Мощный телескоп. Большой Бинокулярный Телескоп

Вдали от огней и шума цивилизации, на вершинах гор и в безлюдных пустынях живут титаны, чьи многометровые глаза всегда обращены к звездам. Naked Science подобрал 10 крупнейших наземных телескопов: одни созерцают космос уже много лет, другим лишь предстоит увидеть «первый свет».

10. Large Synoptic Survey Telescope

Диаметр главного зеркала: 8,4 метра

Местонахождение: Чили, пик горы Серо-Пачон, 2682 метра над уровнем моря

Тип: рефлектор, оптический

Хотя LSST будет располагаться в Чили, это проект США и его строительство целиком финансируют американцы, в том числе Билл Гейтс (лично вложил 10 миллионов долларов из необходимых 400).

Предназначение телескопа - фотографирование всего доступного ночного неба раз в несколько ночей, для этого аппарат оснащен 3,2 гигапиксельной фотокамерой. LSST выделяется очень широким углом обзора в 3,5 градуса (для сравнения - Луна и Солнце, как они видны с Земли, занимают всего 0,5 градуса). Подобные возможности объясняются не только внушающим диаметром главного зеркала, но и уникальностью конструкции: вместо двух стандартных зеркал LSST использует три.

Среди научных целей проекта заявлены поиск проявлений темной материи и темной энергии, картографирование Млечного пути, детектирование кратковременных событий вроде взрывов новых или сверхновых, а также регистрация малых объектов Солнечной системы вроде астероидов и комет, в частности, вблизи Земли и в Поясе Койпера.

Ожидается, что LSST увидит «первый свет» (распространенный на Западе термин, означает момент, когда телескоп впервые используется по прямому назначению) в 2020 году. На данный момент идет строительство, выход аппарата на полное функционирование запланирован на 2022 год.

Large Synoptic Survey Telescope, концепт / LSST Corporation

9. South African Large Telescope

Диаметр главного зеркала: 11 x 9,8 метров

Местонахождение: ЮАР, вершина холма недалеко от поселения Сутерланд, 1798 метров над уровнем моря

Тип: рефлектор, оптический

Самый большой оптический телескоп южного полушария располагается в ЮАР, в полупустынной местности недалеко от города Сутерланд. Треть из 36 миллионов долларов, необходимых для конструирования телескопа, вложило правительство ЮАР; остальная часть поделена между Польшей, Германией, Великобританией, США и Новой Зеландией.

Свой первый снимок SALT сделал в 2005 году, немногим после окончания строительства. Его конструкция довольно нестандартна для оптических телескопов, однако широко распространена среди поколения новейших «очень больших телескопов»: главное зеркало не едино и состоит из 91 шестиугольного зеркала диаметром в 1 метр, угол наклона каждого из которых может регулироваться для достижения определенной видимости.

Предназначен для проведения визуального и спектрометрического анализа излучения астрономических объектов, недоступных телескопам северного полушария. Сотрудники SALT занимаются наблюдениями квазаров, близких и далеких галактик, а также следят за эволюцией звезд.

Аналогичный телескоп есть в Штатах, он называется Hobby-Eberly Telescope и расположен в Техасе, в местечке Форт Дэвис. И диаметр зеркала, и его технология почти полностью совпадают с SALT.


South African Large Telescope / Franklin Projects

8. Keck I и Keck II

Диаметр главного зеркала: 10 метров (оба)

Местонахождение: США, Гавайи, гора Мауна Кеа, 4145 метров над уровнем моря

Тип: рефлектор, оптический

Оба этих американских телескопа соединены в одну систему (астрономический интерферометр) и могут работать вместе, создавая единое изображение. Уникальное расположение телескопов в одном из лучших мест на Земле с точки зрения астроклимата (степень вмешательства атмосферы в качество астрономических наблюдений) превратило Keck в одну из самых эффективных обсерваторий в истории.

Главные зеркала Keck I и Keck II идентичны между собой и подобны по своей структуре телескопу SALT: они состоят из 36 шестиугольных подвижных элементов. Оборудование обсерватории позволяет наблюдать небо не только в оптическом, но и в ближнем инфракрасном диапазоне.

Помимо основной части широчайшего спектра исследований, Keck является на данный момент одним из самых эффективных наземных инструментов в поиске экзопланет.


Keck на закате / SiOwl

7. Gran Telescopio Canarias

Диаметр главного зеркала: 10,4 метров

Местонахождение: Испания, Канарские острова, остров Ла Пальма, 2267 метров над уровнем моря

Тип: рефлектор, оптический

Строительство GTC закончилось в 2009 году, тогда же обсерватория и была официально открыта. На церемонию приехал даже король Испании Хуан Карлос I. Всего на проект было потрачено 130 миллионов евро: 90% профинансировала Испания, а остальные 10% поровну поделили Мексика и Университет Флориды.

Телескоп способен наблюдать за звездами в оптическом и среднем инфракрасном диапазоне, обладает инструментами CanariCam и Osiris, которые позволяют GTC проводить спектрометрические, поляриметрические и коронографические исследования астрономических объектов.


Gran Telescopio Camarias / Pachango

6. Arecibo Observatory

Диаметр главного зеркала: 304,8 метров

Местонахождение: Пуэрто-Рико, Аресибо, 497 метров над уровнем моря

Тип: рефлектор, радиотелескоп

Один из самых узнаваемых телескопов в мире, радиотелескоп в Аресибо не раз попадал в объективы кинокамер: к примеру, обсерватория фигурировала в качестве места финальной конфронтации между Джеймсом Бондом и его антагонистом в фильме «Золотой Глаз», а также в научно-фантастической экранизации романа Карла Сагана «Контакт».

Этот радиотелескоп попал даже в видеоигры - в частности, в одной из карт сетевого режима Battlefield 4, которая называется Rogue Transmission, военное столкновение между двумя сторонами происходит как раз вокруг конструкции, полностью скопированной с Аресибо.

Выглядит Аресибо действительно необычно: гигантская тарелка телескопа диаметром почти в треть километра помещена в естественную карстовую воронку, окруженную джунглями, и покрыта алюминием. Над ней подвешен подвижный облучатель антенны, поддерживаемый 18 тросами с трех высоких башен по краям тарелки-рефлектора. Гигантская конструкция позволяет Аресибо ловить электромагнитное излучение относительно большого диапазона - с длиной волны от от 3 см до 1 м.

