 2-й – в 1,1 раза, за 3-й – в 1,18 и за 4-й – в 1,12 раза. Тогда среднегодовой темп роста количества преступлений составляет: , т.е. число зарегистрированных преступлений ежегодно росло в среднем на 12%.

1,8
-0,8
0,2
1,0
1,4

1
3
4
1
1

3,24
0,64
0,04
1
1,96

3,24
1,92
0,16
1
1,96

Для расчета средней квадратической взвешенной определяем и заносим в таблицу и . Тогда средняя величина отклонений длины изделий от заданной нормы равна:

Средняя арифметическая в данном случае была бы непригодна, т.к. в результате мы получили бы нулевое отклонение.
Применение средней квадратической будет рассмотрено далее в показателях вариации.

(называемых моментами или моментными функциями ) , интегрируемых по мере , выполнены условия на моменты

Пусть - выборка случайной величины X. Предполагается, что соотношения аналогичные условиям на моменты выполнены и для выборки, а именно вместо математического ожидания в условиях на моменты необходимо использовать выборочные средние:

причем в данном представлении (когда справа от равенства - ноль) достаточно использовать просто суммы вместо средних.

Оценки, получаемые из решения этой системы уравнений (выборочных условий на моменты), называются оценками метода моментов . Название метода связано с тем, что чаще всего в качестве функций выступают функции степенного вида, математические ожидания от которых в теории вероятностей и математической статистике принято называть моментами.

Если моментные функции непрерывны, то оценки метода моментов состоятельны .

Частные случаи

Некоторые классические методы оценки регрессионных моделей можно представить как частные случаи метода моментов. Например, если линейная регрессионная модель удовлетворяет условию , то условия на моменты выглядят следующим образом:

Следовательно, в этом случае оценка метода моментов будет совпадать с оценкой метода наименьших квадратов

Таким образом, МНК является частным случаем метода моментов, когда выполняется условие ортогональности регрессоров и случайных ошибок

Рассмотрим другой случай, когда имеются некоторые переменные z, ортогональные случайным ошибкам линейной регрессионной модели, то есть . Тогда имеем выборочный аналог этого условия:

Следовательно оценка метода моментов будет совпадать с оценкой метода инструментальных переменных : .

В некоторых случаях, редких при больших объемах данных и более частых при малом их количестве, оценки, даваемые методом моментов могут оказаться вне допустимой области. Такая проблема никогда не возникает в методе максимального правдоподобия. Также, оценки по методу моментов не обязательно оказываются достаточной статистикой , то есть, они иногда извлекают из данных не всю имеющуюся в них информацию.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Метод моментов" в других словарях:

    метод моментов - momentų metodas statusas T sritis fizika atitikmenys: angl. method of moments; moments method vok. Momentenmethode, f rus. метод моментов, m pranc. méthode de moments, f … Fizikos terminų žodynas

    В математической статистике это способ построения оценок, основанный на уравнивании теоретических и выборочных моментов. (Пирсон 1894г.) Содержание 1 Определение 2 Замечания … Википедия

    - (ОММ, GMM Generalized Method of Moments) метод, применяемый в математической статистике и эконометрике для оценки неизвестных параметров распределений и эконометрических моделей, являющийся обобщением классического метода моментов. Метод был… … Википедия

    - (ИП, IV Instrumental Variables) метод оценки параметров регрессионных моделей, основанный на использовании дополнительных, не участвующих в модели, так называемых инструментальных переменных. Метод применяется в случае, когда факторы… … Википедия

    Или метод наибольшего правдоподобия (ММП, ML, MLE Maximum Likelihood Estimation) в математической статистике это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что… … Википедия

    метод распределения моментов - Метод расчёта сложных статически неопределимых рам, при котором первоначально неуравновешенные моменты в узлах уравновешиваются по методу последовательных приближений с помощью коэффициентов распределения моментов [Терминологический словарь по… … Справочник технического переводчика

    Метод определения распределения вероятностей по его моментам. В теоретич. отношении М. м. основан на единственности решения моментов проблемы:если нек рые постоянные, то при каких условиях существует единственное распределение такое, что суть… … Математическая энциклопедия

    Метод расчёта сложных статически неопределимых рам, при котором первоначально неуравновешенные моменты в узлах уравновешиваются по методу последовательных приближений с помощью коэффициентов распределения моментов (Болгарский язык; Български)… … Строительный словарь