Введенный в строй еще в 60-х годах, этот радиотелескоп использовался в бесчисленных исследованиях и успел помочь сделать ряд значительных открытий (вроде первого обнаруженного телескопом астероида 4769 Castalia). Однажды Аресибо даже обеспечил ученых Нобелевской премией: в 1974 году были награждены Халс и Тейлор за первое в истории обнаружение пульсара в двойной звездной системе (PSR B1913+16).

В конце 1990-х годов обсерватория также стала использоваться в качестве одного из инструментов американского проекта по поиску внеземной жизни SETI.


Arecibo Observatory / Wikimedia Commons

5. Atacama Large Millimeter Array

Диаметр главного зеркала: 12 и 7 метров

Местонахождение: Чили, пустыня Атакама, 5058 метров над уровнем моря

Тип: радиоинтерферометр

На данный момент этот астрономический интерферометр из 66 радиотелескопов 12-и и 7-метрового диаметра является самым дорогим действующим наземным телескопом. США, Япония, Тайвань, Канада, Европа и, конечно, Чили потратили на него около 1,4 миллиарда долларов.

Поскольку предназначением ALMA является изучение миллиметровых и субмиллиметровых волн, наиболее благоприятным для такого аппарата является сухой и высокогорный климат; этим объясняется расположение всех шести с половиной десятков телескопов на пустынном чилийском плато в 5 км над уровнем моря.

Телескопы доставлялись постепенно: первая радиоантенна начала функционировать в 2008 году, а последняя - в марте 2013 года, когда ALMA и был официально запущен на полную запланированную мощность.

Главной научной целью гигантского интерферометра является изучение эволюции космоса на самых ранних стадиях развития Вселенной; в частности, рождения и дальнейшей динамики первых звезд.


Радиотелескопы системы ALMA / ESO/C.Malin

4. Giant Magellan Telescope

Диаметр главного зеркала: 25,4 метров

Местонахождение: Чили, обсерватория Лас-Кампанас, 2516 метров над уровнем моря

Тип: рефлектор, оптический

Далеко к юго-западу от ALMA в той же пустыне Атакама строится еще один крупный телескоп, проект США и Австралии - GMT. Главное зеркало будет состоять из одного центрального и шести симметрично окружающих его и чуть изогнутых сегментов, образуя единый рефлектор диаметром более чем в 25 метров. Помимо огромного рефлектора, на телескоп будет установлена новейшая адаптивная оптика, которая позволит максимально устранить искажения, создаваемые атмосферой при наблюдениях.

Ученые рассчитывают, что эти факторы позволят GMT получать изображения в 10 раз более четкие, чем снимки Hubble, и вероятно даже более совершенные, чем у его долгожданного наследника - космического телескопа James Webb.

Среди научных целей GMT значится очень широкий спектр исследований - поиск и снимки экзопланет, исследование планетарной, звездной и галактической эволюции, изучение черных дыр, проявлений темной энергии, а также наблюдение самого первого поколения галактик. Рабочий диапазон телескопа в связи с заявленными целями - оптический, ближний и средний инфракрасный.

Закончить все работы предполагается к 2020 году, однако заявлено, что GMT может увидеть «первый свет» уже с 4 зеркалами, как только они окажутся введены в конструкцию. В данный момент идет работа по созданию уже четвертого зеркала.


Концепт Giant Magellan Telescope / GMTO Corporation

3. Thirty Meter Telescope

Диаметр главного зеркала: 30 метров

Местонахождение: США, Гавайи, гора Мауна Кеа, 4050 метров над уровнем моря

Тип: рефлектор, оптический

По своим целям и характеристикам TMT похож на GMT и гавайские телескопы Keck. Именно на успехе Keck и основан более крупный TMT с той же технологией разделенного на множество шестиугольных элементов главного зеркала (только в этот раз его диаметр в три раза больше), а заявленные исследовательские цели проекта почти полностью совпадают с задачами GMT, вплоть до фотографирования самых ранних галактик чуть ли не на краю Вселенной.

СМИ называют разную стоимость проекта, она варьируется от 900 миллионов до 1,3 миллиарда долларов. Известно, что желание участвовать в TMT выразили Индия и Китай, которые согласны взять на себя часть финансовых обязательств.

В данный момент выбрано место для строительства, однако до сих пор ведется противодействие некоторых сил в администрации Гавайев. Гора Мауна Кеа является священным местом для коренных гавайцев, и многие среди них категорически против строительства сверхкрупного телескопа.

Предполагается, что все административные проблемы уже очень скоро будут решены, а полностью завершить строительство планируется примерно к 2022 году.


Концепт Thirty Meter Telescope / Thirty Meter Telescope

2. Square Kilometer Array

Диаметр главного зеркала: 200 или 90 метров

Местонахождение: Австралия и Южная Африка

Тип: радиоинтерферометр

Если этот интерферометр будет построен, то он станет в 50 раз более мощным астрономическим инструментом, чем крупнейшие радиотелескопы Земли. Дело в том, что своими антеннами SKA должен покрыть площадь примерно в 1 квадратный километр, что обеспечит ему беспрецедентную чувствительность.

По структуре SKA очень напоминает проект ALMA, правда, по габаритам будет значительно превосходить своего чилийского собрата. На данный момент есть две формулы: либо строить 30 радиотелескопов с антеннами в 200 метров, либо 150 с диаметром в 90 метров. Так или иначе, протяженность, на которой будут размещены телескопы, будет составлять, согласно планам ученых, 3000 км.

Чтобы выбрать страну, где будет строиться телескоп, был проведен своего рода конкурс. В «финал» вышли Австралия и ЮАР, и в 2012 году специальная комиссия объявила свое решение: антенны будут распределены между Африкой и Австралией в общую систему, то есть SKA будет размещен на территории обеих стран.

Заявленная стоимость мегапроекта - 2 миллиарда долларов. Сумма разделена между целым рядом стран: Великобританией, Германией, Китаем, Австралией, Новой Зеландией, Нидерландами, ЮАР, Италией, Канадой и даже Швецией. Предполагается, что строительство будет полностью завершено к 2020 году.


Художественное изображение 5-километрового ядра SKA / SPDO/Swinburne Astronomy Production

1. European Extremely Large Telescope

Диаметр главного зеркала: 39.3 метра

Местонахождение: Чили, вершина горы Серро Армазонес, 3060 метров

Тип: рефлектор, оптический

На пару лет - возможно. Однако к 2025 году на полную мощность выйдет телескоп, который превзойдет TMT на целый десяток метров и который, в отличии от гавайского проекта, уже находится на стадии строительства. Речь идет о бесспорном лидере среди новейшего поколения крупных телескопов, а именно о Европейском очень большом телескопе, или E-ELT.

Его главное почти 40-метровое зеркало будет состоять из 798 подвижных элементов диаметром в 1,45 метра. Это вместе с самой современной системой адаптивной оптики позволит сделать телескоп настолько мощным, что он, по мнению ученых, сможет не только находить планеты, подобные Земле по размерам, но и сможет с помощью спектрографа изучить состав их атмосферы, что открывает совершенно новые перспективы в изучении планет вне солнечной системы.

Помимо поиска экзопланет, E-ELT займется исследованием ранних стадий развития космоса, попробует измерить точное ускорение расширения Вселенной, проверит физические константы на, собственно, постоянство во времени; также этот телескоп позволит ученым глубже чем когда-либо погрузиться в процессы формирования планет и их первичный химический состав в поисках воды и органики - то есть, E-ELT поможет ответить на целый ряд фундаментальных вопросов науки, включая те, что затрагивают возникновение жизни.

Заявленная представителями Европейской южной обсерватории (авторами проекта) стоимость телескопа - 1 миллиард евро.


Концепт European Extremely Large Telescope / ESO/L. Calçada


Сравнение размеров E-ELT и египетских пирамид / Abovetopsecret

Самый детальный снимок соседней галактики. Андромеду сфотографировали при помощи новой камеры сверхвысокого разрешения Hyper-Suprime Cam (HSC), установленной на японском телескопе “Субару”. Это один из самых больших в мире работающих оптических телескопов – с диаметром главного зеркала более восьми метров. В астрономии размер часто имеет решающее значение. Давайте поближе познакомимся с другими гигантами, расширяющими границы наших наблюдений за космосом.

1. “Субару”

Телескоп “Субару” расположен на вершине вулкана Мауна-Кеа (Гавайи) и работает вот уже четырнадцать лет. Это телескоп-рефлектор, выполненный по оптической схеме Ричи – Кретьена с главным зеркалом гиперболической формы. Для минимизации искажений его положение постоянно корректирует система из двухсот шестидесяти одного независимого привода. Даже корпус здания имеет особую форму, снижающую негативное влияние турбулентных потоков воздуха.

Телескоп “Субару” (фото: naoj.org).

Обычно изображение с подобных телескопов недоступно непосредственному восприятию. Оно фиксируется матрицами камер, откуда передаётся на мониторы высокого разрешения и сохраняется в архив для детального изучения. “Субару” примечателен ещё и тем, что ранее позволял вести наблюдения по старинке. До установки камер был сконструирован окуляр, в который смотрели не только астрономы национальной обсерватории, но и первые лица страны, включая принцессу Саяко Курода – дочь императора Японии Акихито.

Сегодня на “Субару” может быть одновременно установлено до четырёх камер и спектрографов для наблюдений в диапазоне видимого и инфракрасного света. Самая совершенная из них (HSC) была создана компанией Canon и работает с 2012 года.

Камера HSC проектировалась в Национальной астрономической обсерватории Японии при участии множества партнерских организаций из других стран. Она состоит из блока линз высотой 165 см, светофильтров, затвора, шести независимых приводов и CCD матрицы. Её эффективное разрешение составляет 870 мегапикселей. Используемая ранее камера Subaru Prime Focus обладала на порядок меньшим разрешением – 80 мегапикселей.

Поскольку HSC разрабатывалась для конкретного телескопа, диаметр её первой линзы составляет 82 см – ровно в десять раз меньше диаметра главного зеркала “Субару”. Для снижения шумов матрица установлена в вакуумной криогенной камере Дьюара и работает при температуре -100 °С.

Телескоп “Субару” удерживал пальму первенства вплоть до 2005 года, когда завершилось строительство нового гиганта – SALT.

2. SALT

Большой южно-африканский телескоп (SALT) расположен на вершине холма в трёхстах семидесяти километрах к северо-востоку от Кейптауна, близ городка Сазерленд. Это самый крупный из действующих оптических телескопов для наблюдений за южной полусферой. Его главное зеркало с размерами 11,1×9,8 метра состоит из девяносто одной шестиугольной пластины.

Первичные зеркала большого диаметра исключительно сложно изготовить как монолитную конструкцию, поэтому у крупнейших телескопов они составные. Для изготовления пластин используются различные материалы с минимальным температурным расширением, такие как стеклокерамика.

Основная задача SALT – исследование квазаров, далёких галактик и других объектов, свет от которых слишком слаб для наблюдения с помощью большинства других астрономических инструментов. По своей архитектуре SALT подобен “Субару” и паре других известных телескопов обсерватории Мауна-Кеа.

3. Keck

Десятиметровые зеркала двух главных телескопов обсерватории Кека состоят из тридцати шести сегментов и уже сами по себе позволяют достичь высокого разрешения. Однако главная особенность конструкции в том, что два таких телескопа могут работать совместно в режиме интерферометра. Пара Keck I и Keck II по разрешающей способности эквивалентна гипотетическому телескопу с диаметром зеркала 85 метров, создание которого на сегодня технически невозможно.

Впервые на телескопах Keck была опробована система адаптивной оптики с подстройкой по лазерному лучу. Анализируя характер его распространения, автоматика компенсирует атмосферные помехи.

Пики потухших вулканов – одна из лучших площадок для строительства гигантских телескопов. Большая высота над уровнем моря и удалённость от крупных городов обеспечивают отличные условия для наблюдений.

4. GTC

Большой Канарский телескоп (GTC) также расположен на пике вулкана в обсерватории Ла-Пальма. В 2009 году он стал самым большим и самым совершенным наземным оптическим телескопом. Его главное зеркало диаметром 10,4 метра состоит из тридцати шести сегментов и считается самым совершенным из когда-либо созданных. Тем сильнее удивляет сравнительно низкая стоимость этого грандиозного проекта. Вместе с камерой инфракрасного диапазона CanariCam и вспомогательным оборудованием на строительство телескопа было затрачено всего $130 млн.

Благодаря CanariCam выполняются спектроскопические, коронографические и поляриметрические исследования. Оптическая часть охлаждается до 28 К, а сам детектор – до 8 градусов выше абсолютного нуля.

5. LSST

Поколение больших телескопов с диаметром главного зеркала до десяти метров заканчивается. В рамках ближайших проектов предусмотрено создание серии новых с увеличением размеров зеркал в два–три раза. Уже в следующем году в северной части Чили запланировано строительство широкоугольного обзорного телескопа-рефлектора Large Synoptic Survey Telescope (LSST).