    - (от греч. methodos путь, способ исследования, обучения, изложения) совокупность приемов и операций познания и практической деятельности; способ достижения определенных результатов в познании и практике. Применение того или иного М. определяется… … Философская энциклопедия

    - (лат. associatio соединение, присоединение) исследовательский, диагностический и терапевтический прием психоанализа. Основан на использовании феномена ассоциативности мышления для познания глубинных (преимущественно бессознательных) психических… … Новейший философский словарь

Книги

  • Электродинамическое моделирование антенных и СВЧ структур с использованием FEKO , Курушин Александр Александрович, Банков Сергей Евгеньевич, Грибанов Александр Николаевич. Данная книга представляет собой систематическое описание одной из самых мощных современных программ электродинамического моделирования - FEKO. Программа FEKO имеет мощную систему черчения…

Ключевые вопросы: определение, предпосылки модели, понятие и формулы моментов, алгоритм расчёта оценок, применение в нормальном распределении, дискуссия о типе и количестве моментов, достоинства и недостатки подхода .

Метод моментов – один из наиболее известных и популярных методов статистического оценивания параметров вероятностных распределений.

Основные предпосылки модели метода моментов следующие:

Суть метода моментов заключается в вычислении того количества теоретических и выборочных моментов случайной величины, которое равно числу исследуемых нами параметров. После вычисления соответствующие друг другу теоретические и выборочные моменты приравниваются, и исходя из получившегося уравнения осуществляется вычисление оценки параметра.

Формула теоретических моментов выглядит так: где μ’ k – есть k-й теоретический момент величины Y.

Формула выборочных моментов выглядит так: где m’ k – есть k-й выборочный момент величины Y.

После этого приравниванием μ’ k = m’ k добиваемся вычисления значений параметров.

Рассмотрим в качестве примера нормальное распределение. Нахождение оценок параметров по методу моментов выглядит следующим образом.

Следует заметить, что в уравнения также допустимо включать и такие экзотические виды моментов, как асимметрию и эксцесс, но это необходимо только в специализированных исследованиях. Статистическая практика чаще всего не выходит за рамки обозначенного выше алгоритма, поскольку число подлежащих исследованию параметров обыкновенно не превышает 4.

В качестве достоинств метода моментов следует обозначить, во-первых, то, что его вычислительная реализация сравнительно проста, а, во-вторых, то, что оценки, полученные в качестве решений системы, являются функциями от выборочных моментов, что упрощает исследование статистических свойств оценок данного метода. При больших n распределение оценки такого рода асимптотически нормально, среднее значение отличается от истинного на величину, приблизительно равную n -1 , а стандартное отклонение асимптотически равно cn (-1/2) , где c – определённая числовая константа. Фишер в своё время доказал, однако, что асимптотическая эффективность оценок по методу моментов всегда оказывается меньше 1, и поэтому данный метод уступает, например, методу максимального правдоподобия. Впрочем, иногда в статистических исследованиях оценки, полученные по методу моментов, принимаются в качестве первого приближения, по которым можно определять другими методами оценки более высокой эффективности.

В другом изложении:

Введём сначала следующие определения:

Определение 9 . Начальный момент порядка k случайной величины x определяется равенством: m k = M(x k).

В частности, m 1 = M(x) – обычное мат. ожидание, m 2 = M(x 2).

Определение 10 . Центральный момент порядка k случайной величины x определяется равенством: a k = M((x–Mx) k).

В частности, a 2 = D(x) – дисперсия случайной величины.

Эти моменты называют теоретическими . По данным наблюдений можно вычислить соответствующие эмпирические моменты:

Определение 11 . Начальный эмпирический момент порядка k случайной величины x определяется равенством

В частности, – выборочное среднее.

Определение 12 . Центральный эмпирический момент порядка k случайной величины x определяется равенством:

В частности, – выборочная дисперсия.

Метод моментов построения точечных оценок неизвестных параметров состоит в приравнивании теоретических моментов рассматриваемого распределения соответствующим эмпирическим моментам того же распределения.

Пусть даны: случайная величина ξ, выборка объема n x 1 , x 2 ,…, x n . Необходимо построить оценки неизвестных параметров q * 1, q * 2 ,…,q * k . Описание метода моментов (ММ) разобьём на этапы:

1. Выписываем первые к моментов μ 1, μ 2, … μ n

2. Вычисляем по выборке соответствующие им эмпирические (выборочные) моменты.

3. С оставляем систему уравнений μ i = m i и решаем ее относительно неизвестных параметров.