LSST – Большой обзорный телескоп (изображение: lsst.org).

Ожидается, что он будет обладать самым большим полем зрения (семь видимых диаметров Солнца) и камерой с разрешением 3,2 гигапикселя. За год LSST должен делать более двухсот тысяч фотографий, общий объём которых в несжатом виде превысит петабайт.

Основной задачей станут наблюдения за объектами со сверхслабой светимостью, включая астероиды, угрожающие Земле. Запланированы также измерения слабого гравитационного линзирования для обнаружения признаков тёмной материи и регистрация кратковременных астрономических событий (таких как взрыв сверхновой). По данным LSST предполагается строить интерактивную и постоянно обновляемую карту звёздного неба со свободным доступом через интернет.

При надлежащем финансировании телескоп будет введён строй уже в 2020 году. На первом этапе требуется $465 млн.

6. GMT

Гигантский Магелланов телескоп (GMT) – перспективный астрономический инструмент, создаваемый в обсерватории Лас-Кампанас в Чили. Главным элементом этого телескопа нового поколения станет составное зеркало из семи вогнутых сегментов общим диаметром 24,5 метра.

Даже с учётом вносимых атмосферой искажений детальность сделанных им снимков будет примерно в десять раз выше, чем у орбитального телескопа “Хаббл”. В августе 2013 года завершается отливка третьего зеркала. Ввод телескопа в эксплуатацию намечен в 2024 году. Стоимость проекта сегодня оценивается в $1,1 млрд.

7. TMT

Тридцатиметровый телескоп (TMT) – ещё один проект оптического телескопа нового поколения для обсерватории Мауна-Кеа. Главное зеркало диаметром в 30 метров будет выполнено из 492 сегментов. Его разрешающая способность оценивается как в двенадцать раз превышающая таковую у “Хаббла”.

Начало строительства запланировано на следующий год, завершение – к 2030-му. Расчётная стоимость – $1,2 млрд.

8. E-ELT

Европейский чрезвычайно большой телескоп (E-ELT) сегодня выглядит наиболее привлекательным по соотношению возможностей и затрат. Проектом предусмотрено его создание в пустыне Атакама в Чили к 2018 году. Текущая стоимость оценивается в $1,5 млрд. Диаметр главного зеркала составит 39,3 метра. Оно будет состоять из 798 шестиугольных сегментов, каждое из которых – около полутора метров в поперечнике. Система адаптивной оптики будет устранять искажения при помощи пяти дополнительных зеркал и шести тысяч независимых приводов.

Европейский чрезвычайно большой телескоп – E-ELT (фото: ESO).

Расчётная масса телескопа составляет более 2800 тонн. На нём будет установлено шесть спектрографов, камера ближнего ИК-диапазона MICADO и специализированный инструмент EPICS, оптимизированный для поиска планет земного типа.

Основной задачей коллектива обсерватории E-ELT станет детальное исследование открытых к настоящему времени экзопланет и поиск новых. В качестве дополнительных целей указывается обнаружение признаков наличия в их атмосфере воды и органических веществ, а также изучение формирования планетарных систем.

Оптический диапазон составляет лишь малую часть электромагнитного спектра и обладает рядом свойств, ограничивающих возможности наблюдения. Многие астрономические объекты практически не обнаруживаются в видимом и ближнем инфракрасном спектре, но при этом выдают себя за счёт радиочастотных импульсов. Поэтому в современной астрономии большая роль отводится радиотелескопам, размер которых напрямую влияет на их чувствительность.

9. Arecibo

В одной из ведущих радиоастрономических обсерваторий Аресибо (Пуэрто-Рико) расположен крупнейший радиотелескоп на одной апертуре с диаметром рефлектора триста пять метров. Он состоит из 38 778 алюминиевых панелей суммарной площадью около семидесяти трёх тысяч квадратных метров.

Радиотелескоп обсерватории Аресибо (фото: NAIC – Arecibo Observatory).

С его помощью уже был сделан ряд астрономических открытий. К примеру, в 1990 году обнаружен первый пульсар с экзопланетами, а в рамках проекта распределённых вычислений Einstein@home за последние годы были найдены десятки двойных радиопульсаров. Однако для ряда задач современной радиоастрономии возможностей “Аресибо” уже едва хватает. Новые обсерватории будут создаваться по принципу масштабируемых массивов с перспективой роста до сотен и тысяч антенн. Одними из таких станут ALMA и SKA.

10. ALMA и SKA

Атакамская большая миллиметровая/субмиллиметровая решётка (ALMA) представляет собой массив из параболических антенн диаметром до 12 метров и массой более ста тонн каждая. К середине осени 2013 года число антенн, объединённых в единый радиоинтерферометр ALMA, достигнет шестидесяти шести. Как и у большинства современных астрономических проектов, стоимость ALMA превышает миллиард долларов.

Квадратная километровая решётка (SKA) – другой радиоинтерферометр из массива праболических антенн, расположенных в Южной Африке, Австралии и Новой Зеландии на общей площади около одного квадратного километра.

Антенны радиоинтерферометра “Квадратная километровая решётка” (фото: stfc.ac.uk).

Его чувствительность примерно в пятьдесят раз превосходит возможности радиотелескопа обсерватории Аресибо. SKA способен уловить сверхслабые сигналы от астрономических объектов, расположенных на удалении 10–12 млрд световых лет от Земли. Начать первые наблюдения планируется в 2019 году. Проект оценивается в $2 млрд.

Несмотря на огромные масштабы современных телескопов, их запредельную сложность и многолетние наблюдения, исследование космоса только начинается. Даже в Солнечной системе до сих пор обнаружена лишь малая часть объектов, заслуживающих внимания и способных повлиять на судьбу Земли.

(Факты@Science_Newworld).

1 фото.
Cамый большой телескоп, точнее даже три. Первые два - это телескопы Keck I и Keck II в обсерватории Mauna Kea на Гавайях, США. Построены в 1994 и 1996 гг. диаметр их зеркал - 10 м. это самые большие телескопы в мире в оптическом и инфракрасном диапазонах. Keck I и Keck II могут работать в паре, в режиме интерферометра, давая угловое разрешение, как у 85-метрового телескопа.

И ещё один такой же испанский телескоп GTC построен в 2002 г. на канарских островах. Большой канарский телескоп (Gran Telescopio Canarias (GTC. Он расположен в обсерватории Ла- пальма, на высоте 2400 м. над уровнем моря, на вершине вулкана мучачос. Диаметр его зеркал - 10, 4 м., то есть чуть больше, чем у Keck -ов. Похоже, что самый большой одиночный телескоп всё - же именно он.


3 фото.
В 1998 г. несколько европейских стран построили в горах Чили "Очень Большой Телескоп" - Very Large Telescope (VLT. Это четыре телескопа с зеркалами по 8, 2 м. если все четыре телескопа работают в режиме одного целого, то яркость получаемого изображения - как у 16-метрового телескопа. Снимок ESO.


4 фото.
Так же нужно упомянуть большой южноафриканский телескоп Salt с зеркалом 11 х 9, 8 м. это самый большой телескоп в южном полушарии. Его действительно полезная зеркальная поверхность меньше диаметра в 10 м. (данных о полезной площади Keck -ов и GTC у меня нет.


То есть, за звание самого большого телескопа могут бороться несколько упомянутых установок. В зависимости от того, что же считать самым важным: угловое разрешение, общую мощность или количество зеркал.


5 фото.
Самый большой телескоп в России - большой телескоп альт - азимутальный (бта. Он расположен в Карачаево-Черкесии. Диаметр его зеркала - 6 м. построен в 1976 г. с 1975 по 1993 гг. являлся самым большим телескопом в мире. Сейчас он входит лишь во вторую десятку самых мощных телескопов мира.


Самые большие радиотелескопы.


6 фото.
Не надо забывать и о радиотелескопах. Телескоп аресибо телескоп в обсерватории аресибо в пуэрто - рико имеет сферическую чашу диаметром 304, 8 м. работает с длинами волн от 3 см. До 1 м. построен в 1963 году. Это самый большой телескоп с одиночным зеркалом.


Летом 2011 года Россия наконец смогла запустить космический аппарат "Спектр - Р", космическую составляющую проекта "радиоастрон". Этот космический радиотелескоп способен работать в связке с наземными телескопами в режиме интерферометра. За счёт того, что в апогее он удаляется от земли на расстояние 350 км., его угловое разрешение может достигать всего лишь миллионных долей угловой секунды - в 30 раз лучше наземных систем. Среди радиотелескопов, это самый лучший телескоп по угловому разрешению.


Самый мощный телескоп.


7 фото.
Так какой же телескоп самый мощный? Ответить невозможно, поскольку в одних случаях важнее угловое разрешение, в других - световая мощность. А есть ещё инфракрасный, радио -, ультрафиолетовый, рентгеновский диапазоны.
Телескоп хаббл если ограничиться одним лишь видимым диапазоном, то одним из самых мощных телескопов будет знаменитый космический телескоп имени хаббла. За счёт почти полного отсутствия влияния атмосферы, при диаметре всего 2, 4 м., его разрешающая способность в 7-10 раз выше, чем была бы у него же, будь он размещён на земле. Этот один из самых мощных на сегодня телескопов проработает на орбите то 2014 года.

8 фото.
В 2018 году его должен сменить ещё более мощный телескоп "Джеймс Вебб" - Jwst. Его зеркало должно состоять из нескольких частей и иметь диаметр около 6, 5 м. при фокусном расстоянии 131, 4 м. этот следующий самый мощный космический телескоп планируется разместить в постоянной тени земли, в точке Лагранжа L2 системы солнце - земля.

Первые телескопы.

Самый первый телескоп в мире был построен Галилео Галилеем в 1609 г. это линзовый телескоп - рефрактор. Точнее, это была скорее подзорная труба, которую изобрели за год до этого, а Галилей был первым, кто решил посмотреть в эту трубу на луну и планеты. В качестве объектива у самого первого телескопа была одна собирающая линза, а окуляром служила одна рассеивающая. Имел малый угол зрения, сильный хроматизм и всего трёхкратное увеличение (потом Галилей довёл его до 32 крат.

Кепплер расширил угол зрения, заменив в окуляре рассеивающую линзу на собирающую. Но, хроматизм остался. Поэтому в первых телескопах - рефракторах с ним боролись довольно простым способом - уменьшали относительное отверстие, то есть увеличивали фокусное расстояние.

9 фото.
Например самый большой телескоп Яна гевелия имел в длину 50 метров! Он подвешивался на столбе и управлялся канатами.

10 фото.
Знаменитый телескоп "Левиафан" ("the Leviathan of Parsonstown") был построен в 1845 году, в замке лорда оксмантоуна (Уильяма парсонса, графа Росса) в Ирландии. 72-Дюймовое зеркало расположено в трубе длиной 60 футов. Труба перемещалась почти, внимание, только в вертикальной плоскости, но ведь небосвод вращается в течение суток. Впрочем, небольшой запас хода по азимуту был - можно было вести объект в течение одного часа.
Зеркало было изготовлено из бронзы (медь и олово) и весило 4 тонны, с оправой - 7 тонн. Разгрузка такой махины делалась на 27 точек. Было изготовлено 2 зеркала - одно сменяло другое по мере возникновения нужды в переполировке, поскольку бронза быстро темнеет в ирландском сыром климате.
Самый большой телескоп того времени приводился в движение паровой машиной через сложную систему рычагов и передач, что требовало трёх человек для контроля перемещений.
Он проработал вплоть до 1908 г., будучи самым большим телескопом в мире. К 1998 г. потомки Росса построили копию "Левиафана" на старом месте, которая доступна для посетителей. Впрочем, зеркало копии алюминиевое, а привод управляется гидравликой и электричеством.

0:03 24/10/2017

👁 4 551

Большой телескоп азимутальный (БТА)

Большой Телескоп Азимутальный (БТА)

У подножья горы Пастухова на горе Семиродники в Специальной астрофизической обсерватории (САО) установлен Большой Телескоп Азимутальный. Его также по-простому называют – БТА. Этот находится на высоте 2070 метров над уровнем моря и по принципу действия является телескопом-рефлектором. Главное зеркало данного телескопа имеет диаметр 605 см и имеет параболическую форму. Фокусные расстояние главного зеркала – 24 метра. БТА является крупнейшим телескопом в Евразии. В настоящее время Специальная астрофизическая обсерватория является крупнейшим российским астрономическим центром наземных наблюдений за .