Замечание 1. Иногда вместо начальных моментов μ i , m i удобно использовать центральные моменты α i , a i .

Замечание 2 . Если на третьем этапе получилась неразрешимая система, то на первом шаге надо добавить новые моменты.

Найдем методом моментов оценки параметров нескольких важнейших распределений.

С какой оценки начинать? Одним из наиболее известных и простых в употреблении методов является метод моментов. Название связано с тем, что этот метод опирается на использование выборочных моментов

где x1, x2,…, xn - выборка, т.е. набор независимых одинаково распределенных случайных величин с числовыми значениями.

В прикладной статистике метод анализа данных называется методом моментов , если он использует статистику

где g : R q > R k - некоторая функция (здесь k - число неизвестных числовых параметров). Чаще всего термин «метод моментов» используют, когда речь идет об оценивании параметров. В этом случае обычно предполагают, что плотность вероятности распределения элементов выборки f (x ) входит в заранее известное статистику параметрическое семейство {f (x ;и), иєИ}, т.е. f (x ) = f (x ;и 0) при некотором и 0 . Здесь И - заранее заданное k -мерное пространство параметров, являющееся подмножеством евклидова пространства R k , а конкретное значение параметра и 0 статистику неизвестно, его и следует оценить. Известно также, что неизвестный параметр определяется с помощью известной статистику функции через начальные моменты элементов выборки:

В методе моментов в качестве оценки и 0 используют статистику Y n вида (1), которая отличается от формулы (1) тем, что теоретические моменты заменены выборочными.

Статистики Y n вида (1) применяются не только для оценивания параметров, но и для непараметрического оценивания характеристик случайной величины, таких, как коэффициент вариации, и для проверки гипотез. Во всех случаях применения статистики Y n вида (1) говорят о методе моментов.

Распределение вектора Y n во всех практически важных случаях является асимптотически нормальным. Это утверждение опирается на следующий общий факт.

Пусть случайный вектор Z n є R q асимптотически нормален с математическим ожиданием z ? и ковариационной матрицей ||c ij ||/n , а функция h : R q > R 1 достаточно гладкая. Тогда случайная величина h (Z n ) асимптотически нормальна с математическим ожиданием h (z ?) и дисперсией

Для получения асимптотического распределения статистики Y n вида (1) можно применить метод линеаризации к асимптотически нормальному вектору выборочных моментов (M n 1 , M n 2 , …, M n q) и функции g из формулы (1).

Для применения формулы (3) необходимо использовать асимптотические дисперсии и ковариации выборочных моментов, т.е. величины, обозначенные в формуле (3) как c rs . Эти величины имеют вид:

Здесь м r - теоретический центральный момент порядка r , т.е.

Таким образом, для получения асимптотического распределения случайной величины Y n вида (1) достаточно знать теоретические центральные моменты результатов наблюдений и вид функции g .

Однако моменты неизвестны. Их приходится оценивать. В соответствии с теоремами о наследовании сходимости для нахождения асимптотического распределения функции от выборочных моментов можно воспользоваться не теоретическими моментами, а их состоятельными оценками. Эти оценки можно получить разными способами. Можно непосредственно применить формулы (4), заменив теоретические моменты выборочными. Можно выразить моменты через параметры рассматриваемого распределения.

Для оценивания параметров гамма-распределения воспользуемся известной формулой, согласно которой для случайной величины Х , имеющей гамма-распределение с параметрами формы а , масштаба b =1 и сдвига c=0,

Следовательно, M (X ) = a , M (X 2) = a (a +1), D (X ) = M (X 2) - (M (X )) 2 = a (a +1) - a 2 = a . Найдем третий центральный момент M (X - M (X )) 3 . Справедливо равенство

M (X - M (X )) 3 = M (X 3) - 3 M (X 2) M (X ) + 3 M (X) (M (X )) 2 - (M (X )) 3

Из равенства (6) вытекает, что

M (X - M (X )) 3 = a (a +1)(a +2) - 3 a (a +1) a + 3 a a 2 - a 3 = 2a .

Если Y - случайная величина, имеющая гамма-распределение с произвольными параметрами формы a , масштаба b и сдвига c , то Y = bX + c . Следовательно, M (Y ) = ab +c , D (Y ) = ab 2 , M (Y - M (Y )) 3 = 2 a b 3 .

Метод моментов является универсальным. Однако получаемые с его помощью оценки лишь в редких случаях обладают оптимальными свойствами. Поэтому в прикладной статистике применяют и другие виды оценок.