Возвращаясь к телескопу БТА стоит упомянуть несколько весьма впечатляющих цифр. Так, например, вес главного зеркала телескопа без учета оправы составляет 42 тонны, масса подвижной части телескопа - около 650 тонн, а общая масса всего телескопа БТА - около 850 тонн! В настоящее время телескоп БТА имеет несколько рекордов, относительно других телескопов на нашей . Так, главное зеркало БТА является крупнейшем в мире по массе, а купол БТА является крупнейшим астрономическим куполом в мире!

В поисках следующего телескопа мы отправляемся в Испанию, на Канарские острова, а если быть совсем точнее, то на остров Ла Пальма. Здесь на высоте 2267 метров над уровнем моря расположен Большой Канарский телескоп (GTC). Этот телескоп был построен в 2009 году. Как и телескоп БТА, Большой Канарский телескоп (GTC) по принципу действия является телескопом-рефлектором. Главное зеркало данного телескопа имеет диаметр 10,4 метра.

Большой Канарский телескоп (GTC) может наблюдать за звездным небом в оптическом и в среднем инфракрасном диапазоне. Благодаря инструментам Osiris и CanariCam он может проводить поляриметрические, спектрометрические и коронографические исследования космических объектов.

Далее мы отправляемся на Африканский континент, а точнее – в Южно-Африканскую республику. Здесь на вершине холма, в полупустынной местности близ деревушки Сутерланд на высоте 1798 метров над уровнем моря расположен Большой Южно-африканский телескоп (SALT). Как и предыдущие телескопы, по принципу действия Большой Южно-африканский телескоп (SALT) является телескопом-рефлектором. Главное зеркало данного телескопа имеет диаметр 11 метров. Любопытно, но данный телескоп не является крупнейшим в мире, однако, Большой Южно-африканский телескоп (SALT) на сегодняшний день – самый большой телескоп южного полушария. Главное зеркало данного телескопа – это не цельный кусок стекла. Главное зеркало состоит из 91 шестиугольного элемента, каждый из которых имеет диаметр в 1 метр. Для улучшения качества изображения все отдельные сегментные зеркала могут регулироваться по углу. Таким образом, достигается точнейшая форма. Сегодня, такая технология строения главных зеркал (набор отдельных подвижных сегментов) получила широкое распространение при строительстве крупных телескопов.

Большой Южно-африканский телескоп (SALT) был создан для спектрометрического и визуального анализа излучения, исходящего от астрономических объектов, находящихся вне поля видимости телескопов, расположенных в северном полушарии. В настоящее время данный телескоп обеспечивает наблюдение за , дальними и близкими , а также отслеживает эволюцию .

Пришло время отправиться на противоположную часть . Наша следующая цель – гора Грэхем, которая находится в юго-восточной части штата Аризона (США). Здесь на высоте 3300 метров расположен один из наиболее технологически передовых и обладающих наивысшим разрешением оптических телескопов в мире! Знакомьтесь – это Большой бинокулярный телескоп! Название уже говорит само за себя. Данный телескоп обладает двумя главными зеркалами. Диаметр каждого зеркала составляет 8,4 метра. Как и в простейшем бинокле, зеркала Большого бинокулярного телескопа установлены на общем креплении. Благодаря бинокулярному устройству данный телескоп по своей светосиле эквивалентен телескопу с одним зеркалом диаметром 11,8 метра, а его разрешающая способность эквивалентна телескопу с одним зеркалом диаметром 22,8 метра. Здорово, не правда ли?!

Телескоп является частью международной обсерватории Маунт-Грэм. Это совместный проект Аризонского университета и Арчетрийской астрофизической обсерватории во Флоренции (Италия). С помощью своего бинокулярного устройства Большой Бинокулярный Телескоп получает очень детальные изображения далеких объектов, давая необходимую наблюдательную информацию для космологии, внегалактической астрономии, физики звёзд и планет и решает многочисленные астрономические вопросы. Первый свет телескоп увидел 12 октября 2005 года, запечатлев объект NGC 891 в .

Телескопы Вильяма Кека (Keck Observatory)

Теперь мы отправляемся на знаменитейший остров вулканического происхождения – Гавайи (США). Одна из самых известных гор – Мауна-Кеа. Здесь нас встречает целая обсерватория – (Keck Observatory). Данная обсерватория расположена на высоте 4145 метров над уровнем моря. И если у предыдущего большого бинокурярного телескопа имелось два главных зеркала, то в обсерватории Кека мы имеем два телескопа! Каждый из телескопов может работать по отдельности, но телескопы также могут работать совместно в режиме астрономического интерферометра. Это возможно благодаря тому, что телескопы “Кек I” и “Кек II” находятся на расстоянии около 85 метров друг от друга. При таком использовании они имеют разрешение, эквивалентное телескопу с 85-метровым зеркалом. Общая масса каждого телескопа составляет приблизительно 300 тонн.

Как телескоп “Кек I”, так и телескоп “Кек II” имеют главные зеркала, которые выполнены по системе Ричи-Кретьена. Главные зеркала состоят из 36 сегментов, которые образуют отражательную поверхность, диаметр которой равен 10 метрам. Каждый такой сегмент оборудован специальной системой поддержки и наведения, а также системой, защищающей зеркала от деформации. Оба телескопа оборудованы адаптивной оптикой для компенсации атмосферных искажений, которая позволяет получить более качественное изображение. Наибольшее количество экзопланет открыто именно в этой обсерватории с помощью спектрометра высокого разрешения. Открытие новых , этапы зарождения и эволюции нашей изучает данная обсерватория в настоящее время!

Телескоп “Субару”

Телескоп “Субару”

На горе Мауна-Кеа, помимо обсерватории Кека, нас встречает и . Данная обсерватория расположена на высоте 4139 метров над уровнем моря. Любопытно, но название телескопа как никогда космическое! Все дело в том, что Субару в переводе с японского языка означает Плеяды! Строительство телескопа было начало в далеком 1991 году и продолжилось до 1998 года, а уже в 1999 году телескоп «Субару» заработал в полную силу!

Как многие известные телескопы мира, «Субару» по принципу действия является телескопом-рефлектором. Главное зеркало данного телескопа имеет диаметр 8,2 метра. В 2006 году на данном телескопе «Субару» была применена система адаптивной оптики с лазерной гидирующей звездой. Это позволило увеличить угловое разрешение телескопа в 10 раз. Спектрограф Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), установленный на телескопе «Субару», предназначен для обнаружения экзопланет, исследования их света с целью установления размера планет, а также газов преобладающих в их .

Теперь мы отправляемся в штат Техас Соединенных Штатов Америки. Здесь расположена обсерватория МакДональда. В этой обсерватории расположен телескоп «Хобби-Эберли». Телескоп назван в честь бывшего губернатора Техаса Билла Хобби и Роберта Эберли, благодетеля из штата Пенсильвания. Телескоп расположен на высоте 2026 метров над уровнем моря. Телескоп был запущен в эксплуатацию в 1996 году. Главное зеркало, как и на телескопах Кека, состоит из 91 отдельных сегментов и имеет общий диаметр 9,2 метра. В отличие от многих крупных телескопов в телескопе «Хобби-Эберли» применены дополнительные и уникальные функции. Одной из таких функций можно назвать отслеживание объекта путем перемещения инструментов в фокусе телескопа. Это обеспечивает доступ к 70-81% неба и позволяет отслеживать один астрономический объект до двух часов.

Телескоп «Хобби-Эберли» широко используется для изучения космоса, начиная с нашей Солнечной системы и заканчивая звёздами в нашей галактике и для изучения остальных галактик. Телескоп «Хобби-Эберли» успешно используется и для поиска экзопланет. Используя низкую разрешающую способность спектрографа, телескоп «Хобби-Эберли» используется для идентификации суперновых для измерения ускорения Вселенной. У данного телескопа есть и «визитная карточка», отличающая этот телескоп от остальных! Рядом с телескопом имеется башня, которая называется центром кривизны выравнивания зеркал. Эта Башня используется для калибровки отдельных сегментов зеркала.

Очень большой телескоп – Very Large Telescope (VLT)

Очень большой телескоп – Very Large Telescope (VLT)

И в завершение рассказа о крупнейших телескопах мира мы отправляемся в Южную Америку, где в Республике Чили на горе Серро Параналь расположен . Да, да! Телескоп так и называется – «Очень Большой телескоп»! Дело в том, что данный телескоп состоит сразу из 4 телескопов, каждый из которых имеет диаметр апертуры в 8,2 метра. Телескопы могут работать как раздельно друг от друга, выполняя съёмку с часовой выдержкой, так и совместно, позволяя увеличить разрешение для ярких объектов, а также для увеличения светимости слабых или сильно удалённых объектов.

«Очень Большой телескоп» был построен Европейской Южной Обсерваторией (ESO). Этот телескоп находится на высоте 2635 метров над уровнем моря. «Очень Большой телескоп» способен производить наблюдения волн разного диапазона - от ближнего ультрафиолетового до среднего инфракрасного. Наличие системы адаптивной оптики позволяют телескопу практически полностью исключить влияние турбулентности атмосферы в инфракрасном диапазоне. Это позволяет получить в этом диапазоне изображения в 4 раза более чёткие, чем телескоп Хаббла. Для интерферометрических наблюдений используются четыре вспомогательных 1,8-метровых телескопа способных передвигаться вокруг основных телескопов.

Вот такие вот они – самые крупные телескопы в мире! К не названным телескопам можно отнести два восьмиметровых телескопа «Джемини-Север» и «Джемини-Юг» на Гавайях и в Чили, принадлежащие Обсерватории Джемини, 5-метровый рефлектор имени Джорджа Хейла в Паломарской обсерватории, 4,2-метровый альт-азимутальный отражательный телескоп Вильяма Гершеля, входящий в группу Исаака Ньютона в Обсерватории дель Рок де лос Мучачос (Ла-Пальма, Канарские острова), 3,9-метровый Англо-Австралийский телескоп (AAT), находящийся в Обсерватории Сайдинг-Спринг (штат Новый Южный Уэльс, Австралия), 4-метровый оптический отражательный телескоп имени Николаса Майолла в Национальной обсерватории Китт-Пик, принадлежащей к Национальным оптическим астрономическим обсерваториям США и некоторые другие.

На сегодняшний день телескопы по-прежнему остаются одними из основных инструментов астрономов, как любителей, так и профессионалов. Задача оптического инструмента собрать на приемнике света как можно больше фотонов.
В данной статье мы затронем оптические телескопы, кратко ответим на вопрос: «почему размер телескопа имеет значение?» и рассмотрим список самых больших телескопов в мире.

Прежде всего следует отметить различия между телескопом рефлектором и . Рефрактор – это самый первый тип телескопа, который был создан в 1609 году Галилеем. Принцип его работы заключается в сборе фотонов при помощи линзы или системы линз, с последующим уменьшением изображения и передачей его в окуляр, в который астроном смотрит во время наблюдения. Одной из важных характеристик такого телескопа – апертура, высокое значение которой достигается в том числе и с помощью увеличения размера линзы. Наряду с апертурой имеет большое значение и фокусное расстояние, величина которого зависит от длины самого телескопа. По этим причинам астрономы стремились увеличить свои телескопы.
На сегодняшний день самые большие телескопы-рефракторы находятся в следующих учреждениях:

  1. В Йеркской обсерватории (Висконсин, США) — диаметром 102 см, созданный в 1897 году;
  2. В Ликской обсерватории (Калифорния, США) – диаметром 91 см, созданный в 1888 году;
  3. В Парижской обсерватории (Медон, Франция) – диаметром 83 см, созданный в 1888 году;
  4. В Потсдамском институте (Потсдам, Германия) – диаметром 81 см, созданный в 1899 году;

Современные рефракторы хоть и шагнули заметно дальше изобретения Галилея, все же обладают таким недостатком как хроматическая аберрация. Кратко говоря, так как угол преломления света зависит от его длины волны, то, проходя через линзу, свет разной длины как-бы расслаивается (дисперсия света), в результате чего изображение выглядит нечетким, расплывчатым. Несмотря на то, что ученые разрабатывают все новые технологии для повышения четкости, например, стекло со сверхнизкой дисперсией, рефракторы все же во многом уступают рефлекторам.
В 1668 году Исаак Ньютон разработал первый . Основная особенность такого оптического телескопа состоит в том, что собирающим элементом является не линза, а зеркало. В силу искажения зеркала, падающий на него фотон отражается в другое зеркало, которое, в свою очередь, направляет его в окуляр. Различные конструкции рефлекторов отличаются взаимным расположением этих зеркал, однако так или иначе рефлекторы избавляют наблюдателя от последствий хроматической аберрации давая на выходе более четкое изображение. Кроме того, рефлекторы можно делать значительно больших размеров, так как линзы рефрактора диметром более 1 м деформируются под собственным весом. Также прозрачность материала линзы рефрактора заметно ограничивает диапазон длин волн, по сравнению с устройством рефлектора.

Говоря о телескопах-рефлекторах, следует также отметить, что с увеличением диаметра главного зеркала растет и его апертура. По описанным выше причинам астрономы стараются заполучить оптические телескопы-рефлекторы наибольших размеров.

Список самых больших телескопов

Рассмотрим семь комплексов телескопов с зеркалами диаметром более 8 метров. Здесь мы пытались их упорядочить по такому параметру как апертура, однако это не определяющий параметр качества наблюдения. Каждый из перечисленных телескопов имеет свои достоинства и недостатки, определенные задачи и требуемые для их выполнения характеристики.

  1. Большой Канарский телескоп, открытый в 2007-м году, является оптическим телескопом с наибольшей апертурой в мире. Диаметр зеркала составляет 10,4 метра, собирающая площадь 73 м², а фокусное расстояние — 169,9 м. Телескоп находится в Обсерватории Роке де лос Мучачос, которая расположена на пике потухшего вулкана Мучачос, примерно 2400 метров над уровнем моря, на одном из Канарских островов под названием Пальма. Местный астроклимат считается вторым наиболее качественным для астрономических наблюдений (после Гавайи).

    Большой Канарский телескоп — самый большой телескоп в мире

  2. Два телескопа Кек имеют зеркала диаметром по 10 метров каждый, собирающая площадь по 76 м² и фокусное расстояние 17,5 м. Принадлежат обсерватории Мауна-Кеа, которая располагается на высоте 4145 метров, на пике горы Мауна-Кеа (Гавайи, США). В обсерватории Кека было обнаружено наибольшее количество экзопланет.

  3. Телескоп Хобби - Эберли находится в Обсерватории Макдональда (Техас, США) на высоте 2070 метров. Его апертура равна 9,2 м, хотя физически основное зеркало рефлектора имеет размеры 11 х 9,8 м. Собирающая площадь 77,6 м², фокусное расстояние 13,08 м. Особенность этого телескопа заключается в ряде нововведений. Одно из них — подвижные инструменты, находящиеся в фокусе, которые перемещаются вдоль неподвижного основного зеркала.

  4. Большой южно-африканский телескоп, принадлежащий Южно-африканской астрономической обсерватории, имеет зеркало наибольших размеров – 11,1 х 9,8 метров. При этом его эффективная апертура несколько меньше — 9.2 метра. Собирающая площадь составляет 79 м². Телескоп находится на высоте 1783 метра в полупустынном регионе Кару, ЮАР.

  5. Большой бинокулярный телескоп является одним из наиболее технологически развитых телескопов. Он обладает двумя зеркалами («бинокулярный»), каждое из которых имеет диаметр 8,4 метра. Собирающая площадь 110 м², а фокусное расстояние 9,6 м. Телескоп находится на высоте 3221 метр и принадлежит Международной обсерватории Маунт-Грэм (Аризона, США).

  6. Телескоп Субару, построенный в далеком 1999-м году, имеет диаметр 8,2 м, собирающую площадь 53 м² и фокусное расстояние 15 м. Принадлежит обсерватории Мауна-Кеа (Гавайи, США), той же, что и телескопы Кек, но находится шестью метрами ниже – на высоте 4139 м.

  7. VLT (Very Large Telescope – с англ. «Очень большой телескоп») состоит из четырех оптических телескопов с диметрами по 8,2 м и четырех вспомогательных – по 1,8 м. Телескопы располагаются на высоте 2635 м в пустыне Атакама, Чили. Находятся под контролем Европейской Южной Обсерватории.

    «Очень большой телескоп» (VLT)

Направление развития

Так как строительство, установка и эксплуатация гигантских зеркал является достаточно энергозатратным дорогостоящим мероприятием имеет смысл повышать качество наблюдения иными способами, помимо увеличения размеров самого телескопа. По этой причине ученые также работают в направлении развития самих технологий наблюдения. Одной из таких технологий является адаптивная оптика, которая позволяет минимизировать искажения полученных изображений в результате различных атмосферных явлений.
Если рассмотреть подробнее, то телескоп фокусируется на достаточно яркой звезде для определения текущих атмосферных условий, в результате чего получаемые изображения обрабатываются с учетом текущего астроклимата. В случае, если на небосводе нет достаточно ярких звезд, телескоп излучает лазерный луч в небо, формируя на нем пятно. По параметрам этого пятна ученые определяют текущую атмосферную погоду.

Часть оптических телескопов работает также в инфракрасном диапазоне спектра, что позволяет получать более полную информацию об исследуемых объектах.

Проекты будущих телескопов

Инструменты астрономов постоянно совершенствуются и ниже представлены наиболее масштабные проекты новых телескопов.

  • планируется возвести в Чили, на высоте 2516 метров, к 2022 году. Собирающий элемент состоит из семи зеркал по 8,4 м диаметром, при этом эффективная апертура достигнет 24,5 м. Собирающая площадь — 368 м². Разрешающая способность Гигантского Магелланова телескопа в 10 превысит таковую телескопа Хаббл. Способность собирать свет будет вчетверо превышать таковую любого современного оптического телескопа.

  • Тридцатиметровый телескоп будет относиться к обсерватории Мауна-Кеа (Гавайи, США), к которой также относятся телескопы Кек и Субару. Данный телескоп намерены возвести к 2022-му году на высоте 4050 метров. Как видно из названия, диаметр его главного зеркала будет составлять 30 метров, собирающая площадь — 655 м 2 , а фокусное расстояние – 450 метров. Тридцатиметровый телескоп будет способен собирать вдевятеро больше света, чем любой существующий, его четкость превысит четкость Хаббла в 10-12 раз.

  • (E-ELT) на сегодня является наиболее масштабным проектом телескопа. Он будет расположен на горе Армасонес на высоте 3060 метров, Чили. Диаметр зеркала E-ELT составит 39 м, собирающая площадь 978 м 2 и фокусное расстояние до 840 метров. Собирающая способность телескопа превысит в 15 раз таковую любого существующего сегодня, а качество изображения будет в 16 раз лучше, чем у Хаббла.

Перечисленные телескопы выходят за пределы видимого спектра и способны улавливать изображения также и в инфракрасной области. Сравнение этих наземных телескопов с орбитальным телескопом Хаббл означает то, что ученые преодолели барьер из помех, образованный в результате атмосферных явлений, при этом превзойдя мощный орбитальный телескоп. Все три перечисленные аппарата, вместе с Большим бинокулярным телескопом и Большим Канарским телескопом будут относиться к новому поколению так называемых Экстремально больших телескопов (Extremely Large Telescope — ELT).